Compositio Mathematica

T. N. Shorey
 R. Tijdeman

 Perfect powers in products of terms in an

 Perfect powers in products of terms in an arithmetical progression

 arithmetical progression}Compositio Mathematica, tome 75, no 3 (1990), p. 307-344
http://www.numdam.org/item?id=CM_1990__75_3_307_0
© Foundation Compositio Mathematica, 1990, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Perfect powers in products of terms in an arithmetical progression

T. N. SHOREY ${ }^{1}$ and R. TIJDEMAN ${ }^{2}$
${ }^{1}$ School of Mathematics, Taba Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India; ${ }^{2}$ Mathematical Institute, R.U. Leiden, Postbus 9512, 2300 RA Leiden, The Netherlands

Received 27 December 1988; accepted in revised form 14 February 1990
Dedicated to the memory of Professor Th. Schneider

1. Introduction

For an integer $x>1$, we denote by $P(x)$ the greatest prime factor of x and we write $\omega(x)$ for the number of distinct prime divisors of x. Further, we put $P(1)=1$ and $\omega(1)=0$. We consider the equation

$$
\begin{equation*}
m(m+d) \cdots(m+(k-1) d)=b y^{l} \tag{1.1}
\end{equation*}
$$

in positive integers, b, d, k, l, m, y subject to $P(b) \leqslant k, \operatorname{gcd}(m, d)=1, k>2, l \geqslant 2$. There is no loss of generality in assuming that l is a prime number. We shall follow this notation without reference. Erdös conjectured that equation (1.1) with $b=1$ implies that k is bounded by an absolute constant and later he conjectured that even $k \leqslant 3$. The second author [20] made some conjectures for the general case. We shall now mention some special cases of (1.1) which have been treated in the literature. For more elaborate introductions, see [14] and [20].

If $P(y) \leqslant k$ in (1.1), then (1.1) asks to determine all positive integers d, k, m with $\operatorname{gcd}(m, d)=1$ and $k>2$ such that

$$
\begin{equation*}
P(m(m+d) \cdots(m+(k-1) d)) \leqslant k . \tag{1.2}
\end{equation*}
$$

If $d=1, k=m-1$, then Bertrand's Postulate, proved by Chebyshev, states that there are no solutions. Sylvester [18] generalised this result to all cases with $m \geqslant d+k$ and Langevin [9] to $m>k$. The authors [16] recently proved that the only solution of (1.2) with $d>1$ is given by $m=2, d=7, k=3$. If $d=1$, $m \leqslant k$, then (1.2) is valid if and only if $\pi(k)=\pi(m+k-1)$ which is equivalent to a well-known problem on differences between consecutive primes, see e.g. [8]. From now on we assume that $P(y)>k$.

[^0]If $b=d=1$, then (1.1) reduces to the problem whether the product of k consecutive positive integers can be a perfect power. Erdös [1] and Rigge [11], independently, proved that such a product can never be a square. Erdös and Selfridge [4] settled the problem completely by showing that there are no solutions at all.

Another case which has received much attention is $d=1, b=k!$. Putting $n=m+k-1$, the problem becomes to find all solutions of

$$
\begin{equation*}
\binom{n}{k}=y^{l} \tag{1.3}
\end{equation*}
$$

in positive integers k, l, n, y subject to $k \geqslant 2, n \geqslant 2 k, y \geqslant 2, l \geqslant 2$. If $k=l=2$, then (1.3) is equivalent to the Pell equation $x^{2}-8 y^{2}=1$ with $x=2 n-1$, and it is easy to characterise the infinitely many solutions. The only other solution which is known is $n=50, k=3, y=140, l=2$. Erdös [1], [2] has proved that there are no solutions with $k \geqslant 4$ or $l=3$. It follows from a result of Tijdeman [19] that there is an effectively computable upper bound for the solutions of (1.3) with $k=2, l \geqslant 3$ and $k=3, l \geqslant 2$.

Marszalek [10] considered equation (1.1) with $b=1, d>1$. He showed that k is bounded if d is fixed. More precisely, he proved that, for any solution of (1.1) with $b=1, d>1$, we have

$$
\begin{array}{ll}
k \leqslant \exp \left(C_{1} d^{3 / 2}\right) & \text { if } l=2, \\
k \leqslant \exp \left(C_{2} d^{7 / 3}\right) & \text { if } l=3, \\
k \leqslant C_{3} d^{5 / 2} & \text { if } l=4, \\
k \leqslant C_{4} d & \text { if } l \geqslant 5 .
\end{array}
$$

Actually he gave explicit values for the absolute constants $C_{1}-C_{4}$.
Shorey [14] improved on Marszalek's result. In particular Shorey [14] applied the theory of linear forms in logarithms to show that (1.1) with $l \geqslant 3$ implies that k is bounded by an effectively computable number depending only on $P(d)$.

The results in this paper considerably improve on the results of Marszalek and Shorey. As an immediate consequence of Corollary 3 and (2.7), we obtain an elementary proof of the above mentioned result of Shorey. Further, for a fixed l, we show that k is bounded if $\omega(d)$ is fixed, in particular if d is a prime number, see Corollary 3. Moreover, our results imply that for any $\varepsilon>0$

$$
k \ll_{\varepsilon} d^{\varepsilon},
$$

see Corollary 4. For k larger than some constant depending on $\omega(d)$, we even have

$$
k \ll \log d,
$$

see Corollary 4. In Theorem 3 we give bounds for the largest term $m+(k-1) d$ of the arithmetical progression. Further, we notice that k is also bounded by a number depending only on m and $\omega(d)$.

2. Statements of results

If we refer to equation (1.1), we tacitly assume that the variables b, d, k, l, m, y are positive integers satisfying $P(b) \leqslant k, \operatorname{gcd}(m, d)=1, k>2, l>1, y>1$ and $P(y)>k$. We further assume that l is prime. By $C_{5}, C_{6}, \ldots, C_{25}$ we denote positive, effectively computable numbers. Let d_{1} be the maximal divisor of d such that all the prime factors of d_{1} are $\equiv 1(\bmod l)$ and we set

$$
d_{2}=d / d_{1}, \quad \theta=\max \left(d_{2}, l\right)
$$

Notice that $d \geqslant d_{1}$. On the other hand, it follows from Theorem 3, formula (2.19) that

$$
\begin{equation*}
d_{1} \geqslant C_{5} d^{(l-2) / l} \quad \text { if } k \geqslant C_{6} \tag{2.1}
\end{equation*}
$$

where $C_{5} \leqslant 1$ and C_{6} are effectively computable absolute constants. This is an immediate consequence of (2.19). We write

$$
h(k)= \begin{cases}\log \log k & \text { if } l \geqslant 5 \tag{2.2}\\ \log \log \log k & \text { if } l=3\end{cases}
$$

for $k>e^{e}$. We start with the following result.
THEOREM 1. (a) There exists an effectively computable absolute constant C_{7} such that equation (1.1) with $l=2$ implies that

$$
\begin{equation*}
2^{\omega(d)}>C_{7} \frac{k}{\log k} \tag{2.3}
\end{equation*}
$$

(b) Let $\varepsilon>0$ and $l>3$. There exist effectively computable numbers C_{8} and C_{9} depending only on ε such that for every divisor d^{\prime} of d satisfying

$$
d^{\prime} \geqslant \begin{cases}C_{8} l^{-1} \min \left(d^{4 / l}, d k^{-l+4}\right) & \text { if } l \geqslant 5 \tag{2.4}\\ d k^{(-1 / 6)+\varepsilon} & \text { if } l=3,\end{cases}
$$

equation (1.1) with $k \geqslant C_{9}$ implies that

$$
l^{\omega\left(d^{\prime}\right)} \geqslant(1-\varepsilon) k \frac{h(k)}{\log k}
$$

We may apply Theorem $1(\mathrm{~b})$ with $d^{\prime}=1$ to derive that

$$
d \geqslant \begin{cases}C_{8}^{-1} k^{l-4} & \text { if } l \geqslant 5 \tag{2.5}\\ k^{(1 / 6)-\varepsilon} & \text { if } l=3\end{cases}
$$

for $k \geqslant C_{9}$. We obtain the following sharpening of estimate (2.5).
THEOREM 2. There exist effectively computable absolute constants C_{10} and C_{10}^{\prime} such that equation (1.1) with $k \geqslant C_{10}^{\prime}$ implies that

$$
\begin{equation*}
d \geqslant C_{10} \theta k^{l-2} \tag{2.6}
\end{equation*}
$$

By (2.6) and $\theta \geqslant d_{2}$, we see that (1.1) implies that

$$
\begin{equation*}
d_{1} \geqslant C_{10} k^{l-2} \quad \text { if } k \geqslant C_{10}^{\prime} . \tag{2.7}
\end{equation*}
$$

This is an improvement of a result of Shorey [14] where (2.7) reads as $d_{1}>1$ for $l \geqslant 3$ and k exceeding an effectively computable absolute constant.

Suppose that k exceeds a sufficiently large effectively computable number depending only on ε. Then, we see that (2.4) with $d^{\prime}=d$ is satisfied for $l \geqslant 3$ provided that $0<\varepsilon<1 / 6$ which involves no loss of generality in the next result. Furthermore, by (2.1) and (2.7), we observe that

$$
d_{1} \geqslant C_{8} l^{-1} d^{4 / l} \quad \text { if } l \geqslant 7
$$

Therefore, the following result follows immediately from Theorem 1(b).
COROLLARY 1. Let $\varepsilon>0$ and $l \geqslant 3$. There exists an effectively computable number C_{11} depending only on ε such that equation (1.1) with $k \geqslant C_{11}$ implies that

$$
\begin{equation*}
l^{\omega\left(d_{1}\right)} \geqslant(1-\varepsilon) k \frac{h(k)}{\log k} \quad \text { if } l \geqslant 7 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
l^{\omega(d)} \geqslant(1-\varepsilon) k \frac{h(k)}{\log k} \quad \text { if } l=3 \text { or } l=5 . \tag{2.9}
\end{equation*}
$$

So far, we have applied Theorem $1(\mathrm{~b})$ for $d^{\prime}=1, d^{\prime}=d$ and $d^{\prime}=d_{1}$. It is useful to consider some other values of d^{\prime}. For example, d has a prime power divisor $d^{\prime} \geqslant d_{1}^{1 / \omega\left(d_{1}\right)}$ and, by (2.1) and (2.7),

$$
d^{\prime} \geqslant C_{5} d^{4(1+(1 / l-3)) / l} \geqslant C_{8} l^{-1} d^{4 / l} \quad \text { if } l>4 \omega\left(d_{1}\right)+2 .
$$

Therefore, Theorem 1(b) and (2.7) admit the following consequence.

COROLLARY 2. Let $\varepsilon>0$ and

$$
\begin{equation*}
l>4 \omega\left(d_{1}\right)+2 . \tag{2.10}
\end{equation*}
$$

There exists an effectively computable number C_{12} depending only on ε such that equation (1.1) with $k \geqslant C_{12}$ implies that

$$
\begin{equation*}
l>(1-\varepsilon) k \frac{\log \log k}{\log k} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{1} \geqslant(\log k)^{(1-\varepsilon) k} . \tag{2.12}
\end{equation*}
$$

The main aim of this paper is to prove the next two corollaries. Corollary 3 is an immediate consequence of Theorem 1(a) and Corollary 1. Corollary 4 follows from Theorem 1(a), Theorem 2 and Corollaries 1, 2.

