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1. Introduction

We are interested in the number and the size of integer points on plane curves of
genus 1. Although our main focus will be on general curves of genus 1 defined by
polynomial equations F(x, y) = 0, it will be convenient to begin with Weierstrass
curves

where the right-hand side is a cubic polynomial f with nonzero discriminant.
Recently Evertse and Silverman [9] gave a bound for the number of integer
solutions which depends on the class number of the splitting field of f. An easy
consequence is as follows.

THEOREM 1. Suppose f(X) = X3 + bX 2 + cX + d has discriminant 0394(f) ~ 0 and
has integer coefficients in an algebraic number field k of degree b and discriminant
Dk . Then given e &#x3E; 0, the number Z of solutions of (W) in integers x, y of k has

where Xk is the norm from k to Q.

The constant c,(ô, e), like all the constants of this paper, is effectively
computable.
We define the field height Hk(a) of a nonzero vector a = (03B11,..., 03B1n) E kn as in

[5] or [ 15], and the absolute height to be H(a) = Hk(03B1)1/03B4. Thus

where M(k) is an indexing set for suitably normalized absolute values 1’1 of, the
dv are the local degrees, and |03B1|v = max(|03B1v, ... , |03B1n |v). Given a polynomial f with
coefficients in k, we define quantities If 1, and heights Hk(f), H(f) in terms of its

lSupported in part by NSF grant DMS-8603093.
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coefficient vector. For a cubic polynomial f, we have |0394(f)|v  c(v)|f|4v, where

when v is archimedean,
when v is non-archimedean,

with an absolute constant c2. The sum of the local degrees over the set M~(k) of
the archimedean absolute values is b, so that

When f has leading coefficient 1, then |fv|  1 for each v, and

Therefore (1.1) implies that

In particular, in the case K = Q we obtain

1 conjecture that in fact for given e &#x3E; 0,

More generally, 1 conjecture that the number Z of solutions x, y E Z of an
irreducible equation F(x, y) = 0 defining a curve of positive genus, with F having
coefficients in Z and total degree N, has

Beginning with the pioneering work of Baker [1], [2], a number of authors
have estimated the size of integer solutions of the Equation (W), or more
generally of hyperelliptic equations y2 = f (x) where f is a polynomial of degree
 3 with nonzero discriminant. Given a E k, define hk(03B1) = Hk«l, 03B1)). A natural
concept of size of an integer solution (x, y) would be max(hk(x), hk(y)). Baker in
[1] dealt with the case when K = Q and deg f = 3, and obtained a bound which
was exponential in H( f ), whereas in [2] he dealt with the general case and
obtained a bound which was triply exponential in Hk(f). Siegel [ 18] derived new
estimates for fundamental units in number fields and remarked that these
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estimates could be used to reduce Baker’s bounds. In fact they reduce the
bounds to just exponential in terms of Hk(f) in the general case. Details were
provided by Sprindzuk [21], but only in the case k = Q. Although all the

ingredients are available in the literature, we will for completeness provide a
proof of

THEOREM 2. Suppose f(X) = X3 + bX 2 + cX + d has nonzero discriminant, and
has integer coefficients in an algebraic number field k of degree b and discriminant
Dk. Then solutions x, y of (W) in the ring (9k of integers of k have

where

and where the notation log* z stands for max(l, log z).

In particular, in the rational case k = 0 we have

It would have been easy to give a suitable generalization to hyperelliptic or even
to superelliptic equations.
We now turn to more general equations

defining an irreducible curve of genus 1. We will suppose that F has coefficients
in a number field k of degree 03B4, and we will denote the total degree of F by N. We
will study solutions (x, y) e m¡.
THEOREM 3. Let F be as above. The number of solutions (x, y) ~ O2k of (B) is

THEOREM 4. Let F be as above. Solutions (x, y) E (9’ of (B) have

where
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In particular, when k = Q,

Baker and Coates [4] had given the bound

As was pointed out above, the improvement from triple exponentiation to single
exponentiation comes from Siegel’s work on units. The improvement from 10NlO
to (4N)13 will be discussed below. Theorems 3 and 4 will be proved by reduction
to Theorems 1 and 2 via a suitable birational transformation from a general
curve (B) of genus 1 to a Weierstrass curve (W). Such a transformation is

described in

PROPOSITION 1. There is a birational transformation x1 = x1(x, y),
y1 = y1(x, y) from the curve (B) to a Weierstrass curve

with the following properties.
The transformation is defined over a fceld K :D k with [K : k]  n, where n is the

degree of F with respect to y. The coefficients b, c, d are integers in K. We have

and the polynomial f = X3 + bX 2 + cX + d has

If (X, Y) is a generic point of (W) (so that X is transcendental and F(X, Y) = 0),
and f (X, Y) ~ (B) corresponds to (X 1, Y1) E (W), then X 1 ~ K(X, Y) is integral
over Z[X].

