Arithmetic aspect of operator algebras
Compositio Mathematica, Tome 77 (1991) no. 3, pp. 293-311.
@article{CM_1991__77_3_293_0,
     author = {Plymen, R. J. and Leung, C. W.},
     title = {Arithmetic aspect of operator algebras},
     journal = {Compositio Mathematica},
     pages = {293--311},
     publisher = {Kluwer Academic Publishers},
     volume = {77},
     number = {3},
     year = {1991},
     mrnumber = {1092771},
     zbl = {0843.22011},
     language = {en},
     url = {http://www.numdam.org/item/CM_1991__77_3_293_0/}
}
TY  - JOUR
AU  - Plymen, R. J.
AU  - Leung, C. W.
TI  - Arithmetic aspect of operator algebras
JO  - Compositio Mathematica
PY  - 1991
SP  - 293
EP  - 311
VL  - 77
IS  - 3
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1991__77_3_293_0/
LA  - en
ID  - CM_1991__77_3_293_0
ER  - 
%0 Journal Article
%A Plymen, R. J.
%A Leung, C. W.
%T Arithmetic aspect of operator algebras
%J Compositio Mathematica
%D 1991
%P 293-311
%V 77
%N 3
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1991__77_3_293_0/
%G en
%F CM_1991__77_3_293_0
Plymen, R. J.; Leung, C. W. Arithmetic aspect of operator algebras. Compositio Mathematica, Tome 77 (1991) no. 3, pp. 293-311. http://www.numdam.org/item/CM_1991__77_3_293_0/

1 Brown, L.G., Stable isomorphism of hereditary subalgebras of C*-algebras. Pacific J. Math. 71 (1977), 335-348. | MR | Zbl

2 Brown, L.G., Green, P., Rieffel, M.A., Stable isomorphism and strong Morita equivalence of C*algebras. Pacific J. Math. 71 (1977) 349-363. | MR | Zbl

3 Cartier, P., Representations of p-adic groups: A survey. Proc. Symposia in Pure Math. 33 (1977), Part I, 111-155. | MR | Zbl

4 Cassels, J.W.S., Local fields, Cambridge University Press, Cambridge (1986). | MR | Zbl

5 Dixmier, J., C*-algebras. North Holland (1977). | MR | Zbl

6 Gelbart, S. and Shahidi, F., Analytic properties of automorphic L-functions. Academic Press, New York (1988). | MR | Zbl

7 Keys, D., On the decomposition of reducible principal series representations of p-adic Chevalley groups. Pacific J. Math. 101 (1982), 351-388. | MR | Zbl

8 Keys, D., Reducibility of unramified unitary principal series representations of p-adic groups and class-1 representations. Math. Ann. 260 (1982) 397-402. | MR | Zbl

9 Neukirch, J., Class Field Theory. Springer-Verlag, Berlin (1986). | MR | Zbl

10 Pedersen, G., C*-algebras and their automorphism groups. Academic Press, New York (1979). | MR | Zbl

11 Plymen, R.J., Reduced C*-algebra for reductive p-adic groups. J. Functional Analysis 88 (1990) 251-266. | MR | Zbl

12 Rodier, F., Sur les représentations non ramifiés des groupes reductifs p-adiques; l'exemple de GSp(4). Bull. Soc. Math. France 116 (1988) 15-42. | Numdam | MR | Zbl

13 Serre, J.-P., A course in Arithmetic, G.T.M. vol. 7, Springer-Verlag (1973). | MR | Zbl

14 Serre, J.-P., Linear representations of finite groups, G.T.M. vol. 42, Springer-Verlag (1977). | MR | Zbl

15 Silberger, A., Introduction to harmonic analysis on reductive p-adic groups. Math Notes vol. 23. Princeton University Press, Princeton, N.J. (1979). | MR | Zbl

16 Steinberg, R., Lectures on Chevalley Groups, Yale University Lecture Notes, New Haven, Conn. (1967). | MR

17 Wassermann, A., Une démonstration de la conjecture de Connes-Kasparov pour les groupes de Lie linéaires connexes réductifs. C. R. Acad. Sci. Paris 304 (1987) 559-562. | MR | Zbl

18 Gelbart, S., Automorphic forms on adele groups. Annals of Mathematics Studies 83, Princeton, N.J. (1975). | MR | Zbl

19 Shahidi, F., A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups. Ann. Math., to appear. | MR | Zbl

20 Taibleson, M.H., Fourier analysis on local fields. Mathematical Notes 15, Princeton University Press, Princeton, N.J. (1975). | MR | Zbl