COROLLARY 3. Suppose that equation (1.1) is satisfied. If $l \geqslant 7$, then k is bounded by an effectively computable number depending only on l and $\omega\left(d_{1}\right)$. If $l \in\{2,3,5\}$ then k is bounded by an effectively computable number depending only on $\omega(d)$.

COROLLARY 4. Suppose that equation (1.1) is satisfied. Then
(a) there exist an effectively computable absolute constant C_{13} and an effectively computable number C_{14} depending only on l such that

$$
\begin{equation*}
d_{1} \geqslant k^{c_{13}(\log \log k) / \log \log \log k} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{1} \geqslant k^{C_{14} \log \log k} . \tag{2.14}
\end{equation*}
$$

(b) Let $\varepsilon>0$ and $l \geqslant 7$. There exists an effectively computable number C_{15} depending only on ε such that for $k \geqslant C_{15}$ and

$$
\begin{equation*}
\left(4 \omega\left(d_{1}\right)+2\right)^{\omega\left(d_{1}\right)}<(1-\varepsilon) k \frac{\log \log k}{\log k} \tag{2.15}
\end{equation*}
$$

we have

$$
\begin{equation*}
d_{1} \geqslant(\log k)^{(1-\varepsilon) k} \tag{2.16}
\end{equation*}
$$

Observe that (2.14) follows immediately from (2.3), (2.8), (2.9), (2.1) and

$$
\begin{equation*}
\omega\left(d_{1}\right) \leqslant C_{16} \frac{\log d_{1}}{\log \log d_{1}}, \quad \omega(d) \leqslant C_{16} \frac{\log d}{\log \log d} \tag{2.17}
\end{equation*}
$$

where C_{16} is an effectively computable absolute constant, since $\omega\left(d_{1}\right) \geqslant \omega(d)-1$ if $l=2$. For deriving (2.13), we refer to (2.7) to assume that $l \leqslant(\log \log k) / \log \log \log k$ and then, it is a consequence of (2.14), Corollary 1 and (2.17). For Corollary 4(b), we refer to Corollary 2 to suppose that $l \leqslant 4 \omega\left(d_{1}\right)+2$ which, by (2.8), contradicts (2.15).

The results stated up to now do not involve m. The following result implies that if k exceeds some absolute constant, then m is bounded from above by $d^{2} k(\log k)^{5}$ if $l=2$ and $C_{18} k d^{l /(l-2)}$ if $l \geqslant 3$.
THEOREM 3. There exist effectively computable absolute constants C_{17} and C_{18} such that equation (1.1) with $k \geqslant C_{17}$ implies that

$$
\begin{equation*}
m+(k-1) d \leqslant 17 d^{2} k(\log k)^{4} \quad \text { if } l=2 \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
m+(k-1) d \leqslant C_{18} k\left(d \theta^{-1}\right)^{l /(l-2)} \quad \text { if } l \geqslant 3 \tag{2.19}
\end{equation*}
$$

Thus, since $\theta \geqslant d_{2}$, we see from (2.19) that (2.1) is valid. If k is sufficiently large and $\omega(d)$ is fixed, we refer to Corollary 3 to assume (2.10). Then, we combine $\theta \geqslant l$, (2.19) and (2.11) to derive the following result.

COROLLARY 5. There exist effectively computable numbers C_{19} and C_{20} depending only on $\omega(d)$ such that equation (1.1) with $k \geqslant C_{19}$ implies that

$$
m+(k-1) d \leqslant C_{20} \frac{\log k}{\log \log k} d^{l /(l-2)}
$$

Observe that (2.19) and $\theta \geqslant l$ imply that $l^{l /(l-2)} \leqslant 2 C_{18} d^{2 /(l-2)}$ and consequently, we derive from (2.1) the following estimate which sharpens (2.7) if $l>k^{2+\varepsilon_{1}}$ for any $\varepsilon_{1}>0$.
COROLLARY 6. There exist effectively computable absolute constants C_{21} and C_{22} such that equation (1.1) with $k \geqslant C_{21}$ implies that

$$
\begin{equation*}
d_{1} \geqslant\left(C_{22} l\right)^{(l-2) / 2} \tag{2.20}
\end{equation*}
$$

Shorey [15] showed that there exist effectively computable absolute constants C_{23} and C_{24} such that equation (1.1) with $k \geqslant C_{23}$ implies that

$$
m \geqslant d_{1}^{1-C_{24} \Delta_{l}} \quad \text { where } \Delta_{l}=l^{-1}(\log l)^{2}(\log \log (l+1))
$$

Consequently, we can find an effectively computable absolute constant C_{25} such that equation (1.1) with $l \geqslant C_{25}$ implies that k is bounded by an effectively computable number depending only on m. This assertion for equation (1.1) with $l<C_{25}$ remains unproved. We may combine this result with Corollary 3 to derive that equation (1.1) implies that k is bounded by an effectively computable number depending only on m and $\omega(d)$.

The proofs of our results are based on the following ideas. If (1.1) holds, we can write

$$
m+j d=a_{j} x_{j}^{l} \quad(0 \leqslant j<k)
$$

where each prime factor of a_{j} is less than k (cf. (3.2), (3.3), (4.1)). Hence

$$
a_{i} x_{i}^{l}-a_{j} x_{j}^{l}=(i-j) d \quad(0 \leqslant j<i<k) .
$$

In the cases $l=3$ and $l=5$, the proofs depend on a result of Evertse [6] on the number of solutions of the diophantine equation $a x^{l}-b y^{l}=c$ in positive integers x, y. In all other cases the proofs are elementary. If $a_{i}=a_{j}$ for some $i \neq j$, then

$$
\begin{aligned}
& a_{j}^{1 / l}\left(x_{i}-x_{j}\right) m^{(l-1) / l}<l a_{j}\left(x_{i}-x_{j}\right) x_{j}^{l-1}<a_{j}\left(x_{i}^{l}-x_{j}^{l}\right) \\
& \quad=(i-j) d<k d .
\end{aligned}
$$

Put $S=\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}$. If the number $|S|$ of elements of S is relatively small, then we combine such inequalities with congruence considerations and apply the Box Principle. If $|S|$ is larger, we consider equal products of two or even four factors a_{j} (cf. (4.22), (4.51), (4.54)).

In $\S 5$, we shall apply p-adic theory of linear forms in logarithms to sharpen Corollary 4(b) whenever equation (1.1) with $b=1$ is satisfied. It follows from Theorem 4 that if $b=1$ in Corollary $4(\mathrm{~b})$ then (2.16) can be replaced by the stronger inequality

$$
\begin{equation*}
\log d_{1} \gg \varepsilon{ }_{\varepsilon} k^{2} \frac{(\log \log k)^{4}}{(\log k)^{6}} \quad(\mathrm{cf.}(5.2)) \tag{2.21}
\end{equation*}
$$

3. The case $l=2$

We assume that b, d, k, m and y are positive integers satisfying

$$
\begin{equation*}
m(m+d) \cdots(m+(k-1) d)=b y^{2} \tag{3.1}
\end{equation*}
$$

$P(b) \leqslant k, \operatorname{gcd}(m, d)=1, k>2$ and $P(y)>k$. In the sequel $c_{1}, c_{2}, \ldots, c_{7}$ denote effectively computable positive absolute constants. In $\S 3$ the symbols d_{1} and d_{2} have another meaning than in the rest of the paper.

For $0 \leqslant i<k$, we see from (3.1) that

$$
\begin{equation*}
m+i d=a_{i} x_{i}^{2} \tag{3.2}
\end{equation*}
$$

where a_{i} is square-free, $x_{i}>0$ and $P\left(A_{i}\right) \leqslant k$. Further, for $0 \leqslant i<k$, we can also write

$$
\begin{equation*}
m+i d=A_{i} X_{i}^{2} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
P\left(A_{i}\right) \leqslant k, \quad X_{i}>0, \quad \operatorname{gcd}\left(X_{i}, \prod_{p \leqslant k} p\right)=1 \tag{3.4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{gcd}\left(X_{i}, X_{j}\right)=1 \quad \text { for } i \neq j \tag{3.5}
\end{equation*}
$$

Put

$$
\begin{equation*}
S=\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{1}=\left\{A_{0}, A_{1}, \ldots, A_{k-1}\right\} \tag{3.7}
\end{equation*}
$$

Since the left hand side of (3.1) is divisible by a prime $>k$, we have, by (3.3),

$$
\begin{equation*}
m+(k-1) d \geqslant(k+1)^{2} \tag{3.8}
\end{equation*}
$$

First, we sharpen (3.8) in the next lemma.
LEMMA 1. Equation (3.1) implies that there is some effectively computable constant $c_{1}>0$ such that

$$
\begin{equation*}
m+(k-1) d \geqslant c_{1} k^{3}(\log k)^{2} . \tag{3.9}
\end{equation*}
$$

Proof. We may assume $k \geqslant c_{2}$ for some sufficiently large c_{2} and

$$
\begin{equation*}
d \leqslant k^{4} \tag{3.10}
\end{equation*}
$$

By (3.8), we have

$$
\begin{equation*}
m+\mu d \geqslant k^{2} / 4 \quad \text { for } k / 4 \leqslant \mu<k \tag{3.11}
\end{equation*}
$$

We denote by T the set of all μ with $k / 4 \leqslant \mu<k$ such that $X_{\mu}=1$ and we write T_{1} for the set of all μ with $k / 4 \leqslant \mu<k$ such that $\mu \notin T$. By a fundamental argument of Erdös (cf. [5] Lemma 2.1) and (3.11), we see that

$$
|T| \leqslant \frac{k \log k}{\log \left(k^{2} / 4\right)}+\pi(k)
$$

Therefore

$$
\begin{equation*}
\left|T_{1}\right| \geqslant k / 8 \tag{3.12}
\end{equation*}
$$

Further, notice that $X_{\mu}>1$ for every $\mu \in T_{1}$ and hence, by (3.4) and (3.1), the numbers X_{μ} with $\mu \in T_{1}$ satisfy $X_{\mu}>k$ and are pairwise distinct. Further, we may suppose that X_{μ} is a prime number for every $\mu \in T_{1}$, since otherwise $m+(k-1) d \geqslant X_{\mu}^{2}>k^{4}$ for some μ. Now, by (3.12), (3.3) and prime number theory, we see that there exists a subset T_{2} of T_{1} such that

$$
\begin{equation*}
\left|T_{2}\right| \geqslant k / 16 \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{\mu} \geqslant c_{3} k \log k \tag{3.14}
\end{equation*}
$$

hence

$$
\begin{equation*}
m+\mu d \geqslant c_{3}^{2} k^{2}(\log k)^{2} \quad \text { for } \mu \in T_{2} \tag{3.15}
\end{equation*}
$$

For $\mu_{0} \in T_{2}$, we denote by $v\left(A_{\mu_{0}}\right)$ the number of distinct $\mu \in T_{2}$ satisfying $A_{\mu}=A_{\mu_{0}}$. First, we show that

$$
\begin{equation*}
v\left(A_{\mu_{0}}\right) \leqslant 2^{\omega(d)+2} \quad \text { for } \mu_{0} \in T_{2} \tag{3.16}
\end{equation*}
$$