A proposition of this type had implicitly been derived by Baker and Coates
[4], but with k = Q and deg K  8’6, and with 8N48 instead of the exponent
2·105N12 in (1.11). The improvement from 10NlO in (1.9) to (4N)13 in (1.8) comes
from the improved estimates in Proposition 1. This proposition in turn rests on
recent work on Eisenstein’s theorem [15] and on the construction of bases in
function fields [16].
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2. Proof of Theorem 1

Let S c M(k) consist of the archimedean absolute values, as well as the non-
archimedean absolute values v for which |0394(f)|v ~ 1. Then 0394(f) lies in the group
of S-units of K. Let s be the cardinality of S. Let L be the splitting field of f over

k, and h2(L) the order of the subgroup of the ideal class group of L consisting of
ideal classes [A] with [A]2 = [1]. Then if Z is defined as in Theorem 1, it

follows from Theorem 1(b) of Evertse and Silverman [9] that

In [9] only solutions with y ~ 0 were considered; our summand 3 takes care of
possible solutions with y = 0.
As was kindly pointed out to me by Dr. Evertse, the factor h2(L)2 in (2.1) may

be replaced by h2(E) when L ~ k and E = k(a) with a root a of f which does not
lie in k. This may be seen as follows. Let S’ be the set of places of E lying above S,
and let s’ be the cardinality of S’. Let a = al , a2, 03B13 be the roots of f. Now when
x, y is a solution of (W), then x - 03B11 lies in E, and since A(f) is an S’-unit in E, we
have |x - 03B11|v ~ 0(mod 2) when vftS’. By Lemma 1 of [9], there is a finite set of
elements q 1, ... , qt in E with t  2s’ 

+ k2(E), such that x - 03B11 = qjç2 with 1  j  t
and ç E E. Now suppose that [E:k] = 3 and let (J2, ff3 be the isomorphisms
E = k(03B11) - k(03B12), E = k(al) - k(03B13) with U2(al) = C(2, 03C33(03B11) = 03B13. Then

X - 03B12 = 03C32(qj)03C32(03BE)2, x - a3 - 03C33(qj)03C33(03BE)2· Setting

we have z1 = wj03B621, z2 = w’j03B622 with wj = qj/03C33(qj), w’j = 03C32(qj)/03C33(qj), 03B61= 03BE/03C33(03BE),
03B62 = 03C32(03BE)/03C33(03BE). Therefore in the proof of Proposition 2 of [9], the set v2 is
contained in at most 2S’ + K2(E) = 2sh2(E) sets of the type V2(w, w’). This replaces
the factor 4Sh2(K)2 (which in our context should be written 4s’h2(L)2) of [9].
When [E : k] = 2, suppose that a = al, a2 are conjugate over k, and 03B13 E k. Now

z1 ~ E = k(03B11). Dealing directly with fractional ideals one sees that z1 = wj03B621
where w j is from a finite set {w1,..., wt}. If a is the isomorphism k(03B11) ~ k(a2)
with 6(al) = a2, then z2 = 03C3(z1) = w’j03B622 where wj=(J(w). Again the set Y2 of [9] is
contained in at most 2s’h2(E) sets of the type v2(w, w’).

All we have to do now is to estimate the right-hand side of (2.1). The number
of archimedean absolute values in S is  £5. The number of non-archimedean
absolute values in S is equal to the number of prime ideals of the ring of integers
of k dividing A(f ), and this number is at most ô times the number of rational



38

primes p dividing Nk(0394(f)). The latter number, as is well-known is

when is large. Therefore

Since [L : k]  6, we obtain for every s &#x3E; 0,

(The numbering of constants cl, c2, ... is started anew in each section.)

