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1. Introduction

Let r c R3 be a lattice of maximal rank and LR(R3/r) the Hilbert space of
square-integrable, real-valued functions on the torus R3/0393. Let q be in LR(R3/r).
For each k~R3 the self-adjoint boundary value problem

has a discrete spectrum customarily denoted by

The eigenvalue 03B5n(k), n  1, defines a function of k called the n th band

function. It is continuous and periodic with respect to the lattice

dual to r.

The physical Fermi surface for energy 03BB is the set

Fphys,03BB(q):= {k~R3 | 03B5n(k) = 03BB for some n  1}.
For example, if q(x) = const, then Fphys,03BB(q) is the union of the spheres

with b = (bl, b2, b3)~0393#.
In section 3 we prove

THEOREM 1. If q is in L2R(R3/0393) and if for a single real À one of the components
of Fphys,03BB(q) is a sphere (not necessarily centered at a point in the dual lattice), then
q is constant.

Actually, we conjecture that the same conclusion holds if Fphys,03BB(q) contains an
algebraic component X. In section 3 we prove this with some further as-

sumptions on the algebraic surface X. These assumptions are fulfilled if X is a
sphere or an ellipsoid.
To prove Theorem 1 we complexify the Fermi surface. The (lifted) complex
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Fermi surface is defined by

F03BB(q):= {k~C3| there is a nontrivial solution 03C8 in H2loc(R3) of

( -0394 + q(x))03C8 = 03BB03C8, satisfying 03C8(x + y) = eik,03B3&#x3E;03C8(x) for all y in 0393}

Clearly, the dual lattice 0393# acts on FÂ(q) by k ~ k + b, b ~ 0393#. Furthermore, we
have FA(q) ~ R3 = Fphys,03BB(q) the physical Fermi surface.

It is easy to show, using regularized determinants (see [KT], section 1), that
F03BB(q) is a complex analytic hypersurface in C3. The main purpose of this paper is
to construct a directional compactification of FA(q) in the sense of [KT]. The
above statement follows from the analysis of the points added at "infinity" and a
geometric interpretation of Borg’s theorem [Bo].
To compactify F03BB(q) we first embed C3 in a quadric Q lying in P4. For each

affine line g = {c + tb|t ~ R} in R 3, where b, c e 0393# and b is primitive, we blow up
two distinguished points of p4 that lie on the quadric Q, to get, by using inverse
limits, a space M. Denote by El(g) and E2(g) the corresponding exceptional
divisors.

THEOREM 2. The directional closure of F03BB(q) in the space M intersects El(g)
and E2(g) along curves both of which are isomorphic to the one-dimensional Bloch
variety(1)

Recall that in [KT] the complex one-dimensional Bloch variety for

p(x) E L2(R/lbl. Z) is

B(p) = {(k, 03BB)~ C x C | there is a non-trivial function 03C8 in Hfoc(R) satisfying
-03C8" + p(x)03C8 = 03BB03C8 and 03C8(x + Ibl. n) = eik·(|b|·n)03C8(X) for all n~Z}.

To get Theorem 1 we apply Borg’s theorem [Bo] in the version of [KT]: Assume
p is real then B(p) contains a component that is the graph of an entire function
03BB(k) if and only if p is constant. In section 3 we prove that if for example Fphys,03BB(q)
is a sphere, its directional closure meets sufficiently many one-dimensional
Bloch-varieties B(qg), so B(g,) is algebraic and therefore qg is constant.
We conjecture, that for all q E L2(R 3/r) and for each 03BB E C the complex Fermi

surface F03BB(q)/0393# is irreducible. In other words, the conjecture is that for any two
irreducible components C1, C2 of F03BB(q) there is a b~0393# such that C2 = b + Cl

At the end of section 1 we prove the conjecture for split potentials. That is, we
consider potentials of the form