Let $\mu_{0} \in T_{2}$ and suppose that

$$
v\left(A_{\mu_{0}}\right)>2^{\omega(d)+2}
$$

We see from (3.3) and (3.5) that there exist $Z:=2^{\omega(d)+2}$ pairwise distinct elements μ_{1}, \ldots, μ_{z} in T_{2} distinct from μ_{0} such that for $z=1,2, \ldots, Z$, we have $A_{\mu_{0}}=A_{\mu_{z}}$
and

$$
d \mid B\left(\mu_{0}, \mu_{z}\right) \boldsymbol{B}^{\prime}\left(\mu_{0}, \mu_{z}\right), \quad \operatorname{gcd}\left(B\left(\mu_{0}, \mu_{z}\right), B^{\prime}\left(\mu_{0}, \mu_{z}\right)\right)=1 \text { or } 2
$$

where

$$
B\left(\mu_{z_{1}}, \mu_{z_{2}}\right)=\left|X_{\mu_{z_{1}}}-X_{\mu_{z_{2}}}\right|, \quad B^{\prime}\left(\mu_{z_{1}}, \mu_{z_{2}}\right)=X_{\mu_{z_{1}}}+X_{\mu_{z_{2}}}
$$

for $z_{1} \neq z_{2}$ and $0 \leqslant z_{1} \leqslant Z, 0 \leqslant z_{2} \leqslant Z$. Now, we apply the Box Principle to find z_{1}, z_{2} with $1 \leqslant z_{1}<z_{2} \leqslant Z$ and positive divisors d_{1}, d_{2} of d with $d=d_{1} d_{2}$ and $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$ or 2 such that

$$
d_{1}\left|B\left(\mu_{0}, \mu_{z_{1}}\right), d_{1}\right| B\left(\mu_{0}, \mu_{z_{2}}\right), d_{2}\left|B^{\prime}\left(\mu_{0}, \mu_{z_{1}}\right), d_{2}\right| B^{\prime}\left(\mu_{0}, \mu_{z_{2}}\right) .
$$

Consequently

$$
\left.\frac{d}{\operatorname{gcd}\left(d_{1}, d_{2}\right)} \right\rvert\, B\left(\mu_{z_{1}}, \mu_{z_{2}}\right)
$$

In particular,

$$
\begin{equation*}
B\left(\mu_{z_{1}}, \mu_{z_{2}}\right) \geqslant \frac{d}{2} \tag{3.17}
\end{equation*}
$$

We see from (3.3) that

$$
\left|\mu_{z_{1}}-\mu_{z_{2}}\right| d=A_{\mu_{z_{1}}} B\left(\mu_{z_{1}}, \mu_{z_{2}}\right) B^{\prime}\left(\mu_{z_{1}}, \mu_{z_{2}}\right)
$$

which, together with (3.17), implies that

$$
\begin{equation*}
A_{\mu_{z_{1}}} B^{\prime}\left(\mu_{z_{1}}, \mu_{z_{2}}\right)<2 k \tag{3.18}
\end{equation*}
$$

On the other hand, we derive from (3.3) and (3.15) that

$$
\begin{equation*}
A_{\mu_{z_{1}}} B^{\prime}\left(\mu_{z_{1}}, \mu_{z_{2}}\right) \geqslant A_{\mu_{z_{1}}}^{1 / 2}\left(m+\mu_{z_{1}} d\right)^{1 / 2} \geqslant c_{3} k \log k . \tag{3.19}
\end{equation*}
$$

Finally, we combine (3.18) and (3.19) to arrive at a contradiction. This proves (3.16).

We denote by T_{3} the set of all $\mu \in T_{2}$ such that

$$
\begin{equation*}
A_{\mu}>k /\left(2^{\omega(d)+7}\right) \tag{3.20}
\end{equation*}
$$

and we write T_{4} for the complement of T_{3} in T_{2}. By (3.13) we observe that

$$
\begin{equation*}
\left|T_{3}\right|+\left|T_{4}\right|=\left|T_{2}\right| \geqslant k / 16 \tag{3.21}
\end{equation*}
$$

On the other hand, we derive from (3.16) that

$$
\left|T_{4}\right| \leqslant k\left(2^{\omega(d)+2}\right) /\left(2^{\omega(d)+7}\right)=k / 32
$$

which, together with (3.21), implies that

$$
\begin{equation*}
\left|T_{3}\right| \geqslant k / 32 \tag{3.22}
\end{equation*}
$$

We denote by S_{2} the set of all $A_{\mu} \in S_{1}$ with $\mu \in T_{3}$ and we write S_{3} for the set of all $A_{\mu} \in S_{2}$ such that $v\left(A_{\mu}\right) \geqslant 2$. We suppose that

$$
\left|S_{3}\right| \leqslant k\left(64 \times 2^{\omega(d)+2}\right)^{-1} .
$$

Then, we derive from (3.22) and (3.16) that $k / 32 \leqslant\left|T_{3}\right| \leqslant\left|S_{2}\right|+k / 64$. Thus $\left|S_{2}\right| \geqslant k / 64$ which, together with (3.3) and (3.14), implies (3.9).

We may therefore assume that

$$
\left|S_{3}\right|>k\left(64 \times 2^{\omega(d)+2}\right)^{-1} .
$$

Then we apply the Box Principle as earlier to conclude that there exist positive divisors d_{1}, d_{2} of d satisfying $d=d_{1} d_{2}, \operatorname{gcd}\left(d_{1}, d_{2}\right)=1$ or 2 and at least

$$
\left[k\left(64 \times 2^{\omega(d)+2}\right)^{-2}\right]
$$

distinct pairs $(\mu, v) \in T_{3}^{2}$ such that $A_{\mu}=A_{v}$ and

$$
\begin{equation*}
X_{\mu}-X_{v}=r_{\mu, v} d_{1}, \quad X_{\mu}+X_{v}=s_{\mu, v} d_{2} \tag{3.23}
\end{equation*}
$$

where $r_{\mu, \nu}$ and $s_{\mu, \nu}$ are positive integers satisfying

$$
\max \left(r_{\mu, v}, s_{\mu, v}\right) \leqslant r_{\mu, v} s_{\mu, v}=\frac{X_{\mu}^{2}-X_{v}^{2}}{d}=\frac{\mu-v}{A_{\mu}} \leqslant 2^{\omega(d)+7},
$$

in view of (3.20). By (2.17) and (3.10), we have

$$
\left[k\left(64 \times 2^{\omega(d)+2}\right)^{-2}\right]>2^{2 \omega(d)+14} .
$$

We again utilise the Box Principle to derive that there exist distinct pairs $\left(\mu_{1}, v_{1}\right)$ and (μ_{2}, v_{2}) such that

$$
\begin{equation*}
r_{\mu_{1}, v_{1}}=r_{\mu_{2}, v_{2}}, s_{\mu_{1}, v_{1}}=s_{\mu_{2}, v_{2}} . \tag{3.24}
\end{equation*}
$$

We see from (3.23) and (3.24) that $X_{\mu_{1}}=X_{\mu_{2}}$ and $X_{v_{1}}=X_{v_{2}}$ which imply that $\mu_{1}=\mu_{2}$ and $v_{1}=v_{2}$. This is a contradiction.

The following lemmas show that under suitable conditions inequality (3.9) cannot hold.

LEMMA 2. Let S be given by (3.6). Suppose that a_{i}, a_{j}, a_{g} and a_{h} are elements of S satisfying

$$
\begin{equation*}
a_{i}=a_{j}, \quad a_{g}=a_{h} \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{i}+x_{j}=d_{1} r_{1}, \quad x_{i}-x_{j}=d_{2} r_{2}, \quad x_{g}+x_{h}=d_{1} s_{1}, \quad x_{g}-x_{h}=d_{2} s_{2} \tag{3.26}
\end{equation*}
$$

where $r_{1}>0, s_{1}>0, r_{2} \neq 0$ and $s_{2} \neq 0$ are integers and d_{1}, d_{2} are positive divisors of d satisfying

$$
\begin{equation*}
d=d_{1} d_{2}, \quad \operatorname{gcd}\left(d_{1}, d_{2}\right)=1 \text { or } 2 . \tag{3.27}
\end{equation*}
$$

Then

$$
a_{i}=a_{g}, r_{1}=s_{1} \quad \text { or } \quad a_{i}=a_{g}, r_{2}^{2}=s_{2}^{2} \quad \text { or } \quad m+(k-1) d<272 k^{3} .
$$

Proof. There is no loss of generality in assuming that $x_{i}>x_{j}$ and $x_{g}>x_{h}$. By (3.26), we obtain

$$
\begin{array}{ll}
x_{i}=\frac{d_{1} r_{1}+d_{2} r_{2}}{2}, & x_{j}=\frac{d_{1} r_{1}-d_{2} r_{2}}{2}, \\
x_{g}=\frac{d_{1} s_{1}+d_{2} s_{2}}{2}, & x_{h}=\frac{d_{1} s_{1}-d_{2} s_{2}}{2} . \tag{3.28}
\end{array}
$$

By (3.28) and (3.2), we derive that

$$
\begin{equation*}
4\left(a_{i} x_{i}^{2}-a_{g} x_{g}^{2}\right)=a_{i}\left(d_{1}^{2} r_{1}^{2}+2 d_{1} d_{2} r_{1} r_{2}+d_{2}^{2} r_{2}^{2}\right)-a_{g}\left(d_{1}^{2} s_{1}^{2}+2 d_{1} d_{2} s_{1} s_{2}+d_{2}^{2} s_{2}^{2}\right) \tag{3.29}
\end{equation*}
$$

is divisible by d. By reading (3.29) modulo d_{1} and d_{2} and using (3.27), we see that

$$
\begin{equation*}
d_{1}\left|4\left(a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right), \quad d_{2}\right| 4\left(a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right) \tag{3.30}
\end{equation*}
$$

which, by (3.26) and (3.27), implies that

$$
\begin{equation*}
d d_{2}=d_{1} d_{2}^{2} \mid 4\left(a_{i} r_{2}^{2} d_{2}^{2}-a_{g} s_{2}^{2} d_{2}^{2}\right)=4\left(a_{i}\left(x_{i}-x_{j}\right)^{2}-a_{g}\left(x_{g}-x_{h}\right)^{2}\right) \tag{3.31}
\end{equation*}
$$

and

$$
\begin{equation*}
d d_{1}=d_{1}^{2} d_{2} \mid 4\left(a_{i} r_{1}^{2} d_{1}^{2}-a_{g} s_{1}^{2} d_{1}^{2}\right)=4\left(a_{i}\left(x_{i}+x_{j}\right)^{2}-a_{g}\left(x_{g}+x_{h}\right)^{2}\right) . \tag{3.32}
\end{equation*}
$$

If the right side of (3.31) vanishes, then it follows from the fact that a_{i} and a_{g} are square-free that $a_{i}=a_{g}, r_{2}^{2}=s_{2}^{2}$. If the right side of (3.32) vanishes, then $a_{i}=a_{g}$, $r_{1}=s_{1}$. Otherwise

$$
\begin{equation*}
a_{i}\left(x_{i}-x_{j}\right)^{2}-a_{g}\left(x_{g}-x_{h}\right)^{2} \neq 0, \quad a_{i}\left(x_{i}+x_{j}\right)^{2}-a_{g}\left(x_{g}+x_{h}\right)^{2} \neq 0 \tag{3.33}
\end{equation*}
$$

hence

$$
d d_{2} \leqslant 4 \max \left(a_{i}\left(x_{i}-x_{j}\right)^{2}, a_{g}\left(x_{g}-x_{h}\right)^{2}\right) .
$$