Next, 1 can do no better than h2(L)  h(L) where h(L) is the class number. It is
well known (see e.g. [18]) that

where 1 = deg L  6ô, where DL is the discriminant of L, and e (as throughout
this section) is an arbitrary positive number. When L = k, we obtain

When L ~ k, we will see below that a field E as above has

where Then

Theorem 1 follows by substituting (2.2) and (2.3) into (2.1) when L = k, and by
substituting (2.2) and (2.5) into the modified version of (2.1) when L ~ k.
We still have to prove (2.4). If DE/Q is the different of E with respect to Q, and

similarly for DE/k and riklu, then ([11, Satz 111])

Taking the norm XEIG from E to Q, we obtain
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where DE/k = NE/k(DE/k) is the "discriminant ideal" of E in k. Given integers
03B31,..., 03B3g in E which are a field basis of E over k, then ([12, III, Proposition 13])

where 8(y,, ..., yg) = det(03B3(i)j)1i,j  g and where a H 03B1(i) (i = 1, ..., g) denote the
embeddings of E/k into a Galois extension of k containing E.

In the special case when E = k(a) and a is a root of a monic irreducible

polynomial with integer coefficients in k, we may take 03B31 =1, 03B32 = 03B1,...,

03B3g = 03B3g-1. Then 03B4(03B31, ... , 03B3g)2 =A(f) and 1 %k/o(DE/k)  |Nk/Q(03B4(03B31, ..., 21 =
|Nk/Q(0394(f))|. In conjunction with (2.6) this gives (2.4).

3. An effective estimate for unit equations

Our goal is

PROPOSITION 2. Let M be an algebraic number field of degree m and with
regulator R = RM. Let Ml, m2, m3 be nonzero elements of M, and set

Ho = H(m1, m2, m3) and T = R log* Ho. Consider the equation

to be solved in units 61, E2, e3 of M. Every solution has

We will need the following

LEMMA 1. Let

where (X 1 , ..., an are nonzero algebraic numbers of degree  m and with heights
h(03B1i)  Ai (i = 1, ..., n) and where b1,..., bn are rational integers with 1 bi | B
(i =1,..., n). Then if 0393 ~ 0, we have

Proof. This is Theorem 1.2 in [14] and also follows from Theorem 1.6 in [22].
A slightly weaker result is contained in [3].
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Before proceeding further we have to make some remarks on fundamental
units of M. Let r be the rank of the group of units. Let a ~ 03B1(i) (i = 1,..., m) be the

embeddings of M into C, arranged such that the first r embeddings contain no
pair of complex conjugate embeddings. Set ei = 1 or ei = 2, depending on whether
the embedding 03B1 ~ 03B1(i) is real or complex. Now if ~1,..., ~r is a set of

fundamental units, the matrix

is nonsingular, and its absolute value is the regulator R = RM. Given any
algebraic number fi, let Ifli be the maximum absolute value of its conjugates, i.e.
the maximum value of |03C3(~)| as u runs through the embeddings of 0(il) into C. As
was pointed out by Siegel [18], there is a set of fundamental units ~1,..., ~r such
that

These units will be fixed from now on. It was also pointed out by Siegel that

every unit il which is not a root of 1 has Ifli &#x3E; 1 + c4(m) where c4(m) &#x3E; 0, and
therefore log Ifli &#x3E; c 5(m) &#x3E; 0. (In fact this holds for every algebraic integer ~ of
degree  m which is not zero or a root of 1. See e.g. [8].) A consequence is that
R &#x3E; c6(m) &#x3E; 0. Therefore every subproduct of the product in (3.5) is  c7(m)R,
so that every minor of the matrix (3.4) has absolute value  c8(m)R. This shows
in particular that the inverse of the matrix in (3.4) has entries of modulus
 c9(m). Another consequence is that (3.5) remains true if log is replaced by log*
and c3(m) by some new constant cI0(m). Now since qi is a unit,

so that h(~i)  |~i| (i = 1,..., r) and

Proof of Proposition 2. (3.1) yields
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We may write the unit 92/9, as

where 03B6 is a root of 1 and b 1, ... , br lie in Z. Setting ao = - (m2/m3)’ and bo = 1,
we have

We now apply Lemma 1 with n = r + 1. By (3.6) and since h(ao) =
h(m2/m3)  H(m1, m2, m3) = Ho, we obtain

where B=max(l, Ib11,..., Ibrl). Since |m1/m3|  H(m1, m2, m3) = H0, and since
T = R log* Ho &#x3E; c6(m)log* Ho, we get

Now from (3.7),

(actually for i = 1,..., m). The matrix of this system of linear equations in
b1,..., br is essentially the matrix (3.4), so that its inverse has entries of modulus
 c13(m). Therefore B =1 or

If we substitute this into (3.8) and take reciprocals, we get

The same estimate holds for each conjugate (03B53/03B51)(i), so that

This last estimate remains true if we permute 81’ 82’ 83’ Therefore if ,u==maxI8u/8vl
over 1  u, v  3, then
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A standard argument yields

Finally,

so that H(03B51, 92, 03B53)  03BC. The proposition follows.