(1)(b):= R3/0393 q(x)e-ib,x&#x3E; dx for b~0393#. Without loss of generality we assume that R3/r has
R3/r

volume one.
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or

and show that F03BB(q)/0393# for split potentials is always irreducible. The full

conjecture for the discrete periodic Schrôdinger operator is proven in [Bä].
We say that the physical Fermi surface Fphys,Â(q) is non-degenerate, if some

piece of it is a two-dimensional real surface. For example, Fphys,0(0) = {0} is

degenerate. It follows from the conjecture that for a real 03BB, a non-degenerate

Fphys,03BB(q) determines the complexified Fermi surface and by Theorem 1 the

isospectral classes of all averaged potentials qg.
In particular we obtain

THEOREM 3. If q E L2(R3/r) and the Fermi surface F phys,;.(q) is the same as

F phyS,;.( q’), where q’ is a split potential of the form (1) or (2) then q also splits.

We further conjecture that, generically, the physical Fermi surface determines
the potential q up to (obvious) translations and reflections.

2. The compactification

First we construct a compactification of C3 which serves as the ambient space
for the directional compactification of F03BB(q). This compactification of C3 will be
independent of q. Its construction is motivated by considering the free Fermi
surface F03BB(0) which is the union of the quadrics

We want to compactify C3 in such a way that the closures of the different
components of F03BB(0) intersect as nicely as possible. If we compactified C3 in the
naïve way to p3 or P’ x P’ x P’ we would have to blow-up many times before
the components of F03BB(0) would be in general position. Instead we embed C3 in a
complex projective 3-dimensional nonsingular quadric

by mapping (kl, k2, k3) to (kl, k2, k3, ki + k2 + k23, 1). The image of the embedding
is the complement in Q of

The closures of the components of F03BB(0) in Q are the intersections of Q with
the hyperplanes Hb in p4 given by
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If b ~ b’, then Hb n H’ is a plane in P4. It intersects Qoo in the set Db,b., consisting
of two points given by the equations

One checks that Db,b’ and Db..,b", are disjoint if b, b’, b", b"’ do not lie on a line and
that Db,b’ = Db",b"’ if these four points of 0393# are on a line. Thus, a point of Db,b’
lies precisely on the hyperplanes Hc where c ~ 0393# is on the line through b and b’.
So let us denote this line by g and the points Db,b, by D(g).
The group 0393# acts by translation on C3. One easily sees that this action

extends to Q and that c~0393# maps D(g) to D(c + g).
If b and b’~0393# are different points on a line g = c 1 + Rc2 (c1, c2 ~ 0393#) then

Q n Hb and Q ~ Hb’, have different tangent planes at the points of D(g).
Therefore, we can separate Q~Hb and Q n Hb,, by blowing up the points of D(g).
Precisely, for each line g = CI + Rc, (ci, C2 E 0393#) let M(g) be the space obtained
from p4 by blowing up the points of D(g), Q(g) the strict transform of Q in M(g),
Q~(g) the strict transform of Q~, and E1(g), E2(g) the two exceptional divisors
over the two points of D(g).
So we introduce as compactification M of C3 the inverse limit of all the spaces

M(G), where G is a finite set of affine lines and M(G) is obtained from p4 by
blowing up the points of g~G D(g), defined by the natural maps M(G1) ~ M(G2)
for G2 c G1. In the following we are not going to use this inverse limit, but work
directly with the manifolds M(g). A precise version of Theorem 2 stated in the
introduction is

THEOREM 2’. For each affine line g = {c+tb|t~R}; b, c ~ 0393#, b primitive,
there is a subset 03A3(g) of c3 such that for any q ~ L2R(R3/0393) the closure of
F03BB(q) ~ 03A3(g) in Q(g) intersects E,(g) and E2(g) along curves isomorphic to the
Bloch-variety B(qg) of the one-dimensional potential

Proof. Using the action of 0393# we may assume that g passes through the origin,
i.e. that c = 0. After rotating and scaling we further assume that b = b:= (1, 0, 0).
Then

We consider the exceptional divisor E1:= E1(g) lying above the point
(0, i, 1, 0, 0), the other plane is treated similarly. Near this point we take

as coordinates.