Without loss of generality we may assume that $a_{i}\left(x_{i}-x_{j}\right)^{2}$ is the maximal one. Then we have

$$
\begin{equation*}
d d_{2} \leqslant 4 a_{i}\left(x_{i}-x_{j}\right)^{2} \tag{3.34}
\end{equation*}
$$

and, by (3.2) and (3.25),

$$
\begin{equation*}
m \leqslant a_{i} x_{j}^{2} \leqslant \frac{1}{4} a_{i}\left(x_{i}+x_{j}\right)^{2} . \tag{3.35}
\end{equation*}
$$

Thus, by (3.34), (3.35), (3.25) and (3.2), $d d_{2} m \leqslant\left(a_{i} x_{i}^{2}-a_{j} x_{j}^{2}\right)^{2}<k^{2} d^{2}$. This implies

$$
\begin{equation*}
m<d_{1} k^{2} . \tag{3.36}
\end{equation*}
$$

From (3.32) and (3.33) we derive

$$
d d_{1} \mid 4\left(\left(a_{i} x_{i}^{2}-a_{g} x_{g}^{2}\right)+2\left(a_{i} x_{i} x_{j}-a_{g} x_{g} x_{h}\right)+\left(a_{i} x_{j}^{2}-a_{g} x_{h}^{2}\right)\right) \neq 0
$$

Since, by (3.25),

$$
m \leqslant a_{i} x_{j}^{2}<a_{i} x_{i} x_{j}<a_{i} x_{i}^{2}<m+k d
$$

and

$$
m \leqslant a_{g} x_{h}^{2}<a_{g} x_{g} x_{h}<a_{g} x_{g}^{2}<m+k d
$$

we obtain

$$
\left|a_{i} x_{i} x_{j}-a_{g} x_{g} x_{h}\right|<k d
$$

Hence $d d_{1} \leqslant 16 k d$. This implies that $d_{1} \leqslant 16 k$. Similarly, by considering (3.31) and (3.33), we obtain $d_{2} \leqslant 16 k$. We combine these estimates with (3.36) to conclude that $m+(k-1) d<16 k^{3}+256 k^{3}=272 k^{3}$.

LEMMA 3. Let $\varepsilon>0$ and S be given by (3.6). There exists an effectively computable number $C_{26}>0$ depending only on ε such that equation (3.1) with $k \geqslant C_{26}$,

$$
\begin{equation*}
2^{\omega(d)+6}<\varepsilon \frac{k}{\log k} \tag{3.37}
\end{equation*}
$$

and

$$
\begin{equation*}
|S| \leqslant k-\varepsilon \frac{k}{\log k} \tag{3.38}
\end{equation*}
$$

implies that

$$
\begin{equation*}
m+(k-1) d<272 k^{3} \tag{3.39}
\end{equation*}
$$

Proof. Let $0<\varepsilon<1$. We may assume that k exceeds a sufficiently large effectively computable number depending only on ε. Observe that for every pair (i, j) with $0 \leqslant j<i<k$ and $x_{i} \neq x_{j}$, we have

$$
\begin{equation*}
\operatorname{gcd}\left(x_{i}+x_{j}, x_{i}-x_{j}, d\right)=1 \text { or } 2 \tag{3.40}
\end{equation*}
$$

since $\operatorname{gcd}(m, d)=1$. By (3.38) we conclude that the set U of pairs (i, j) with $0 \leqslant j<i<k$ and $a_{i}=a_{j}$ satisfies

$$
|U| \geqslant \varepsilon \frac{k}{\log k}
$$

First, we prove the lemma with (3.37) replaced by

$$
2^{3 \omega(d)+9}<\varepsilon \frac{k}{\log k}
$$

We apply the Box Principle to find a subset U_{1} of U satisfying

$$
\begin{equation*}
\left|U_{1}\right| \geqslant 2^{2 \omega(d)+6} \tag{3.41}
\end{equation*}
$$

and positive divisors d_{1}, d_{2} of d with (3.27) such that

$$
x_{i}+x_{j}=d_{1} r_{i, j}, \quad x_{i}-x_{j}=d_{2} s_{i, j}, \quad(i, j) \in U_{1},
$$

where $r_{i, j}, s_{i, j}$ are positive integers. Take an element $(i, j) \in U_{1}$. We argue as in the proof of (3.16), but using Lemma 1 in place of (3.15), to conclude that the number of μ with $0 \leqslant \mu<k$ satisfying $a_{\mu}=a_{j}$ is at most $2^{\omega(d)+2}$. Now, in view of (3.41), we can find a pair $(g, h) \in U_{1}$ such that $a_{i} \neq a_{g}$. Thus all the assumptions of Lemma 2 are satisfied and hence (3.39) is valid.

Therefore, we may assume that

$$
2^{3 \omega(d)+9} \geqslant \varepsilon \frac{k}{\log k}
$$

which, together with (2.17), implies that

$$
\begin{equation*}
d \geqslant k^{c_{27} \log \log k} \tag{3.42}
\end{equation*}
$$

where $C_{27}>0$ is an effectively computable number depending only on ε. Put $\varepsilon_{1}=\varepsilon / 8$. Then, by (3.37) and (3.38),

$$
2^{\omega(d)+3}<\varepsilon_{1} \frac{k}{\log k}, \quad|S| \leqslant k-\varepsilon_{1} \frac{k}{\log k} .
$$

We again apply the Box Principle to secure two distinct pairs (i, j) and (g, h) in U and positive divisors d_{1}, d_{2} of d satisfying (3.25), (3.26) and (3.27) such that $r_{2}>0$ and $s_{2}>0$. Now, by Lemma 2, we may suppose that either

$$
\begin{equation*}
a_{i}=a_{g}, \quad r_{1}=s_{1} \tag{3.43}
\end{equation*}
$$

or

$$
a_{i}=a_{g}, \quad r_{2}=s_{2} .
$$

We give a proof for the first case and the proof for the second case is similar. Suppose $a_{i}=a_{g}, r_{1}=s_{1}$. We see from (3.25) and (3.26) that $r_{2} \neq s_{2}$. Thus, by (3.25) and (3.26),

$$
\begin{equation*}
x_{i}+x_{j}=x_{g}+x_{h}, \quad x_{i}-x_{j} \neq x_{g}-x_{h} . \tag{3.44}
\end{equation*}
$$

Further, observe that (3.30), (3.31) and (3.32) are valid. Then, since $r_{2}<k, s_{2}<k$, $r_{2} \neq s_{2}, a_{i}=a_{g}$ and $\operatorname{gcd}(m, d)=1$, we see that $\operatorname{gcd}\left(a_{i}, d\right)=1$ and

$$
\begin{equation*}
d_{1}<4 k^{2} \tag{3.45}
\end{equation*}
$$

Furthermore, by (3.43) and (3.44), the right sides of (3.31) and (3.32) are unequal and both divisible by $d d_{2}$. Therefore, by subtracting them and applying (3.43), we have $d d_{2} \mid 16 a_{i}\left(x_{i} x_{j}-x_{g} x_{h}\right) \neq 0$. Hence

$$
\begin{equation*}
d d_{2}<16\left|x_{i} x_{j}-x_{g} x_{h}\right| \tag{3.46}
\end{equation*}
$$

On the other hand, we see by squaring the equality in (3.44) and applying (3.43) and (3.2) that

$$
\begin{equation*}
2 a_{i}\left|x_{i} x_{j}-x_{g} x_{h}\right|=\left|\left(a_{i} x_{i}^{2}-a_{g} x_{g}^{2}\right)+\left(a_{j} x_{j}^{2}-a_{h} x_{h}^{2}\right)\right|<2 d k . \tag{3.47}
\end{equation*}
$$

By (3.46) and (3.47), we derive

$$
\begin{equation*}
d_{2}<16 k \tag{3.48}
\end{equation*}
$$

and therefore, by (3.45) and (3.48),

$$
d=d_{1} d_{2}<64 k^{3}
$$

which, together with (3.42), implies that k is bounded by an effectively computable number depending only on ε.

LEMMA 4. Let S be given by (3.6). There exist effectively computable constants $c_{4}>0$ ard $c_{5}>0$ such that equation (3.1) with

$$
|S|>k-c_{4} \frac{k}{\log k}
$$

implies that $k \leqslant c_{5}$.
Proof. Let ε be an absolute constant with $0<\varepsilon<1$ which we choose later. We may assume that k exceeds a sufficiently large effectively computable number depending only on ε. Further, we suppose that

$$
\begin{equation*}
|S|>k-\varepsilon \frac{k}{\log k}=: K . \tag{3.49}
\end{equation*}
$$

Then, since a_{0}, \ldots, a_{k-1} are square-free, we derive that

$$
\begin{equation*}
\left.a_{0} \cdots a_{k-1} \geqslant K!\left(\frac{3}{2}\right)^{K} \quad \text { (cf. [1] }\right) \tag{3.50}
\end{equation*}
$$

We put $g_{q}=\operatorname{ord}_{q}\left(a_{0} \cdots a_{k-1}\right), h_{q}=\operatorname{ord}_{q}(k!)$ for $q=2$, 3. Then

$$
g_{q} \leqslant \frac{k}{q+1}+\frac{\log k}{\log q}+1 \quad \text { (cf. [10], p. 221). }
$$

Also,

$$
h_{q} \geqslant \frac{k}{q-1}-\frac{\log k}{\log q} \quad \text { (cf. [10], p. 221). }
$$

Therefore

$$
g_{2}-h_{2} \leqslant-\frac{2 k}{3}+2 \frac{\log k}{\log 2}+1, \quad g_{3}-h_{3} \leqslant-\frac{k}{4}+2 \frac{\log k}{\log 3}+1
$$

Further, by (3.2) and the fact that $P\left(a_{i}\right) \leqslant k$ and a_{i} is square free for $o \leqslant i<k$, we have

$$
a_{0} \cdots a_{k-1} \mid k!\prod_{p \leqslant k} p
$$

In fact

$$
a_{0} \cdots a_{k-1} \mid k!2^{g_{2}-h_{2}} 3^{g_{3}-h_{3}} \prod_{p \leqslant k} p
$$

We have

$$
\begin{equation*}
\prod_{p \leqslant k} p \leqslant 3^{k} \quad \text { for } k=1,2, \ldots \tag{3.51}
\end{equation*}
$$

(see, for example, [7]). Consequently

$$
\begin{equation*}
a_{0} \cdots a_{k-1} \leqslant 6 k^{4} 3^{k} k!2^{-2 k / 3} 3^{-k / 4} . \tag{3.52}
\end{equation*}
$$

Now we combine (3.50), (3.52) and (3.49) to derive that

$$
\begin{equation*}
\left(\frac{3}{2}\right)^{k} \leqslant 3^{k} e^{2 \varepsilon k} 2^{-2 k / 3} 3^{-k / 4} \tag{3.53}
\end{equation*}
$$

for k sufficiently large. Put $\varepsilon=\frac{1}{3} \log \left(3^{1 / 4} 2^{-1 / 3}\right)$. Then (3.53) yields a contradiction.