REMARKS. By using Theorem 2.2 of [14], one can prove a variation on
Proposition 2, namely the bound

This bound is better when Ho is large. Since, as is well known,

(3.2) and (3.9) lead to bounds for H(81’ 82’ 03B53) in terms of |DM| and Ho. Estimates
of this type which were a little weaker than ours, but explicit in terms of m, had
been given by Gyôry [10].

4. Proof of Theorem 2

We follow Siegel’s argument [17] which is by now classical. We begin by
recalling a well known fact. Suppose M is a number field of degree m and with
regulator RM . Then if a E M is an integer, we may write a as

where e is a unit and b is an integer of M with

Now consider the equation

say, where al, a2, a3 are integers in a field L of degree 1. Let x, y be a solution,
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where x, y are integers of L and where y ~ 0. We may write the principal ideal
(x - 03B1i) as

where Ai, Bi are integral ideals of L and where Ai is square free. In view of (4.1),
A1 A2 A3 is a square, so that if some prime ideal Y| Ai (i.e. 9 divides Ai), then

Y|Aj for some j ~ 1. But then Y|(x - 03B1i), Y|(x - 03B1j), therefore Y|(03B1i - 03B1j).
Therefore each prime divisor of di, and therefore di itself, divides

(03B1i - 03B1j)(03B1i -03B1h) where i, j, h is a cyclic permutation of 1, 2, 3. We may conclude
that

There is an integral ideal é32 in the ideal class of Ai with NL(B’i)  |DL|1/2 ([11,
Satz 96]). Let 03BEi be in L with (03BEi) = Ai Ai- (i = l, 2, 3). Then

where ai E L with (ai) = AiB’2i. Then al, a2, a3 are integers of L with

Let M = L(a1, a2, a3). Since ala2a3 is a square in L by (4.1), (4.3), the
field M is obtained from L by adjoining any two of a1, a2, a3, and it has
degree m  41. We may suppose that |NL(a1)|  |NL(a2)|  |NL(a3)|, so that

by (4.4). By an argument as in the proof of (2.4) above, and since

M = L(a1,a2,

(1 used to have JVL(al)4JVL(a2)4, etc., and 1 am grateful to Dr. Dimitrios

Poulakis for pointing out that the present bounds are valid.)
Put 03C3i = ai03BEi (i = l, 2, 3); then Qi lies in M and is an integer by (4.3). We have

at - (X. = 03C32j - 03C32i, hence
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Therefore

By the remark at the beginning, for given i ~ j we have 03C3j + 03C3i = b03B5 where e is a
unit and

In fact if (i, j, h) is a cyclic permutation of (1, 2, 3), we may write

and

where Gh, bh (h = 1, 2, 3) are units of M and bh, g,, are integers of M with

We have

This is a unit equation in M with coefficient vector m = (b1, - b2, - g3) and

so that

We now apply Proposition 2 and find that

where
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The same estimate holds for H(03B52, 03B53, 03B41) and H(93, 03B51, b2)’ It is a general fact that

when 03B1 ~ 0. (Hint: reduce to the case a = 1.) Therefore

In particular this bound holds for H(03B51, 03B41). In view of (4.6), the same bound,
but with c6(l) replaced by c7(l), holds for HM(b103B51,g103B41). Therefore if 03B1 ~ 03B1(t)

(t = 1,..., m) are the embeddings of M into C, then

The same estimate holds for (g103B41)(t). Since 203C33 = g103B41 + b103B51, and since

x - 03B13 = 03C323, we obtain

with T2 = D8L|NL(0394(f))|4/3· Then Tl as defined by (4.7) has

and

Substitution into the definition of C, together with (4.8), gives

Finally, as in (1.3), |NL(0394(f))|  C13(l)HL(f)4, and of course we have |03B1(t)2|,
|03B1(t)3| c14(l)HL(J)· Therefore we obtain

with T3 = D8LHL(f)16/3. Clearly this estimate is also true for solutions (x, y) with
y =0.
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If f has coefficients in k and L is the splitting field of f, then in the worst case

[L:k] = 6, so that HL(f)  Hk(f)6 and

in analogy to (2.4), by taking y, = 1, 72 = ai , 73 = ai, 74=OC2,75=alDC2,76 = 03B12103B12 in
the argument at the end of Section 3. Therefore

with V given by (1.5). Theorem 2 is established.