In the blown-up space M : = M(g) we consider the chart with the coordinates
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such that

For convenience we perform the change of variables

In these coordinates the blow-up map M - p4 is

Therefore, Q(g) has the equation

In particular Q(g) intersects E 1 in the plane z = 12 = 0. Finally, the strict

transform of the hyperplane Hb, b~0393#, does not meet El if h2 =1= 0 or b3 =1= 0.
Further, the strict transform of H(b,,0,0) intersects E1 in

Remember that the strict transform of Q n Hb is the curve of a component of the
free Fermi-surface F03BB(0), and that the one-dimensional Bloch-variety for

potential zero is

This shows that for q - 0 the union of the closures of the components of F03BB(0)
meets E1 n Q(g) along a curve isomorphic to the one-dimensional Bloch-variety
for potential zero. Observe however that the closure of F03BB(0) in Q(g) is bigger
than the union of the closures of its components. This indicates that it is

necessary for the general case to restrict the way one takes limits to El. This
restriction is made precise by the introduction of the set E (g).

Recall from [KT] that (without loss of generality we assume 4(0) = 0)

is an equation for F03BB(q) outside of the free Fermi surface F03BB(0), and that this
determinant can be computed by taking limits of finite principal minors.

In the coordinates (l1, 12, J.l, z) of M(g) the entries of the matrix for

(-0394k+q-03BB)·(-0394k-03BB)-1 considered above are
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We are interested in the restriction of the determinant of this matrix to Q(g), but
for the moment we consider it on all M(g).
We block the matrix in the form

With this notation

This is the matrix whose determinant describes the Bloch-variety of the

averaged potential q. outside B(O). Furthermore on Q(g) n El = {z = l2 = 0} the
matrix B = 0 and D = 1.

We will define Y- (g) in such a way that the matrix F(1,, 12, J-l, z) restricted to
E (g) converges in Hilbert-Schmidt norm to

The square of the Hilbert-Schmidt norm of

is bounded by

We define

REMARK. The second term in the definition of E (g) is needed not only to
control the Hilbert-Schmidt norm of FUI’ 12, /1, z) - F(1,, 0, /1, 0) but also that of
its derivatives ôll F, al2F, ôgF.
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Clearly, the restriction of det2 F to E (g) is continuous at z = 0:

Therefore the intersection of F03BB(q) n 03A3 (g) with Q(g) n E1 is contained in B(q.).

We now want to prove the converse. For this we need information about the

structure of E (g) in the neighbourhood of any point of Q(g) n E1.

PROPOSITION. For every point p = (1*, 1*, 03BC*, 0) of E,(g) and for all A &#x3E; 0

there is a neighbourhood U of p in M(g) and an open set Zee having 0 as a
cluster point such that

Proof. We have to estimate the function S:= S 1 + 2 , where

near z = 0 in a neighbourhood of (l*1, l2, 11*, 0). We first substitute «Z = : - iw. Then
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and

For

where

Observe that

So, using the estimate |wb(l1, 03BC)|  !lb21 for all b~0393#BZ·(1, 0, 0) outside a finite
set S(l1, 03BC) c 0393# and the fact that the union

is finite we have:

Furthermore, for each w in a disc of radius centered at wb
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Thus, these regions must be excluded since we want S to go to 0 as |w| ~ ~.

LEMMA 1. Let Db(ll’ y) be the disc

Then, there exists a neighbourhood U2 of (1i, 03BC*) such that for all (11, 03BC) E U2 the
open set

is not bounded.