Proof of Theorem $1(a)$. We may assume that k exceeds a sufficiently large effectively computable absolute constant. Then, we derive from Lemma 4 that

$$
|S| \leqslant k-c_{4} \frac{k}{\log k}
$$

Assume that

$$
2^{\omega(d)}<\frac{c_{4}}{64} \frac{k}{\log k} .
$$

Then we apply Lemma 3 with $\varepsilon=c_{4}$ and Lemma 1 to arrive at a contradiction.

Proof of case $l=2$ of Theorem 3. We assume that (3.1) holds and

$$
\begin{equation*}
m>16 d^{2} k(\log k)^{4} \tag{3.54}
\end{equation*}
$$

and that k exceeds a sufficiently large effectively computable absolute constant c_{6}. We denote by S^{\prime} the set of all $a_{\mu} \in S$ such that $a_{\mu}=a_{v}$ for some $a_{v} \in S$ with $v \neq \mu$. Then, we observe from (3.2) and $\operatorname{gcd}(m, d)=1$ that

$$
\begin{equation*}
a_{\mu}<k \quad \text { for } a_{\mu} \in S^{\prime} \tag{3.55}
\end{equation*}
$$

For $a_{\mu_{1}} \in S^{\prime}$ and $a_{\mu_{2}} \in S^{\prime}$ with $\mu_{1} \neq \mu_{2}$, we first suppose that

$$
\begin{equation*}
x_{\mu_{1}}=x_{\mu_{2}} . \tag{3.56}
\end{equation*}
$$

Then we see from (3.2), (3.56) and $\operatorname{gcd}\left(x_{\mu_{1}}, d\right)=1$ that

$$
\begin{equation*}
x_{\mu_{1}}^{2}<k . \tag{3.57}
\end{equation*}
$$

On the other hand, we derive from (3.2) and (3.55) that

$$
\begin{equation*}
x_{\mu_{1}}^{2}=\frac{a_{\mu_{1}} x_{\mu_{1}}^{2}}{a_{\mu_{1}}} \geqslant m k^{-1} . \tag{3.58}
\end{equation*}
$$

We combine (3.58) and (3.57) to derive that $m<k^{2}$ which, together with (3.54), implies that $d<k^{1 / 2}$. Now we apply Lemma 1 to arrive at a contradiction. Thus,
we may suppose that

$$
\begin{equation*}
x_{\mu_{1}} \neq x_{\mu_{2}} \text { for all } a_{\mu_{1}}, a_{\mu_{2}} \in S^{\prime} \text { with } \mu_{1} \neq \mu_{2} \tag{3.59}
\end{equation*}
$$

For real numbers α, β with $0 \leqslant \alpha<\beta$ we denote by $T_{[\alpha, \beta]}$ the set of all μ with $0 \leqslant \mu<k$ such that $a_{\mu} \in S^{\prime}$ and $k^{\alpha} \leqslant a_{\mu}<k^{\beta}$. We claim that

$$
\begin{equation*}
T_{\left[1-2^{1-r}, 1-2^{-r}\right]} \mid \leqslant k(\log k)^{-2} \tag{3.60}
\end{equation*}
$$

for every positive integer r with

$$
\begin{equation*}
(2 \log k)^{2^{r+1}} \leqslant k \tag{3.61}
\end{equation*}
$$

We suppose that (3.60) does not hold for such an r and denote the corresponding set by T. Thus

$$
\begin{equation*}
|T|>k(\log k)^{-2} \tag{3.62}
\end{equation*}
$$

Let p be a prime number satisfying

$$
\begin{equation*}
\frac{1}{4} k^{2^{-r}}(\log k)^{-2}<p \leqslant \frac{1}{2} k^{2^{-r}}(\log k)^{-2} \tag{3.63}
\end{equation*}
$$

Note that such a prime exists. By (3.62) and (3.63) there exists a subset $T(p)$ of T satisfying

$$
\begin{equation*}
x_{\mu} \equiv x_{v}(\bmod p) \quad \text { for } \mu, v \in T(p) \tag{3.64}
\end{equation*}
$$

and

$$
\begin{equation*}
|T(p)| \geqslant 2 k^{1-2^{-r}} \tag{3.65}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
a_{\mu}=a_{v} \quad \text { for } \mu, v \in T(p) \text { with } \mu \neq v \tag{3.66}
\end{equation*}
$$

Then, we derive from (3.2) that

$$
\begin{equation*}
\mathrm{d} k>a_{\mu}^{1 / 2}\left|x_{\mu}-x_{v}\right| m^{1 / 2} \tag{3.67}
\end{equation*}
$$

By $\mu \in T$, (3.64), (3.63) and (3.54), we have

$$
\begin{equation*}
a_{\mu}^{1 / 2}\left|x_{\mu}-x_{\nu}\right| m^{1 / 2} \geqslant k^{\frac{1}{2}-2^{-r}} \cdot \frac{1}{4} k^{2^{-r}}(\log k)^{-2} \cdot 4 \mathrm{~d} k^{1 / 2}(\log k)^{2} . \tag{3.68}
\end{equation*}
$$

Now (3.67) and (3.68) yield a contradiction. Therefore (3.66) is never valid. Consequently, by (3.65), there are at least $2 k^{1-2^{-r}}$ distinct a_{μ} with $\mu \in T(p)$. This is impossible, since $a_{\mu} \leqslant k^{1-2^{-r}}$ for every such μ. Thus (3.62) is false and we have proved (3.60) for every r satisfying (3.61).

Let r_{0} be the largest integer r such that (3.61) holds. Put $\delta=2^{-r_{0}}$. Then

$$
\begin{equation*}
(2 \log k)^{2} \leqslant k^{\delta}<(2 \log k)^{4} \tag{3.69}
\end{equation*}
$$

Let $\mu \in T_{[1-\delta, 1]}$. Then $a_{\mu}=a_{v}$ for some $v \neq \mu$. Now, by (3.54) and (3.69),

$$
\mathrm{d} k>a_{\mu}^{1 / 2}\left|x_{\mu}-x_{v}\right| m^{1 / 2}>4 k^{(1-\delta) / 2} \mathrm{~d} k^{1 / 2}(\log k)^{2}>\mathrm{d} k
$$

a contradiction. Consequently

$$
\begin{equation*}
\left|T_{[1-\delta, 1]}\right|=0 . \tag{3.70}
\end{equation*}
$$

It further follows from the definition of r_{0} that

$$
r_{0}<2 \log \frac{\log k}{\log \log k}<2 \log \log k
$$

Hence, by (3.60),

$$
\begin{equation*}
\left|T_{[0,1-\delta]}\right| \leqslant r_{0} \frac{k}{(\log k)^{2}}<\frac{3 k \log \log k}{(\log k)^{2}} \tag{3.71}
\end{equation*}
$$

Combining (3.70) and (3.71), we obtain

$$
|S| \geqslant k-\left|T_{[0,1-\delta]}\right|-\left|T_{[1-\delta, 1]}\right| \geqslant k-c_{4} \frac{k}{\log k}
$$

if c_{6} is sufficiently large. Now, we apply Lemma 4 to conclude that $k \leqslant c_{7}$. Hence, we conclude (2.18) for sufficiently large C_{17}.

4. The case $l \geqslant 3$

For $0 \leqslant i<k$, we see from (1.1) that

$$
\begin{equation*}
m+i d=A_{i} X_{i}^{l} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
P\left(A_{i}\right) \leqslant k \quad \text { and } \quad \operatorname{gcd}\left(X_{i}, \prod_{p \geqslant k} p\right)=1 \tag{4.2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{gcd}\left(X_{i}, X_{j}\right)=1 \quad \text { for } i \neq j \tag{4.3}
\end{equation*}
$$

We put

$$
S_{1}=\left\{A_{0}, \ldots, A_{k-1}\right\} .
$$

As stated in the beginning of Section 2 we assume in our results on (1.1) that $P(y)>k$. Hence, by (1.1),

$$
\begin{equation*}
m+(k-1) d \geqslant(k+1)^{l} \tag{4.4}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
m+d \geqslant k^{l-1} \tag{4.5}
\end{equation*}
$$

We recall that d_{1} is the maximal divisor of d such that all the prime factors of d_{1} are $\equiv 1(\bmod l)$ and that $d_{2}=d / d_{1}$. Let

$$
\begin{equation*}
d_{3}=d / l^{o r d_{l}(d)} . \tag{4.6}
\end{equation*}
$$

We shall follow the above notation without reference.
We first give three lemmas basically due to Erdös.
LEMMA 5. There exists a subset S_{2} of S_{1} consisting of at least $\left|S_{1}\right|-\pi(k)$ elements such that

$$
\begin{equation*}
\prod_{A_{j} \in S_{2}} A_{j} \leqslant k!. \tag{4.7}
\end{equation*}
$$

Proof. For every prime $p \leqslant k$, we choose an $f(p) \in S_{1}$ such that p does not appear to a higher power in the factorisation of any other element of S_{1}. We denote by S_{2} the set obtained by deleting these elements out of S_{1}. Then

$$
\left|S_{2}\right| \geqslant k-\pi(k) .
$$

By counting the total contribution of prime factors $\leqslant k$ to the product of all elements of S_{2}, we see from (4.1) and (4.2) that

$$
\prod_{A_{j} \in S_{2}} A_{j} \leqslant \prod_{p \leqslant k} p^{[k / p]+\left[k / p^{2}\right]+\cdots}=k!
$$

(cf. Erdös [3] Lemma 3).
LEMMA 6. Let $0<\eta \leqslant \frac{1}{2}$. Let S_{2} be defined as in Lemma 5. Suppose g is a positive number such that $g \leqslant(\eta \log k) / 8$ and

$$
\begin{equation*}
\left|S_{2}\right| \geqslant k-\frac{g k}{\log k} \tag{4.8}
\end{equation*}
$$

Then there exists a subset S_{3} of S_{2} with at least $\eta k / 2$ elements satisfying

$$
\begin{equation*}
A_{i} \leqslant 4 e^{(1+\eta) g} k \tag{4.9}
\end{equation*}
$$

Proof. Let S_{3} be the subset of S_{2} defined by (4.9). By (4.7) we have

$$
k!\geqslant \prod_{A_{j} \in S_{2}} A_{j} \geqslant\left(\left|S_{3}\right|\right)!\left(4 \mathrm{e}^{(1+\eta) g} k\right)^{\left|S_{2}\right|-\left|S_{3}\right|}
$$

Suppose $\left|S_{3}\right|<\eta k / 2$. Then, by $n!>(n / e)^{n}$ for $n=1,2, \ldots$ and the fact that $(y / x)^{y}$ is monotonic decreasing in y for $0<y<x / e$ and (4.8), we obtain

$$
\begin{aligned}
k! & \geqslant\left(\frac{\left|S_{3}\right|}{4 \mathrm{e}^{g+\eta g+1} k}\right)^{\left|S_{3}\right|}\left(4 \mathrm{e}^{(1+\eta) g}\right)^{k[1-(g / \log k)]} \frac{k^{k}}{\mathrm{e}^{g k}} \\
& \geqslant\left(\frac{\eta}{8 \mathrm{e}^{g+\eta g+1}}\right)^{\eta k / 2}\left(\frac{4 \mathrm{e}^{\eta g}}{\left(4 \mathrm{e}^{(1+\eta) g}\right)^{\eta / 8}}\right)^{k} k^{k} \\
& \geqslant\left(16\left(\frac{\eta}{8 e \sqrt{2}}\right)^{\eta}\right)^{k / 2}\left(\frac{\mathrm{e}^{4 \eta}}{\mathrm{e}^{2 \eta+2 \eta^{2}+\eta}}\right)^{g k / 4} k!>k!
\end{aligned}
$$

which yields a contradiction.
LEMMA 7. Denote by $N(x)$ the maximum number of integers $1 \leqslant b_{1}$ $<b_{2}<\cdots<b_{u} \leqslant x$ so that the products $b_{i} b_{j}$ for $1 \leqslant i \leqslant j \leqslant u$ are all distinct. For all sufficiently large x we have

$$
N(x)<2 x / \log x
$$

Proof. See Lemma 4 of Erdös [3].
By $c_{8}, c_{9}, \ldots, c_{17}$ we denote effectively computable positive absolute constants.