5. Eisenstein’s theorem

Let k be a number field of degree ô. A k-system is a system of numbers {Av}v~M(k),
such that Av  1 for each v, and Av lies in the value group of |·|v for each non-
archimedean v, and moreover A" =1 for all but finitely many v. (In particular,
such a system is a "multiplicative Mk-divisor" as defined by Lang [13,
Ch. 2, §5].) We define the norm

where the dv’s are the local degrees.

LEMMA 2. Let F(X, Y) be a nonzero polynomial with coefficients in k, of degree n
in Y, and of total degree N. Suppose that F has no multiple factors of positive
degree in Y Now let X be a variable and

a series such that we have identically F(X, úJJ) = 0. Then

(i) The field K = k(ao, 03B11, ...) generated over k by the coefficients of e is a

number field with degree [K : k]  n.
(ii) K is generated over k by ao, (X 1 , ..., (X2n2.

(iii) There is a k-system {Av} such that

for every v E M(k) and every extension of l’iv to K. Moreover,



47

(iv) The discriminant DK of K has

Proof. Part (i) is easy and well known; see e.g. [6]. Part (ii) is contained in
[6, Lemma 3]. Part (iii) is a quantitative version of Eisenstein’s theorem given in
[15, Theorem 2]*. It remains for us to prove (iv).
We will apply (2.6), with K in place of E. By part (ii), the components of y

= (1, ao, ... , a2"2) generate K over k. Then according to Silverman [20, end of
§ 3],

where g = [K : k] and

(Our k, K, g, H correspond to Silverman’s F, K, d, H. His bF now becomes Ôk
(since his field F is our field k), and is the number of archimedean absolute values
of k counted with multiplicities, so that bk = ô. His definition of H(P) on page 396
gives our Íi(y).) Substitution of (5.4) into (2.5) gives

By (5.1),

so that by (5.2),

If we substitute this into (5.5) and observe that g  n by (i), we obtain (5.3).

6. Construction of a Weierstrass equation

Let F(X, Y) be a polynomial with coefficients in k, of total degree N, and of
degree n in Y Suppose that F is absolutely irreducible and that F = 0 defines a
curve of genus 1. As always, X will be a variable, and &#x26; will be the algebraic
function with F(X, Y) = 0. Let S be the Riemann surface of Y, so that S has n

*Added in proof. B. Dwork and A. J. van der Poorten in a recent manuscript improve the exponent
from 8n2N to 2n - 1. As a consequence, some of our exponents, such as e.g. the number 13 in
Theorems 3,4, may be reduced.
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sheets. Now let q E S with q oo, i.e. q lies above the infinite point of the Riemann

sphere. Then OY has a Puiseux expansion at q, say

where Xq = X1/e~ with X~ = 1/X and e = e(q) the ramification index of q. Since Y
has a pole of order  Ne at q, we have s0  - Ne. By allowing zero coefficients
we may suppose so = - Ne. Writing

we have F(-e,  - Ne) = 0, therefore NenF(-e,  - Ne) = 0. The latter is a
polynomial equation without multiple factors of positive degree in . It is of
degree n in c!Y, and of total degree  Nen  n2N. By Lemma 2, the coefficients ai
generate a field K = k(03B1so, 03B1so + 1,...) with degree [K : k]  n and with discrimi-
nant DK satisfying

Let D3 be the divisor D3 = 3q. The quantity3 b == b(D3) introduced in [16] has
03B4  3, and the quantity max(3, £5, n, deg, F) is  N. By the Riemann-Roch
theorem, the space Y (D3) = Y(3q) of functions f on the curve F = 0 (so that f
lies in the function field C(X, qy)) having at most a pole of order 3 at q, and
having no other poles, has dimension 3. We construct a basis of Y(3q) as in [16,
Theorem A2]. In our present case, this basis will be of the type

Since D3 is "defined over K", the g 1, g2, g3 lie in K(X, Y) (see [16, §B]). They
have expansions at q:

with coefficients (XisEK. Furthermore there are K-systems {Av(q)}, {Bv(i)}
defined for v E M(K) such that

3Not to be confused with the degree of k.