Proof. Let SR be the shell {w~C|R|w|2R}. We show that G n SR has
positive Lebesque-measure for all R big enough, even

Since,

there exists a neighbourhood U2 of (11, li*) such that for all (l1, 03BC) ~ U2

where

Therefore, the Lebesque-measure

Let R be big enough, such that J n SR = 0. Since IWb(1!, 03BC*)|  2R and b ~J,
we have 1(11 + bl)2 - MI = O(R), i.e. b21  Const R. So
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On the other hand meas(SR) = O(R 2). This implies Lemma 1.

Now assume that for all R big enough and for all w E G with lwl  R,

If we can show that this claim leads to a contradiction the proposition is proved.
So let us assume (*). Then

Since limR~~ (meas(G n SR)/meas(SR)) = 1 (see proof of Lemma 1) we have

for R big enough.
We now calculate the left-hand side of the above inequality. For simplicity we

do it for l1=03BC=0 (g= 0). We have

If IWbl  3R then

If |Wb|  3R then we can bound this integral by Therefore,

The first sum is bounded by (since lwbl  3R and therefore b21  3R)
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For the second sum we first sum over b 1. The coefficient in the sum is

monotonically decreasing in (bi) (if |b1|~0), so comparable with

For the integral put then this

expression is bounded by

This is equal to

So we get

With the same methods one calculates
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Comparing both expressions with (1) leads to a contradiction of ( * ). This proves
the proposition.

REMARK. The method of proof does not give much information about the
form of E (g), i.e. of Z.
However, by estimating the function S(ll , l2 , 03BC, z), which defines 1 (g), explicit-

ly, the following can be shown: Let

and consider a direction y = (b2, b3), where y is a primitive vector of

Exclude all points in

on the line

Then on the segment L03B3:= {t·03B3|[|03B3|]-1  t  [|03B3|} there are points which do
not lie on D and for these points w E LyBD one has

for (l1, l2, 03BC) in a neighbourhood of

We therefore can reach w = ~ on 03A3 (g) by hopping from a segment Ly to
another segment Ly, with )y’ ) &#x3E; |03B3|.

We now prove Theorem 2’. We already observed that

So we have to prove the opposite inclusion. Let us fix a smooth point
p = (li, 0, 03BC*, 0) of Q(g) n E, n B(qg). For simplicity we assume that p does not lie
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on the free Bloch-variety B(O) in Q(g) n E1. By the proposition there is a

neighbourhood U of p in M(g) and an open subset Z of C having 0 as a cluster

point, such that

is contained in 03A3 (g).

LEMMA 2. The restriction of the function

to T has the following properties

(i) f(p) = 0.
(ii) There is a constant C, such that

for all z E Z, (/1’ l2, J-l, z) E U.
(iii) For any z ~Z the mapping f(., z) is differentiable and

(/1’ 12, J-l, z) ~ (~(l1,l2,03BC)f)(l1, l2, 03BC, z) is continuous on T

are not both equal to zero.

Lemma 2 implies the theorem as follows: Since Q(g) intersects Ei transvers-
ally, we can choose (l1, 03BC, z) as local coordinates on Q(g) ~ =: V near p
(observe that there exists an A &#x3E; 0 such that |l2|  A· Izl for all points near p on

Q(g)). . Assume ~f ~l1(p) ~ 0 ( the other case is treated similarly, using

~l2(03BC, z) ~03BC (p) = 0) and consider the continuous mapping
am

defined by

This mapping fulfills the assumptions of the modification of the implicit function
theorem described in Appendix 1. Therefore p lies in the closure of the zero-set
of f in (Q(g) - Q~(g)) ~ T, hence in the closure of F03BB(q) n X (g). One knows that
the equation defining the one-dimensional Bloch-variety B(qg) is reduced. So the
smooth points are dense in the zero-set of f(l1, 0, y, 0) and the proof of the
theorem is complete.

We now prove Lemma 2: Statement (i) is obvious, (iv) follows from the fact
that p is a smooth point of B(qg). (ii) Is a consequence of the definition of E (g)
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and the fact that det2 is continuous in the Hilbert-Schmidt norm. Similarly we
have

so (iii) again follows from the definition of 1: (g).