Proof of Theorem 2. We may assume that $l>2$ and that $k>c_{8}$ where c_{8} is some suitable large constant. Suppose that $A_{i}=A_{j}$, but $i>j>0$. Then, by (4.1),

$$
\begin{equation*}
(i-j) d=A_{j}\left(X_{i}^{l}-X_{j}^{l}\right) . \tag{4.10}
\end{equation*}
$$

Since $\operatorname{gcd}\left(A_{j}, d\right)=1$, we see that $A_{j}<k$. Further we refer to (4.1), (4.5) and (4.2) to derive that $X_{i}>k$ and $X_{j}>k$. By (4.10) and $\operatorname{gcd}\left(d, A_{j}\right)=1$, we see that

$$
d \mid\left(X_{i}^{l}-X_{j}^{l}\right)
$$

We know that every prime factor of

$$
\begin{equation*}
\left(X_{i}^{l}-X_{j}^{l}\right) /\left(X_{i}-X_{j}\right) \tag{4.11}
\end{equation*}
$$

is either l or $\equiv 1(\bmod l)$. Further, l occurs in the factorisation of (4.11) at most to the first power. We shall use this fact several times in the paper without reference. Consequently

$$
\begin{equation*}
X_{i}-X_{j} \geqslant \theta l^{-1} \tag{4.12}
\end{equation*}
$$

Now, from (4.10), we derive that

$$
\begin{equation*}
\mathrm{d} k>A_{j}^{1 / l}\left(X_{i}-X_{j}\right) l\left(A_{j} X_{j}^{l}\right)^{(l-1) / l} . \tag{4.13}
\end{equation*}
$$

If $j \geqslant k / 8$, then, by (4.13), (4.12) and (4.4),

$$
\mathrm{d} k>\theta(m+j d)^{(l-1) / l}>c_{9} \theta(m+(k-1) d)^{(l-1) / l}>c_{9} \theta k^{l-1}
$$

which implies that $d>c_{9} \theta k^{l-2}$. Thus, in the proof of Theorem 2, we may assume that the numbers A_{i} with $i \geqslant k / 8$ are distinct. Let S_{4} be the set of all integers A_{i} with $i \geqslant k / 8$. Then $\left|S_{4}\right| \geqslant 7 k / 8$. The number of elements A_{i} of S_{4} with $X_{i}=1$ is, by (4.1), (4.5) and Lemma 5, at most

$$
\pi(k)+\frac{\log k!}{(l-1) \log k} \leqslant \pi(k)+\frac{k}{2}<\frac{3 k}{5}
$$

for $k \geqslant c_{8}$. Consequently

$$
\begin{equation*}
\left|S_{5}\right| \geqslant \frac{7 k}{8}-\frac{3 k}{5} \geqslant \frac{k}{4} \tag{4.14}
\end{equation*}
$$

for $k \geqslant c_{8}$ where S_{5} denotes the set of elements A_{i} in S_{4} with $X_{i}>1$. Observe that, by (4.2),

$$
\begin{equation*}
X_{i}>k \quad \text { for } A_{i} \in S_{5} . \tag{4.15}
\end{equation*}
$$

Consequently, by (4.1), (4.14) and (4.15), we sharpen (4.5) to

$$
\begin{equation*}
m+(k-1) d \geqslant k^{l+1} / 4, \tag{4.16}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
m+d \geqslant k^{l} / 4 . \tag{4.17}
\end{equation*}
$$

Suppose that $A_{i}=A_{j}$ for some i, j with $i>j>0$. Then (4.13), (4.12) and (4.17) together imply that

$$
\mathrm{d} k>\theta(m+d)^{(l-1) / l}>c_{10} \theta k^{l-1}
$$

Therefore $d>c_{10} \theta k^{l-2}$. Consequently, we may assume that A_{1}, \ldots, A_{k-1} are distinct, hence $\left|S_{1}\right| \geqslant k-1$. By applying Lemmas 5 and 6 with $\eta=\frac{1}{2}$ and $g=2$ we obtain a subset S_{3} of S_{1} such that

$$
\begin{equation*}
\left|S_{3}\right| \geqslant \frac{k}{4} \tag{4.18}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{i} \leqslant c_{11} k \quad \text { if } A_{i} \in S_{3} . \tag{4.19}
\end{equation*}
$$

Therefore, by (4.1), (4.2) and (4.17), we see that

$$
\begin{equation*}
X_{i}>k \quad \text { for } A_{i} \in S_{3} . \tag{4.20}
\end{equation*}
$$

We write S_{6} for the set of all $A_{i} \in S_{3}$ with $i \geqslant k / 16$ and $A_{i} \geqslant k / 16$. Then, by (4.18),

$$
\begin{equation*}
\left|S_{6}\right| \geqslant \frac{k}{8} . \tag{4.21}
\end{equation*}
$$

Now, in view of (4.19) and (4.21), we can apply Lemma 7 to find elements A_{i}, A_{j}, A_{μ} and A_{v} of S_{6} satisfying

$$
\begin{equation*}
A_{i} A_{j}=A_{\mu} A_{v} \quad \text { with } i \neq \mu \quad \text { and } \quad i \neq v . \tag{4.22}
\end{equation*}
$$

We put

$$
\begin{equation*}
\Delta=(m+i d)(m+j d)-(m+\mu d)(m+v d) . \tag{4.23}
\end{equation*}
$$

By (4.1) and (4.22),

$$
\begin{equation*}
\Delta=A_{\mu} A_{v}\left(\left(X_{i} X_{j}\right)^{l}-\left(X_{\mu} X_{v}\right)^{l}\right) \tag{4.24}
\end{equation*}
$$

By (4.24), (4.20) and (4.3), we see that $\Delta \neq 0$. Now, there is no loss of generality in assuming that $X_{i} X_{j}>X_{\mu} X_{v}$. Further, we derive from (4.23), (4.24) and $\operatorname{gcd}\left(d, A_{\mu} A_{v}\right)=1$ that

$$
d \mid\left(X_{i} X_{j}\right)^{l}-\left(X_{\mu} X_{v}\right)^{l} .
$$

Hence

$$
X_{i} X_{j}-X_{\mu} X_{v} \geqslant \theta l^{-1} .
$$

Next, observe that

$$
|\Delta| \geqslant\left(A_{\mu} A_{v}\right)^{1 / l}\left(X_{i} X_{j}-X_{\mu} X_{v}\right) l\left(\left(A_{\mu} X_{\mu}^{l}\right)\left(A_{v} X_{v}^{l}\right)\right)^{(l-1) / l} .
$$

Therefore

$$
\begin{equation*}
|\Delta| \geqslant c_{12} k^{2 / l} \theta(m+(k-1) d)^{2(l-1) / l} . \tag{4.25}
\end{equation*}
$$

On the other hand, we see from (4.23) that

$$
\begin{equation*}
|\Delta| \leqslant 2 k d(m+(k-1) d) . \tag{4.26}
\end{equation*}
$$

We combine (4.25) and (4.26) to obtain

$$
\begin{equation*}
\theta\left(\frac{m+(k-1) d}{k}\right)^{(l-2) / l} \leqslant 2 c_{12}^{-1} d \tag{4.27}
\end{equation*}
$$

which, together with (4.16), implies (2.6).
Proof of case $l \geqslant 3$ of Theorem 3. We may assume that $k \geqslant c_{13}$ where c_{13} is some suitable large constant. Suppose that $A_{i}=A_{j}$ with $i>j \geqslant k / \log k$. Then, by (4.1), we see that

$$
\mathrm{d} k>(i-j) d \geqslant A_{j}^{1 / l}\left(X_{i}-X_{j}\right) l\left(A_{j} X_{j}^{l}\right)^{(l-1) / l} .
$$

As in the proof of (4.12) we derive that $X_{i}-X_{j} \geqslant \theta l^{-1}$. Therefore

$$
\mathrm{d} k \geqslant \theta\left(\frac{m+k d}{\log k}\right)^{(l-1) / l}
$$

which, together with (2.7), implies (2.19). Thus, we may assume that

$$
\left|S_{1}\right| \geqslant k-\frac{k}{\log k}
$$

By applying Lemmas 5 and 6 , we obtain a subset S_{3}^{\prime} of S_{1} such that $\left|S_{3}^{\prime}\right| \geqslant k / 4$ and

$$
A_{i} \leqslant c_{14} k \quad \text { for } A_{i} \in S_{3}^{\prime} .
$$

We now proceed as in the proof of Theorem 2 (from (4.19) on) to derive

$$
\theta\left(\frac{m+(k-1) d}{k}\right)^{(l-2) / l} \leqslant c_{15} d .
$$

This implies (2.19).
In the proof of Theorem 1(b) we shall use the following lemma.
LEMMA 8. Let $\varepsilon>0$. Let $f: \mathbb{R}_{>1} \rightarrow \mathbb{R}_{>1}$ be an increasing function with $f(x) \leqslant \log x$ for $x>1$. Let d^{\prime} be a divisor of d satisfying

$$
d^{\prime} \geqslant \begin{cases}l^{-1}(\log k)^{3} \min \left((\mathrm{~d} k)^{2 / l}, \mathrm{~d} k^{-l+3}\right) & \text { if } l \geqslant 5 \tag{4.28}\\ l^{-1}(\log k)^{2} \min \left((\mathrm{~d} k)^{2 / l}, \mathrm{~d} k^{(-1 / 3)+\varepsilon}\right) & \text { if } l=3\end{cases}
$$

There exists an effectively computable number $C_{28}>0$ depending only on f and ε such that equation (1.1) with $k \geqslant C_{28}$ and

$$
\begin{equation*}
l^{\omega\left(d^{\prime}\right)}<(1-\varepsilon) \frac{k f(k)}{\log k} \tag{4.29}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\left|S_{1}\right| \geqslant k-\left(1-\frac{\varepsilon}{2}\right) \frac{k f(k)}{\log k} \tag{4.30}
\end{equation*}
$$

