On *-representations of the Hopf *-algebra associated with the quantum group U q (n)
Compositio Mathematica, Tome 77 (1991) no. 2, pp. 199-231.
@article{CM_1991__77_2_199_0,
     author = {Koelink, H. Tjerk},
     title = {On $\ast $-representations of the {Hopf} $\ast $-algebra associated with the quantum group $U_q(n)$},
     journal = {Compositio Mathematica},
     pages = {199--231},
     publisher = {Kluwer Academic Publishers},
     volume = {77},
     number = {2},
     year = {1991},
     mrnumber = {1091898},
     zbl = {0721.17014},
     language = {en},
     url = {http://www.numdam.org/item/CM_1991__77_2_199_0/}
}
TY  - JOUR
AU  - Koelink, H. Tjerk
TI  - On $\ast $-representations of the Hopf $\ast $-algebra associated with the quantum group $U_q(n)$
JO  - Compositio Mathematica
PY  - 1991
SP  - 199
EP  - 231
VL  - 77
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1991__77_2_199_0/
LA  - en
ID  - CM_1991__77_2_199_0
ER  - 
%0 Journal Article
%A Koelink, H. Tjerk
%T On $\ast $-representations of the Hopf $\ast $-algebra associated with the quantum group $U_q(n)$
%J Compositio Mathematica
%D 1991
%P 199-231
%V 77
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1991__77_2_199_0/
%G en
%F CM_1991__77_2_199_0
Koelink, H. Tjerk. On $\ast $-representations of the Hopf $\ast $-algebra associated with the quantum group $U_q(n)$. Compositio Mathematica, Tome 77 (1991) no. 2, pp. 199-231. http://www.numdam.org/item/CM_1991__77_2_199_0/

1 Bergman, G.M., The diamond lemma for ring theory, Advances Math. 29, 1978, 178-218. | MR | Zbl

2 Bragiel, K., The twisted SU(3) group. Irreducible *-representations of the C*-algebra C(SμU(C)), Lett. Math. Phys. 17, 1989, 37-44. | Zbl

3 Dixmier, J., Les C*-algèbres et leurs représentations, Gauthier-Villars, 1964. | MR | Zbl

4 Drinfeld, V.G., Quantum groups, in 'Proc. International Congress of Mathematicians, 1986', American Math. Soc., 1987, 798-820. | MR | Zbl

5 Faddeev, L.D., N. Yu, Reshetikhin and L.A. Takhtajan, Quantization of Lie groups and Lie algebras, in 'Algebraic Analysis', vol. 1 (eds. M. Kashiwara and T. Kawai), Academic Press, 1988, 129-139. | MR | Zbl

6 Humphreys, J.E., Introduction to Lie algebras and representation theory, GTM 9, Springer Verlag, 1972. | MR | Zbl

7 Jimbo, M., A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10, 1985, 63-69. | MR | Zbl

8 Knapp, A.W., Representation theory of semisimple groups, Princeton University Press, 1986. | MR | Zbl

9 Koornwinder, T.H., Orthogonal polynomials in connection with quantum groups, in 'Orthogonal Polynomials: Theory and Practice' (ed. P. Nevai), NATO ASI Series C, Vol. 294, Kluwer, 1990, 257-292. | MR | Zbl

10 Mackey, G.W., The theory of unitary group representations, The University of Chicago Press, 1976. | MR | Zbl

11 Manin, Yu. I., Quantum groups and non-commutative geometry, Centre de Recherches Mathématiques, Université de Montreal, 1988. | Zbl

12 Parshall, B. and J.-P. Wang, Quantum linear groups I, preprint, 1989. | MR

13 Reshetikhin, N. Yu., L.A. Takhtajan and L.D. Faddeev, Quantification of Lie groups and Lie algebras, Algebra i Analiz 1, 1989, 178-206. (In Russian.) | Zbl

14 Rosso, M., An analogue of P. B. W. theorem and the universal R-matrix for Uhsl(N + 1), Comm. Math. Phys. 124, 1989, 307-318. | MR | Zbl

15 Rudin, W., Functional analysis, Tata McGraw-Hill, 1974. | Zbl

16 Sakai, S., C*-algebras and W*-algebras, Springer Verlag, 1971. | MR | Zbl

17 Sweedler, M.E., Hopf algebras, Benjamin, 1969. | MR | Zbl

18 Takesaki, M., Theory of operator algebras I, Springer Verlag, 1979. | Zbl

19 Vaksman, L.L. and Ya. S. Soibelman, Function algebra on the quantum group SU(2), Funktsional Anal. i. Prilozhen 22 (3), 1988, 1-14,English translation in Functional Anal. Appl. 22(3), 1988, 170-181. | MR | Zbl

20 Woronowicz, S.L., Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. Res. Inst. Math. Sci. 23, 1987, 117-181. | MR | Zbl

21 Woronowicz, S.L., Compact matrix pseudogroups, Comm. Math. Phys. 111, 1987, 613-665. | MR | Zbl

22 Woronowicz, S.L., Tanaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93, 1988, 35-76. | MR | Zbl

23 Yamane, H., A Poincaré-Birkhoff-Witt theorem for the quantum group of type AN, Proc. Japan Acad. 64, Ser. A, 1988, 385-386. | MR | Zbl