COROLLARY. Assume that q is a real potential and that F03BB(q) contains an
algebraic component X. If the closure X of X in Q contains one of the curves

with c ~ 0393# then q is constant.
Proof. For b E 0393# - {0} let gb be the line {c + tb | t ~ R}. Then X contains all the

sets D(gb), b~0393#. By the proposition above for each b~0393# the closure of

X n 03A3(gb) in Q(gb) meets E1(gb) and E2(gb) along a (non-empty) algebraic curve,
namely the intersection of the strict transform of X with E1(gb) resp. E2(gb).
Hence by Theorem 2’ the Bloch varieties of all the averaged potentials qb each
contains an algebraic component. As each qb is real, Borg’s theorem [Bo]
implies that qb is constant. Therefore q is constant.

The assumption of the corollary is fulfilled if F03BB(q) contains a sphere around a
point of 0393#.

In the introduction we conjectured that F03BB(q)/0393# is always irreducible.

Assuming this conjecture one could finish the proof of Theorem 1 stated in the
introduction immediately: If X were any algebraic component of F03BB(q) (e.g. the
complexification of a sphere) then by Theorem 2’ there would be an affine line g
in each direction, such that X n 1(g) intersects Ei(g) (i = 1, 2) along a curve. Then
one would deduce the fact that q is constant as above. In the next section we will
see that, under further assumptions on X, one does not need the irreducibility of
F03BB(q)/0393# to complete the proof of Theorem 1.

We can prove the conjecture for split potentials.

PROPOSITION. Let r c R3 be a lattice generated by the vectors al, a2, a3 E R3
with (aI’ ai) = 0 (i = 2, 3). Then for all potentials

with p1 e L2(R/al . Z) and P2 E L2(R2/a2Z + a3Z) the Fermi surface F03BB(p1 + p2)/0393#
is irreducible.
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Proof. Let B(pl) c e2 resp. B(P2) - C3 be the one-, resp. two-dimensional
Bloch variety for the potential pi resp. P2 . Suppose that (kl, 03BB1) E B(pl) with
corresponding eigenfunction 03C81(x1) and (k2, k3, 03BB)~B(p2) with eigenfunction
t/12(X2,X3)’ then t/1(x):= 03C81(x1)·03C82(x2, x3) is an eigenfunction for

Therefore the image of the map

is contained in the three dimensional Bloch variety. Since the operator defining
B(p, + p2) has a compact resolvent it follows from the method of separation of
variables that each (kl, k2, k3, À) E B(p, + P2) corresponds to an eigenfunction of
the form 03C8(x1)· 03C8(x2, X3), so j is surjective.
Next consider the map n: B(pl) x B(p2) ~ C defined by 03C0((k1, 03BB1),

(k2, k3, Â2» = 03BB1 + 03BB2. The restriction of j to n - l(Â) is a surjective map from
03C0-1(03BB) to F.. In order to show that F03BB/0393# is irreducible it thus suffices to show
that 03C0-1(03BB)/0393# is irreducible. By [KT], Theorem 1 of section 3, the varieties

are irreducible. We can view 03C0-1(03BB) as the fibered product of B(Pl) and B(p2)
with respect to the maps

and

This construction is compatible with the action of 0393#, and therefore 03C0-1(03BB)/0393#
is a fiber product of two irreducible varieties with dim B(P2) &#x3E; 1, hence

irreducible.

The proposition above also applies to potentials of the form

as a special case. As described in the introduction one deduces Theorem 3 from
this proposition.

3. Algebraic components of the Fermi surface

If q is a real potential and the physical Fermi surface contains an ellipsoid then
the complexification of this ellipsoid is an algebraic component of FÂ(q). In this
case one verifies that the closure of this component is transversal to Q 00 in
almost all points of the intersection. So, Theorem 1 stated in the introduction is
a special case of
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THEOREM 1’. Let q be a real potential. Assume that F03BB(q) contains an algebraic
component X whose closure X is transversal to Qoo at almost every point of
X n Q 00. Then q is constant.