49

for every v ~ M(K). We have

by [16, Theorem C2] (applied to K rather than k).
We now introduce a new notation fi , f2, f3 for the basis in (6.2), and we write

For instance, if f3 = g1 X2 = g1 X-q 2e, then 03B23s = 03B13,s+2e. In general, the subscripts
are shifted at most by 2e  2n so that

where Bv is the product of the Bv(i). (We are dealing with B,(I), or B"(1), B,(2), or
Bv(1), Bv(2), Bv (3) in the three cases in (6.2).)
By the Riemann-Roch theorem, some 03B2i,- 3 ~ 0. Say 03B23,-3 ~ 0. Set h3 = f3,

so that ordq h3 = - 3 (i.e., h3 has a pole of order 3 at q). Set

These lie in 2(2q), so that in particular they have a pole of order  2 at q. By the
Riemann-Roch theorem again, at least one of h1, h2 has in fact a pole of order 2.
Say h2 does, so that orda h2 = - 2. Writing

we have 03B33,-3 ~ 0, y2, - 3 = 0, 72,-2 * 0. It is easily seen that

where *2 denotes an extra factor 2 when v is archimedean, and is to be ignored
otherwise. (This convention will be used throughout).

The 7 functions
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lie in 2(6q), say

Since N  3 and therefore 8N’ + 4n  9N’, and using simple facts on products
of Puiseux series (e.g. [16, Lemma 18]), we obtain

By the Riemann-Roch theorem, the 7 functions Il,, .. , 17 in Y(6q) are linearly
dependent. In particular the matrix (bis) with 1  i  7, - 6  s  0 must be
singular. The system of equations

has a solution Z = (Z1,...,Z7) ~ 0 in K’. A typical coefficient vector

03B4s = (03B41s,..., 03B47s) ~ K7 has

since 8(s + 7)2  8· 72  400 when s  0. If the system (6.10) of equations has
rank 6, then there is a solution z whose components are determinants of order 6
of the coefficient matrix (03B4js), so that

In fact there is always a solution z ~ 0 of (6.10) satisfying these inequalities. The
function z1l1 + ... + z717, that is

has no poles, and has a zero at q, hence vanishes identically. Since l1,..., l6 have

poles of different orders at q, the coefficient Z7 ~ 0. Similarly Z6 ~ 0. One can get
rid of the terms z2h2 and Z5h2h3 by the method of ’completion of the squares’.
Setting
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one obtains

where a0 = - 4z6z7, b0 = z25 - 4z4z7, c0 = 2z3z5 - 4z2z7, d0 = z23 - 4z1z7. Therefore
ao, bo, co, do lie in K and have

with some absolute constant Co, for v ~ M(K). Our construction of X’, éV ’ is well
known and standard (see e.g. Deuring [7, §19] or Silverman [19, §III.3]); only
the estimate (6.13) is new. It is well known that the function field

K = K(X, OJI) = K(X’, OY’), so that X, OY H X’, Y’ defines a birational map from
the curve F = 0 to the curve (6.12), and this map is defined over K.
The coefficient ao in (6.12) can easily be got rid of, as we will see below. A

greater difficulty is as follows. Since X’ = h2 has no finite poles (i.e. poles above
C), X’ is integral over C[X]. Since X’ ~ K(X, Y) is algebraic over K(X), hence
over O(X), we see that X’ is integral over Q[X]. However, the quantity X1 of
Proposition 1 is supposed to be integral over Z[X]. This is why we have to put
in more work to obtain this proposition.

7. An équation satisfied by X’ over K[X]

Since X’ is integral over K[X], it satisfies a polynomial equation with
coefficients in K[X], and with leading coefficient 1. We will exhibit such an

equation. For every place p| oo we have an expansion

where Xp = X1/e(p)~. This gives isomorphic embeddings of the function field

X’ = K(X, Y) into the field of Puiseux series in X 00 =1/X. If p1,..., p, lie above
ce (in symbols: pi oo) this gives 1 embeddings, but not necessarily n embeddings
where n = [K : K(X)]. But in the case when e(p) &#x3E; 1, the expansion (7.1) of &#x26; is
not unique: one may replace Xp by Xp’, and therefore 03B1s(p) by 03B1s(p)03B6s, where 03B6 is
an e(p)th root of 1. Since 03A3p|~ e(p) = n, we obtain in this way n embeddings of K
into the field of Puiseux series in X~. Let these embeddings map X’ into
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say. Here p 00 and ( lies in Up, the group of e(p)th roots of 1. Now if T is a new
variable then