Proof. We may assume that $0<\varepsilon<1$ and k exceeds a sufficiently large effectively computable number depending only on f and ε. Suppose that (4.30) is
not valid. We denote by S_{7} the set of all $A_{i} \in S_{1}$ with $i \geqslant \varepsilon k f(k) /(4 \log k)$. Then

$$
\left|S_{7}\right|<k-\left(1-\frac{\varepsilon}{2}\right) \frac{k f(k)}{\log k} .
$$

Consequently, we can find at least $[(1-\varepsilon) k f(k) / \log k]+1$ distinct pairs (μ, v) with

$$
\begin{equation*}
k>v>\mu \geqslant \frac{\varepsilon k f(k)}{4 \log k}, A_{\mu}=A_{v} \tag{4.31}
\end{equation*}
$$

For such a pair (μ, v), by (4.1) and (4.31),

$$
\begin{equation*}
(\mu-v) d=A_{\mu}\left(X_{\mu}^{l}-X_{v}^{l}\right)=A_{\mu} \prod_{h=1}^{l}\left(X_{\mu}-\zeta^{h} X_{v}\right) . \tag{4.32}
\end{equation*}
$$

Since $\operatorname{gcd}\left(d, A_{\mu}\right)=1$, we see that $A_{\mu}<k$. Then, by (4.1), (4.5) and (4.2), we derive that $X_{\mu}>k$ and $X_{v}>k$. Furthermore, by $\operatorname{gcd}\left(d, A_{\mu}\right)=1$,

$$
\begin{equation*}
X_{\mu}^{l}-X_{v}^{l} \equiv 0(\bmod d), \quad \text { hence } \equiv 0\left(\bmod d^{\prime}\right) \tag{4.33}
\end{equation*}
$$

For any two such pairs $\left(\mu_{1}, v_{1}\right)$ and $\left(\mu_{2}, v_{2}\right)$, we say that $\left(X_{\mu_{1}}, X_{v_{1}}\right) \equiv\left(X_{\mu_{2}}, X_{v_{2}}\right)$ $\left(\bmod d^{\prime}\right)$ if

$$
X_{\mu_{1}} X_{v_{2}}-X_{\mu_{2}} X_{v_{1}} \equiv 0\left(\bmod d^{\prime}\right)
$$

We denote by $R\left(l, d^{\prime}\right)$ the number of residue classes $z\left(\bmod d^{\prime}\right)$ such that $z^{l} \equiv 1$ $\left(\bmod d^{\prime}\right)$. Observe that the solutions $\left(X_{\mu}, X_{\nu}\right)$ of (4.33) belong to at most $R\left(l, d^{\prime}\right)$ residue classes $\bmod d^{\prime}$ and $R\left(l, d^{\prime}\right) \leqslant l^{\omega\left(d^{\prime}\right)}$. See Evertse [6, pp. 290, 294].

Therefore, it suffices to show that

$$
\left(X_{\mu_{1}}, X_{v_{1}}\right) \equiv\left(X_{\mu_{2}}, X_{v_{2}}\right)\left(\bmod d^{\prime}\right)
$$

for any two distinct pairs (μ_{1}, v_{1}) and (μ_{2}, v_{2}) satisfying (4.31). Let (μ_{1}, v_{1}) and (μ_{2}, ν_{2}) be distinct pairs satisfying (4.31) and

$$
\begin{equation*}
\left(X_{\mu_{1}}, X_{v_{1}}\right) \equiv\left(X_{\mu_{2}}, X_{v_{2}}\right)\left(\bmod d^{\prime}\right) \tag{4.34}
\end{equation*}
$$

We put

$$
\begin{equation*}
\Delta_{1}=X_{\mu_{1}} X_{v_{2}}-X_{\mu_{2}} X_{v_{1}} \tag{4.35}
\end{equation*}
$$

We see from (4.2), (4.3), (4.31) and $X_{\mu}>k, X_{v}>k$ that $\Delta_{1} \neq 0$. Also observe that

$$
\begin{equation*}
A_{\mu_{1}} A_{v_{2}}=A_{\mu_{2}} A_{v_{1}} . \tag{4.36}
\end{equation*}
$$

We put

$$
\begin{equation*}
\Delta_{2}=\left(m+\mu_{1} d\right)\left(m+v_{2} d\right)-\left(m+\mu_{2} d\right)\left(m+v_{1} d\right) . \tag{4.37}
\end{equation*}
$$

Notice that $\Delta_{2} \neq 0$, since $\Delta_{1} \neq 0$. Further, there is no loss of generality in assuming that $X_{\mu_{1}} X_{v_{2}}>X_{\mu_{2}} X_{v_{1}}$. Now, by (4.37), (4.1) and (4.36),

$$
\left|\Delta_{2}\right| \geqslant\left(A_{\mu_{2}} A_{v_{1}}\right)^{1 / l}\left|\Delta_{1}\right| l\left(\left(A_{\mu_{2}} X_{\mu_{2}}^{l}\right)\left(A_{v_{1}} X_{v_{1}}^{l}\right)\right)^{(l-1) / l}
$$

which, together with (4.35), (4.34) and (4.31), gives

$$
\begin{equation*}
\left|\Delta_{2}\right| \geqslant d^{\prime} l\left(m+\frac{\varepsilon k f(k) d}{4 \log k}\right)^{2(l-1) / l} \geqslant \frac{\varepsilon^{2} d^{\prime} l}{16}\left(\frac{m+(k-1) d}{(\log k) / f(k)}\right)^{2(l-1) / l} \tag{4.38}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\left|\Delta_{2}\right| \leqslant 2 m k d+k^{2} d^{2}<2 k d(m+(k-1) d) . \tag{4.39}
\end{equation*}
$$

We combine (4.38) and (4.39) to obtain

$$
\begin{equation*}
((k-1) d)^{(l-2) / l}<(m+(k-1) d)^{(l-2) / l}<\frac{32}{\varepsilon^{2}} \frac{k d}{l d^{\prime}}\left(\frac{\log k}{f(k)}\right)^{2(l-1) / l} \tag{4.40}
\end{equation*}
$$

which, by (4.28) and (4.4), proves Lemma 8 for $l>3$. If $l=3$, then (4.40) and (4.28) imply that

$$
d^{\prime} \geqslant l^{-1}(\log k)^{2} \mathrm{~d} k^{-1 / 3+\varepsilon} .
$$

Hence, by (4.40) with $l=3$, we have

$$
\begin{equation*}
m+(k-1) d \leqslant \frac{1}{2} k^{4-3 \varepsilon} \tag{4.41}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
d \leqslant k^{3-3 \varepsilon} \tag{4.42}
\end{equation*}
$$

From now onward in the proof of Lemma 8, we assume that $l=3$. We denote by T the set of all μ with $k / 8 \leqslant \mu<k$ such that $X_{\mu}=1$ and we write T_{1} for the
set of all μ with $k / 8 \leqslant \mu<k$ such that $\mu \notin T$. Applying (4.4) and Lemma 5 as in the derivation of (4.14), we see that $|T| \leqslant 3 k / 5$ and

$$
\left|T_{1}\right| \geqslant \frac{k}{4}
$$

By (4.41), (4.2) and (4.1), we see that

$$
A_{\mu}<k^{1-3 \varepsilon} \quad \text { for } \mu \in T_{1} .
$$

Therefore, there exist pairwise distinct elements $\mu_{0}, \ldots, \mu_{Z} \in T_{1}$ with $Z=\left[k^{2 \varepsilon}\right]$ such that

$$
A_{\mu_{0}}=A_{\mu_{1}}=\cdots=A_{\mu_{\mathrm{z}}} .
$$

By (2.17) and (4.42), we may assume that

$$
Z>9^{\omega(d)} .
$$

We write

$$
\zeta=\mathrm{e}^{2 \pi i / l}, \quad K=\mathbb{Q}(\zeta)
$$

We denote by Σ_{K} the ring of algebraic integers of K and we write D_{K} for the discriminant of K. We know

$$
[K: \mathbb{Q}]=l-1, \quad\left|D_{K}\right|=l^{l-2} .
$$

For $v \in \Sigma_{K}$, we denote by [v] the principal ideal generated by v in Σ_{K}. Now we use the Box Principle to find μ_{i} and μ_{j} with $i \neq j$ and pairwise coprime ideals \mathscr{D}_{1}, $\mathscr{D}_{2}, \mathscr{D}_{3}$ satisfying

$$
\left[d_{3}\right]=\mathscr{D}_{1} \mathscr{D}_{2} \mathscr{D}_{3}
$$

where

$$
d_{3}=d / 3^{\operatorname{ord}_{3}(d)}
$$

and

$$
\begin{equation*}
\mathscr{D}_{h}\left|\left[X_{\mu_{0}}-\zeta^{h} X_{\mu_{i}}\right], \quad \mathscr{D}_{h}\right|\left[X_{\mu_{0}}-\zeta^{h} X_{\mu_{j}}\right] \quad \text { for } h=1,2,3 . \tag{4.43}
\end{equation*}
$$

We put

$$
\Delta_{1}^{\prime}=X_{\mu_{i}}-X_{\mu_{j}} \neq 0
$$

Then, by (4.33),

$$
d \mid\left(X_{\mu_{i}}^{3}-X_{\mu_{j}}^{3}\right), \quad \text { but } 9 \nmid\left(X_{\mu_{i}}^{3}-X_{\mu_{j}}^{3}\right) / \Delta_{1}^{\prime}
$$

so that

$$
3^{\operatorname{ord}_{3}(d)-1} \mid \Delta_{1}^{\prime} \quad \text { if } \operatorname{ord}_{3}(d)>0
$$

Also, by (4.43),

$$
d_{3} \mid \Delta_{1}^{\prime}
$$

Hence

$$
\begin{equation*}
d \leqslant 3\left|\Delta_{1}^{\prime}\right| . \tag{4.44}
\end{equation*}
$$

There is no loss of generality in assuming that $X_{\mu_{t}}>X_{\mu_{\mathrm{J}}}$. Since $A_{\mu_{\mathrm{t}}}=A_{\mu_{\mathrm{J}}}$, we see from (4.1) that

$$
\mathrm{d} k>3 A_{\mu_{j}}^{1 / 3} \Delta_{1}^{\prime}\left(A_{\mu_{j}} X_{\mu_{j}}^{3}\right)^{2 / 3}
$$

which, together with (4.44) and (4.4), implies that

$$
k>c_{17}(m+(k-1) d)^{2 / 3}>c_{17} k^{2} .
$$

This is a contradiction.
Proof of Theorem $1(b)$. We may assume that $0<\varepsilon<1$. We denote by C_{29}, C_{30}, \ldots, C_{38} effectively computable positive numbers depending only on ε. We may suppose that k exceeds a sufficiently large effectively computable number depending only on ε. Further we assume that

$$
\begin{equation*}
l^{\omega\left(d^{\prime}\right)}<(1-\varepsilon) \frac{k h(k)}{\log k} . \tag{4.45}
\end{equation*}
$$

Observe that (2.4) implies (4.28) by (2.7). Then by Lemma 8,

$$
\left|S_{1}\right| \geqslant k-\left(1-\frac{\varepsilon}{2}\right) \frac{k h(k)}{\log k}
$$

Now, the set S_{2} of Lemma 5 satisfies

$$
\left|S_{2}\right| \geqslant k-\left(1-\frac{\varepsilon}{3}\right) \frac{k h(k)}{\log k}=: t .
$$