For the proof it suffices to show that

In this case X n Q~ contains one of the curves

and one can apply the corollary of the previous section. A first step towards
proving the inclusion (*) is to show that points of X n Qoo are all well

approximable by the curves {(k, y, 0) E Q~ | k, b) + y = 01. More precisely, set

D:= {(03BA1, x2, K3, 1, 0) E Qoo 1 there are M, 03C4  0 such that for b E 0393# - 101 one

PROPOSITION. Let q E L2 be any potential, and let p = (K, 1, 0) be a point of D.
Then there is no algebraic component of F03BB(q) whose closure passes through p and
is transversal to Q~ at this point.

Its proof is similar to that of the Proposition and Lemma 2 of the previous
chapter: one blows up the point p E D in p4 and shows that det2 F, whose zero set
is the Fermi surface, is different from zero near the exceptional divisor. The
diophantine conditions we imposed on p are used to get an upper bound for the
Hilbert Schmidt norm of F -1. The complete proof is given in Appendix 2.
Now let C be a component of X n Qoo, and assume that C is not contained in

b~0393# {(k, y, 0)~ Qoo | k, b) + y = 01. Then, C meets {(k, y, 0) E Q~|y = 01 in

only finitely many points, i.e.

is an affine curve. By the proposition above C’r) D consists of only finitely many
points. We want to show that this leads to a contradiction.

Let Do be the set of all points [y]= [yl, y2, y3] in P2(R) for which one - and
then all - representative y fulfills a diaphantine estimate

with some K, 03C4  0. Clearly a point (k, 1, 0)~Q~ with k ~ 0 lies in D if its

imaginary part 1 mk represents a point of Do. So let no : C’ - {(0; 1, 0)} ~ P2(R) be
the projection (k, 1, 0) ~ [Imk]. From what we said above it follows that the
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image of no intersects Do in only finitely many points. On the other hand one
easily verifies that P2(R) - Do has measure zero. Hence by Sard’s theorem 03C00
does not have maximal rank anywhere. A first step towards reaching the
contradiction is

LEMMA. C’ is contained in a plane.
Proof. Let p = (K ; 1, 0) = (03BA1, 03BA2, 03BA3, 1, 0) be a smooth point of C’ where the

torque of C’ is non-zero. Since no has rank  1 at p any tangent vector
v = (vl, v2, v3) to C’ at p fulfills

det(Im k, Re v, Im v) = 0.

Therefore, we can find a linear change of variables

where A is a real, invertible 3 x 3 - matrix such that k 1 = v’1 = 0 at p. Without
loss of generality we may assume that Im k2 and Im k3 are different from zero. In
these new variables C’ has the parametrization

Since the torque of C’ at p is non-zero we have 03B2 ~ 0.
The image 03C00(C’) has the parametrization (in the coordinate y’ = Ay)

where the components of k’ on the right-hand side are evaluated at p. For this
map to have rank  1 for all points t = tl + it2 in a neighbourhood of 0 in
C = R + iR one must have

In other words v’ is proportional to Im k’, and hence v is proportional to k. This
shows that no has rank zero at every point of C’ where the torque does not
vanish.

If the torque of C’ is zero everywhere then C’ is contained in a plane, and the
lemma is proven. Otherwise, 03C00(C’) is a point [yo] and the tangent vector of C’ at
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each of its smooth points is proportional to yo . But then C’ is a line, and again
the lemma is proven.

Returning to the proof of Theorem 1’, if C c {(k, y, 0)~Q~ y = 01, we are
finished. Otherwise there is y E C3 such that

From the fact that no has rank  1 one concludes that y is either purely real or
purely imaginary. We discuss the case that y is real, the other case being similar.
Thus, we may now assume that

We want to show that y E 0393#. So, assume that y e 0393#. By the proposition above
it suffices to show that C’ n D consists of infinitely many points.