where, up to sign, pi is the ith elementary symmetric polynomial in the n
quantities up’. Therefore, up to sign, each pi is an elementary symmetric
polynomial in X’ and its conjugates over K(X), and this shows that (7.3) is the
field polynomial of X’ in the field K = K(X, Y) over K(X). Since X’ is integral
over K[X], we infer that Pi E K[X] (i = 1,..., n). Since X’ = h2 has a pole of
order 2 at q, and has no other pole, we may take t,(q) = - 2, and t0(p) = 0 for
p ~ q. Since there are e(q) series (7.2) with p = q starting with X q 2 = X-2/e(q)~ and
since the other series (7.2) have no negative powers of X~, we see that each pi
certainly contains only powers XI’ "0 with 03BC  - 2 in its Puiseux series. But since
Pi is a polynomial in X, it is in fact a quadratic polynomial in X. Write

We have for -2  s  0 and 1  i  n that

In the sum here, each Pj |~ and 03B6j ~ UpJ; moreover, the pairs pj, (j for

j = 1,..., i are all distinct. 

By [16, Theorem C2], the gi of (6.2) have expansions analogous to (6.3) for
every p ) oo, with coefficients 03B1is(p) in a field K(p) :D K, and with

in analogy to (6.4). Here {Av(p)} is a K-system and B,(i) is a K-system
independent of p, so that it is the system of (6.4). The system {Av(p)} satisfies a
relation like (6.5). Writing fi = 03A3s 03B2is(p)Xsp, we have the analogue of (6.7). By
(6.8), the coefficients in the Puiseux expansions of h,h3 involve both the

coefficients 03B2is(p) and certain 03B2is(q). These coefficients therefore lie in K(p).
Writing hi = 03A3s 03B3is(p)Xsp, we obtain
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in place of (6.9). Since X’ = h2, the expansion (7.2) has in particular

where

This holds for every v e M(K) and every extension of 1’1 | to K(p). Therefore a
typical summand on the right-hand side of (7.4) has absolute value

This holds for v E M(K) and every extension of 1.lv to a field big enough to
contain the fields K(p) and the elements of U p for every p| oo. In the sum (7.4) we
have sj  - 2 when pj = q, and sj  0 otherwise. Therefore each subsum of

occurring in (7.4) is  - 2, so that each subsum is  s + 2  2. Therefore

s;  2e(pj)  2n. Thus the exponents sj + 5N3 in (7.6) may be replaced by
5N3 + 2n  6N 3, and (7.6) yields (Observe that the same pj may occur up to

e(pj) times in (7.6))

where

By what we have just said, - 2  sj  2n, so that the number of possibilities for
each sj is  5n, and the number of summands in (7.4) is  (5n2)i  (Sn2)n.
Therefore the coefficients ni, of pi have

We now set
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where Co is the constant in (6.13). We then have proved

LEMMA 3. (i) laolv, Ibolv, IColv, Idolv  Wv for every v E M(K).
(ii) X’ satisfies an equation

where each pi(X) is a polynomial in X of degree  2 with coefficients 03C0is in K

having

for v ~ M(K).

Finally, we remark that from the estimates (6.5), (6.6), and the analogous
estimates for NK{Av(p)}, and sincc 03A3e(pj) = n  N, and HK(F) = H(F)degx, we
get

Note that c1(03B4, N), as well as all the other constants, is effectively computable.
Since N  3, the exponent here is  3·104N12, and we obtain

8. Proof of Proposition 1

Let Mo(K), M~(K) denote the set of non-archimedean and of archimedean
absolute values in M(K), respectively. Given a K-system {Wv}, set

where d" is the local degree of v. (Here v E M(K), whereas in the Introduction we
had local degrees dv for v E M(k). No confusion should occur.)

LEMMA 4. Let {Wv} be a K-system. There is an integer oc * 0 in K having

Proof. With non-archimedean v there is associated a prime ideal Pv of K, and
this prime ideal divides a prime number pv . We have dv = cvfv where ev is the
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ramification index and fv is the degree of the residue class field of Pv Given 03B3 ~ 0
in K we have lyl, = p-cv/03B5vv where c, is the exponent of 9, in the factorization of
the principal ideal (y) as a product of prime ideals.

