Decomposing oscillator representations of 𝔬𝔰𝔭(2n/n;) by a super dual pair 𝔬𝔰𝔭(2/1;)×𝔰𝔬(n) *
Compositio Mathematica, Tome 80 (1991) no. 2, pp. 137-149.
@article{CM_1991__80_2_137_0,
     author = {Nishiyama, Kyo},
     title = {Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $},
     journal = {Compositio Mathematica},
     pages = {137--149},
     publisher = {Kluwer Academic Publishers},
     volume = {80},
     number = {2},
     year = {1991},
     mrnumber = {1132090},
     zbl = {0741.17002},
     language = {en},
     url = {http://www.numdam.org/item/CM_1991__80_2_137_0/}
}
TY  - JOUR
AU  - Nishiyama, Kyo
TI  - Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $
JO  - Compositio Mathematica
PY  - 1991
SP  - 137
EP  - 149
VL  - 80
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1991__80_2_137_0/
LA  - en
ID  - CM_1991__80_2_137_0
ER  - 
%0 Journal Article
%A Nishiyama, Kyo
%T Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $
%J Compositio Mathematica
%D 1991
%P 137-149
%V 80
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1991__80_2_137_0/
%G en
%F CM_1991__80_2_137_0
Nishiyama, Kyo. Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $. Compositio Mathematica, Tome 80 (1991) no. 2, pp. 137-149. http://www.numdam.org/item/CM_1991__80_2_137_0/

[1] A. Bohm, M. Kmiecik, and L.J. Boya. Representation theory of superconformal quantum mechanics. J. Math. Phys., 29:1163-1170, 1988. | MR | Zbl

[2] N. Bourbaki. Algèbre, Chap. 9. Hermann, 1959. | Zbl

[3] C. Chevalley. Theory of Lie groups I. Princeton Univ. Press, 1946. | MR | Zbl

[4] L. Corwin, Y. Ne'Eman, and S. Sternberg. Graded Lie algebras in mathematics and physics (bose-Fermi symmetry). Reviews of Modern Phys., 47:573-603, 1975. | MR | Zbl

[5] C. Fronsdal, editor. Essays on Supersymmetry. Reidel, 1986. | MR

[6] H. Furutsu and T. Hirai. Representations of Lie super algebras, I. Extensions of representations of the even part. J. Math. Kyoto Univ., 28:695-749, 1988. | MR | Zbl

[7] R. Howe. On the role of Heisenberg group in harmonic analysis. Bull. AMS, 3:821-843, 1980. | MR | Zbl

[8] R. Howe. Remarks on classical invariant theory. Trans. AMS, 313:539-570, 1989. | MR | Zbl

[9] M. Kashiwara and M. Vergne. On the Segal-Shale-Weil representations and harmonic polynomials. Inv. Math., 44:1-47, 1978. | MR | Zbl

[10] K. Nishiyama. Oscillator representations for orthosymplectic algebras. J. Alg., 129:231-262, 1990. | MR | Zbl

[11] K. Nishiyama. Super dual pairs and unitary highest weight modules of orthosymplectic algebras. To appear in Adv. in Math. | Zbl

[12] R. Parthasarathy. Dirac operator and the discrete series. Ann. Math., 96:1-30, 1972. | MR | Zbl

[13] J.H. Schwartz. Dual resonance theory. Phys. Rep., 8C:269-335, 1973.

[14] S. Sternberg and J.A. Wolf. Hermitian Lie algebras and metaplectic representations. I. Trans. AMS, 238:1-43, 1978. | MR | Zbl

[15] H. Tilgner. Graded generalizations of Weyl- and Clifford algebras. J. Pure and Appl. Alg., 10:163-168, 1977. | MR | Zbl

[16] A. Weil. Sur certain groupes d'operateurs unitairs. Acta Math., 111:143-211, 1964. | MR | Zbl