First we show that almost all points of C’ fulfill the first diophantine condition
in the definition of D. For this purpose we introduce the following notation: If

(i.e. |Re k| = |Im k| and (Re k, Im k&#x3E; =0) let v(k) be the unit vector in R3 such
that Re k, Im k, v(k) form an oriented orthogonal basis. Also put

D - {v~R3 1 IVI = 1, v b for all b~0393# - 0 and there are only finitel

many b~0393# such that |v - b |b||  1 .
A standard argument (as in [SM] §25, p. 191) shows that the complement of D1
on the unit sphere S2 has Lebesque measure zero.

LEMMA. For any k e C3 - {0} with k’ 1 + k2 + k23 = 0 and v(k) e Dl there is K’ &#x3E; 0

such that for all b~0393# - {0}

Proof. Let E be the plane in R3 passing through by 0, Re k, Im k. For any
b~0393#, K &#x3E; 0 the set

is a strip centered at {03BE E E (ç, b) = 0} of width at most
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For all b~0393# - {0} outside a finite set S this width is at most 4nk. If K is
chosen sufficiently small then none of these strips contains both Re k and lm k

Since (b,k) ~ 0 for all b~0393# - {0} we can shrink K such that |k, b&#x3E;|  1:2
also for all b~S.

One sees that the map C’ ~ S2, (k; 1, 0) ~ v(k) has maximal rank almost
everywhere. Therefore, for all points (k, 1, 0) outside a set of Lebesque measure

zero in C’ there is K &#x3E; 0 such that |k, b&#x3E;|  K |b|2 for all b~0393# - {0}.
Now let E’ be the plane in R3

One easily checks that the map C’ ~ E’, (k, 1, 0) ~ Re k is surjective and
submersive. Thus, the Theorem l’ will be proven once we have shown

LEMMA. The set of points x in E’ for which there is K, ! &#x3E; 0 such that

has positive (in fact infinite) Lebesque measure.
Proof. For each b E 0393# - {0} the set

is a strip around the line

of width at most
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The distance of this line {x e E’l x, b&#x3E; + 1 = 01 from the point 03B3 |03B3|2 on E’ is at
most

Therefore, for R &#x3E; 0,

area

If -c &#x3E; 2 and K is sufficiently small this area is smaller than 2nR2, the area of the

whole disc of radius R around 03B3 |03B3|2.

4. Appendix 1

Let Z be an open subset of Rm, that has zero as a cluster point, and let V be a

neighbourhood of zero in R". Consider a continuous mapping

with the following properties:
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(i) F(O, 0) = 0.
(ii) For z E Z the mapping F(·, z): V - R" is differentiable and (x, z) ~ Fx(x, z) is

continuous on V x Z.

(iii) IF(x, z) - F(x, 0)|  |z|03B1 for all x E JI; z E Z (where a is a real number &#x3E; 0).
(iv) Fx(0, 0) is invertible.

Then there exists a sequence (xk, Zk)keN in V x Z with Zk -1= 0 converging to (o, 0)
such that F(x,, Zk) = 0.

Proof. Using properties (ii) and (iv) we can apply, for each fixed z E Z near 0,
the inverse mapping theorem to F(·, z). So there exists an open neighbourhood
Wl x W2 c V x Rm of 0 such that for each z E W2 n Z the mapping

is bijective, F-1 continuous and F(., z)(W1) contains an open ball. Then the
mapping

defined by

is bijective and G-1 is continuous.
We have to show: (0, z) ~ G(Wl x W2 n V x Z) for z sufficiently close to 0.