Suppose now that Wv = pwv/03B5vv for v E Mo(K), and let A be the ideal

Then d is an integral ideal of K of norm

The condition (8.1) means precisely that (X E si. By Minkowski’s theorem (see,
e.g. [11, middle of p. 120]) there is an 03B1 ~ 0 in si with

where A = NK(A)|DK|. The lemma follows.
The proof of Proposition 1 is completed as follows. Let ( J4£) be the system of

Lemma 3, and construct a as in Lemma 4. With X’, OY’, ao, bo, co, do as in (6.12),
set

Then

with b = 03B12b0, c = (X4 aoco, d = a6aôdo. Since |03B1|v  W-1v for v e Mo(K), and in view
of Lemma 3(i), the coefficients b, c, d are integers of K. The polynomial
f = X3 + bX2 + cX + d has

for v E M oo(K). Since f has integer coefficients,

so that by (5.3) and (7.7),
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which is (1.11).
Let P(T) be the polynomial of the last section, having P(X’) = 0. Then if

Q(T) = 03B1nP(T/03B1), we have Q(03B1X’) = 0. Here Q again has leading coefficient 1, and
its other coefficients are quadratic polynomials qi(X), where each qi(X) in turn
has coefficients Oi, = 03C0is03B1i, so that by Lemma 3(ii) and our construction of a,
|~is|v  1 for v ~ Mo(K). Therefore the coefficients of Q(T) lie in OK[X], where OK
is the ring of integers of K. We may conclude that aX’, being a root of Q, is
integral over OK[X]. Since aao is an integer, also XI = a2aoX’ is integral over
OK[X], therefore over Z[X].

9. Proof of Theorems 3 and 4

Let M be the birational map from the curve (B) to the Weierstrass curve (W) as
described in Proposition 1. When p is a nonsingular point of (B), then M(p) is
well defined ([19, Ch. II, Proposition 2.1]). Further since X 1 is integral over
Z[X], and by (8.3), it follows that when p = (x, y) is a finite (i.e. not on the line at
infinity) point on (B), then M(p) is a finite point on the Weierstrass curve (W).
Since the Weierstrass curve is nonsingular, the inverse map M -1 is defined on
M(p), and M-1M(p) = p. Therefore M provides an injection from finite

nonsingular points of (B) to finite points of (W).
For nonsingular (x, y) = p on (B), write M(x,y)=(x1, y1). When (x,Y)EK2,

then also (x1, y1) ~ K2, since M is defined over K. Moreover, when X ~ OK, then
also x 1 E UK since X is integral over Z[X], therefore x is integral over Z[x].
Since (x 1, y 1 ) lies on the Weierstrass curve (W), we also have y 1 ~ OK. Therefore
the number of nonsingular points on (B) with coordinates in UK is bounded by
the number of points on the curve (W) with coordinates in OK. By (1.4), the latter
number is

where f = X3 + bX2 + cX + d and where we used the fact that deg K  ôN. If we
insert our estimates (1.10) and (1.11) and observe that e &#x3E; 0 was arbitrary, we
obtain

Since the number of singular points on (B) is  1 2N (N -1), Theorem 3 follows.
We now turn to Theorem 4. Our algebraic function X’ satisfied P(X’) == 0, i.e.

X’n+p1(X)X’n-1+...+pn(X) = 0 with pi(X) = 03C0i0 + 03C0i1X + 03C0i2X2. Consider the
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polynomial

in variables X, T, and note that P(X, T) has no factor independent of X, since
when considered as a polynomial in T it was the field polynomial of the non-
constant algebraic function X’ over K(X). Further Xl = (X2aoX’ satisfies

R(X, X1) = 0 where R(X, T)==((X2ao)np(X, T/(03B12a0)). The coefficients of R(X, T)
are 03C0is(03B12a0)i. They are integers of K. For given Xl’ the polynomial
R*(X) = R(X, Xl) is a nonzero quadratic polynomial in X. We have

By Lemma 3, and by our construction of a (in particular see (8.2)) we have for
v E M ,(K) that

Since R has integer coefficients, so does R* when xi ~ OK. We obtain

and therefore by (1.10), (7.7),

so that

Now if (x, y) is on (B) and M(x, y) = (x1, y1), then R(x, x 1 ) = 0, R*(x) = 0. Since R*
is quadratic, we have h(x)  3H(R*) ([15, Lemma 3]). Therefore when (x, y) e (!JÍ,
so that (x1, y1) ~ OK, then

On the other hand, by Theorem 2,
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where

so that V1 +e  c8(Ô, N)W when s &#x3E; 0 is sufficiently small, where W is given by
(1.7). In conjunction with (9.1) this gives

By symmetry, the same estimate holds for y.
All this was for nonsingular points (x, y). It is easily seen that a much better

estimate holds for singular points on (W). Theorem 4 is established.
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