Fig.5

Observe that by (i), G(Wl x {0}) is an open neighbourhood of zero in R" x {0}.
Using (iii) we see that for |z| small enough an open ball in G(Wi x {z}) of R" x {z}
contains 101 x {z}. This proves the modification of the implicit function
theorem.
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5. Appendix 2: Proof of the proposition of Chapter 3

We blow up p in P4. In the blown up space there are coordinates 11, l2, l3, z such
that

The exceptional plane E lying over p is {z = 01. Suppose that X is an algebraic
component of F ;.(q) whose closure X passes transversally to Qoo through p. Then
the strict transform X’ of X would pass transversally through a point
(1, 2, 0) of E. Then for all points (l1, l2, l3, z) in X near to this point the
matrix

whose determinant describes the Fermi surface, is non-invertible, since the zero
set of this determinant contains X. In particular, at these points the Hilbert-
Schmidt norm of

is at least one. The square of this Hilbert-Schmidt norm is bounded above by

As X’ is transversal to E at (, 0) there is a constant A &#x3E; 0 such that for all

sufficiently small z E C there exists l~ c3 with Il - ll  A Izl and (1, z) ~ X. In
particular the sum above is bigger than one. This contradicts the

LEMMA. Assume that for all b ~ 0393# one has |03BA, b&#x3E; + 1| M |b|03C4. Let 03B5, A &#x3E; 0 and

 be a point in C3. Then there is a subset Z of C - {0} that has 0 as cluster point
such that for all z E Z and all l E C3 with |l-|  A Izl

Proof. We consider the special case |03BA| = 1,  = 0, À = 0, the general case is just
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somewhat more notationally awkward. Put w:= -1 and define for b~0393#
z

We are going to show that there are arbitrary large w E C for which

03A3b~0393# fb(w)  e’. This clearly implies the lemma. Observe that

There is a finite set S c 0393# such that for all b~0393# - S and all w E C with

one has

Put := max(4A, 2·03B5-1) and denote by D(b) the disc of radius |03BA, b&#x3E;+1|
around the point b2 03BA, b&#x3E;+1. Then for all b~0393# - S
(1) fb(w)  03B52 for all w E C with |w| &#x3E; A, w ~ D(b),

(2) A|w|R fb(w)|dw A dw| 8·03C0 |03BA, b&#x3E;+1|2.

The second inequality follows, because one has to integrate a function smaller
than

over a region, where this latter expression is smaller than E’. Therefore, one
increases this integral, if one integrates this latter function over a ball of radius
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2R around b2 03BA, b&#x3E;+1. Thus,

We now decompose 0393# into sets of the form

By the diophantine estimate for x the set 0393#(03B1, fi) has finite complement in 0393#
whenever 03B2 -03C4, 03B1&#x3E; 1.

For r &#x3E; 0, denote by Br the ball of radius r in R3. Then

The first O-estimate is the growth of the volume in the region

(Observe that {x e R3|1 + (K, x) = 0} is a line in R3, since xi + x2 + 03BA23 = 0.) The
second estimate follows from the fact that for b1, b2~0393#(03B1, 03B2) with |b1|  Ib21

CLAIM. For any a &#x3E; 03B2 with 03B2 ~ 3/2 and a - 03B2 ~ 1/2

(i) area ({w~C|A  H  R, w E D(b) for some b~0393#(03B1, 03B2)})

In fact, for b~0393#(03B1, 03B2)

The center of D(b) is b2 03BA, b&#x3E;+1, which has distance at least Ibl2 -a. from the origin.
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So if R is big enough D(b) does not meet the shell A  lwl  R unless

Ibl2 -lX  2R. Therefore

This, together with the growth estimates for 0393#(03B1, 03B2), gives part (i) of the claim.
Part (ii) is proven using the argument at the end of the proof of the

proposition in section 2.

We now return to the proof of the lemma. It follows from the claim that one
can find p &#x3E; 0 and finitely many pairs (03B11, 03B21),..., (aN, 03B2N) such that the union of
the open intervals (03B2n, an) covers [ - i, 1] and such that for n = 1,..., N

Since the complement of Nn=1 0393#(03B1n, 03B2n) in 0393# is finite, this implies that

As we remarked above this implies the lemma, and so the proof of the
proposition is completed.
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