By Lemma 6 with $\eta=\varepsilon / 13$ and $g=(1-\varepsilon / 3) h(k)$, there exists a subset S_{8} of S_{2} such that

$$
\begin{equation*}
\left|S_{8}\right| \geqslant \frac{\varepsilon k}{26} \tag{4.46}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{i} \leqslant 4 \mathrm{e}^{(1+\varepsilon / 13)(1-\varepsilon / 3) h(k)} k \leqslant k \mathrm{e}^{(1-\varepsilon / 4) h(k)} \quad \text { if } A_{i} \in S_{8} \tag{4.47}
\end{equation*}
$$

Thus, by (4.5) and (4.2),

$$
\begin{equation*}
X_{i}>k \quad \text { if } A_{i} \in S_{8} \tag{4.48}
\end{equation*}
$$

Now we derive from (4.1), (4.46) and (4.48) that

$$
\begin{equation*}
m+(k-1) d \geqslant C_{29} k^{l+1} . \tag{4.49}
\end{equation*}
$$

First assume $l \geqslant 5$. Denote by S_{9} the set of all $A_{i} \in S_{8}$ with $i \geqslant \varepsilon k / 104$ and $A_{i} \geqslant \varepsilon k / 104$. Then, we see from (4.46) that $\left|S_{9}\right| \geqslant \varepsilon k / 52$. Denote by S_{10} a maximal subset of S_{9} such that all products $A_{i} A_{j}$ with $A_{i}, A_{j} \in S_{10}$ are distinct. Then, by Lemma 7 and (4.47),

$$
\left|S_{10}\right| \leqslant \frac{2 k \mathrm{e}^{(1-\varepsilon / 4) h(k)}}{\log k}=\frac{2 k}{(\log k)^{\varepsilon / 4}} .
$$

We write S_{11} for the complement of S_{10} in S_{9}. Then

$$
\begin{equation*}
\left|S_{11}\right| \geqslant \frac{\varepsilon k}{53} . \tag{4.50}
\end{equation*}
$$

For every $A_{v} \in S_{11}$ there exist elements $A_{i_{v}}, A_{j_{v}}$ and $A_{\mu_{v}}$ in S_{10} satisfying

$$
\begin{equation*}
A_{i_{v}} A_{j_{v}}=A_{\mu_{v}} A_{v} \tag{4.51}
\end{equation*}
$$

by the definitions of S_{10} and S_{11}. By (4.1) and (4.51), we see that

$$
d^{\prime} \mid\left(X_{i_{v}} X_{j_{v}}\right)^{l}-\left(X_{\mu_{v}} X_{v}\right)^{l}
$$

By (4.3) and (4.48), we observe that $X_{i_{1}} X_{j_{v}} \neq X_{\mu_{v}} X_{v}$. Now, we proceed as in the proof of Lemma 8 to derive from (4.45) and (4.50) that we may assume that

$$
\begin{equation*}
\Delta_{3} \equiv 0\left(\bmod d^{\prime}\right) \tag{4.52}
\end{equation*}
$$

where

$$
\Delta_{3}=X_{i_{v_{1}}} X_{j_{v_{1}}} X_{\mu_{v_{2}}} X_{v_{2}}-X_{i_{v_{2}}} X_{j_{v_{2}}} X_{\mu_{v_{1}}} X_{v_{1}}
$$

for distinct integers v_{1}, v_{2} with $A_{v_{\delta}} \in S_{11}, A_{i_{v \delta}} \in S_{10}, A_{j_{v}} \in S_{10}$ and $A_{\mu_{v \delta}} \in S_{10}$ satisfying

$$
\begin{equation*}
A_{i_{v_{s}}} A_{j_{v_{\delta}}}=A_{\mu_{v}} A_{v_{\delta}} \quad \text { for } \delta=1,2 \tag{4.53}
\end{equation*}
$$

By (4.3) and (4.48), we see that $\Delta_{3} \neq 0$. Then there is no loss of generality in assuming that $\Delta_{3}>0$. By (4.53), we derive that

$$
\begin{equation*}
A_{i_{v_{1}}} A_{j_{v_{1}}} A_{\mu_{v_{2}}} A_{v_{2}}=A_{i_{v_{2}}} A_{j_{v_{2}}} A_{\mu_{v_{1}}} A_{v_{1}} \tag{4.54}
\end{equation*}
$$

We put

$$
\begin{align*}
\Delta_{4}= & \left(m+i_{v_{1}} d\right)\left(m+j_{v_{1}} d\right)\left(m+\mu_{v_{2}} d\right)\left(m+v_{2} d\right) \\
& -\left(m+i_{v_{2}} d\right)\left(m+j_{v_{2}} d\right)\left(m+\mu_{v_{1}} d\right)\left(m+v_{1} d\right) \tag{4.55}
\end{align*}
$$

By (4.1), (4.55), (4.54) and $\Delta_{3}>0$, we observe that

$$
\Delta_{4}>C_{30}\left(A_{i_{v_{2}}} A_{j_{v_{2}}} A_{\mu_{v_{1}}} A_{v_{1}}\right)^{1 / l} \Delta_{3} l(m+(k-1) d)^{4(l-1) / l}
$$

Now we apply (4.52) to derive that

$$
\begin{equation*}
\Delta_{4}>C_{31} k^{4 / l} d^{\prime} l(m+(k-1) d)^{4(l-1) / l} \tag{4.56}
\end{equation*}
$$

On the other hand, we see from (4.55) that

$$
\begin{equation*}
\Delta_{4}<4 k d(m+(k-1) d)^{3} \tag{4.57}
\end{equation*}
$$

We combine (4.56) and (4.57) to obtain

$$
d^{(l-4) / l}<2\left(\frac{m+(k-1) d}{k}\right)^{(l-4) / l}<C_{32} \frac{d}{l d^{\prime}}
$$

which, by $l \geqslant 5$, (2.4) and (4.49), is not possible if C_{8} if sufficiently large.

It remains to consider the case $l=3$. Recall that we have a subset S_{8} of S_{1} satisfying (4.46) - (4.48). Denote by S_{12} the set of all $A_{i} \in S_{8}$ such that $A_{i} \geqslant k /(\log k)^{1 / 8}$. Then

$$
\begin{equation*}
\left|S_{12}\right| \geqslant \frac{\varepsilon k}{26}-\frac{k}{(\log k)^{1 / 8}} \geqslant \frac{\varepsilon k}{27} . \tag{4.58}
\end{equation*}
$$

Denote by $b_{1}, b_{2}, \ldots, b_{s}$ all integers between $k /(\log k)^{1 / 8}$ and $k(\log \log k)^{1-\varepsilon / 4}$ such that every proper divisor of b_{i} is less than or equal to $k /(\log k)^{1 / 8}$. If $b_{i}>k /(\log k)^{1 / 16}$, then every prime divisor of b_{i} exceeds $(\log k)^{1 / 16}$. By Brun's sieve

$$
s \leqslant \frac{k}{(\log k)^{1 / 16}}+C_{33} \frac{k}{(\log \log k)^{\varepsilon / 4}}<\frac{k}{(\log \log k)^{\varepsilon / 5}} .
$$

By (4.47) every element of S_{12} is divisible by at least one b_{i}. Denote by S_{13} the subset of S_{12} consisting of A_{i} corresponding to b_{i} which appear in at most one element of S_{12}. Then

$$
\left|S_{13}\right| \leqslant s \leqslant k(\log \log k)^{-\varepsilon / 5} .
$$

Denote by S_{14} the complement of S_{13} in S_{12}. Then, by (4.58),

$$
\left|S_{14}\right| \geqslant \frac{\varepsilon k}{30}
$$

and

$$
\begin{equation*}
\operatorname{gcd}\left(A_{\mu}, A_{v}\right) \geqslant \frac{k}{(\log k)^{1 / 8}}, \mu \neq v, \quad A_{\mu}, A_{v} \in S_{14} \tag{4.59}
\end{equation*}
$$

is satisfied by at least $\varepsilon k / 60$ distinct pairs A_{μ}, A_{v}.
Let A_{μ}, A_{v} be a pair satisfying (4.59). We have, by (4.1), (4.47) and (4.59),

$$
L X_{\mu}^{3}-M X_{v}^{3}=N d
$$

where

$$
L=\frac{A_{\mu}}{\operatorname{gcd}\left(A_{\mu}, A_{v}\right)}, \quad M=\frac{A_{v}}{\operatorname{gcd}\left(A_{\mu}, A_{v}\right)}, \quad N=\frac{\mu-v}{\operatorname{gcd}\left(A_{\mu}, A_{v}\right)}
$$

and

$$
\max (L, M, N) \leqslant(\log k)^{1 / 4}
$$

By the Box Principle we find coprime positive integers L_{1}, M_{1}, N_{1} such that

$$
\begin{equation*}
\max \left(L_{1}, M_{1}, N_{1}\right) \leqslant(\log k)^{1 / 4} \tag{4.60}
\end{equation*}
$$

and

$$
L_{1} X_{\mu}^{3}-M_{1} X_{v}^{3}=N_{1} d=: N_{2} d^{\prime}
$$

is valid for at least $\varepsilon k /\left(60(\log k)^{3 / 4}\right)$ distinct pairs X_{μ}, X_{v}. By (2.4), (4.60) and (2.7), we have

$$
N_{2} \leqslant\left(d^{\prime}\right)^{1 / 5} .
$$

Hence we obtain, by applying Evertse [6] Corollary 1(ii),

$$
\frac{\varepsilon k}{60(\log k)^{3 / 4}} \leqslant 4 \cdot 3^{\omega\left(d^{\prime}\right)}+3
$$

which, by (4.45), is not possible if k is sufficiently large.

5. The case $\boldsymbol{b}=1$

If every $m+\mu d$ with $0 \leqslant \mu<k$ is an l-th perfect power, then Shorey and Tijdeman [17] showed that

$$
\log d \geqslant c_{18} k^{2}
$$

where $c_{18}>0$ is an effectively computable absolute constant. Here we consider the weaker condition $b=1$ and we prove:

THEOREM 4. Let $\varepsilon>0$ and $l \geqslant 7$. There exist effectively computable numbers C_{34} and $C_{35}>0$ depending only on ε such that equation (1.1) with $b=1, k \geqslant C_{34}$ and

$$
\begin{equation*}
(4 \omega(d)+2)^{\omega(d)}<(1-\varepsilon) k \frac{\log \log k}{\log k} \tag{5.1}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\log d_{1} \geqslant C_{35} k^{2} \frac{(\log \log k)^{4}}{(\log k)^{6}} \tag{5.2}
\end{equation*}
$$

The proof of Theorem 4 depends on the following result which is more general than we require.

LEMMA 9. Let $0<\phi \leqslant 1$. Assume that there exists a prime p satisfying $\operatorname{gcd}(p, d)=1, p \neq l$,

$$
\begin{equation*}
2 k^{1-\phi}\left(\frac{\log k}{\log \log k}\right)^{\phi} \leqslant p<2 k^{1-\phi}(\log k)^{\phi} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ord}_{p}(m(m+d) \cdots(m+(k-1) d)) \geqslant l^{\phi} . \tag{5.4}
\end{equation*}
$$

There exist effectively computable numbers C_{36}, C_{37} and $C_{38}>0$ depending only on ϕ such that equation (1.1) with $k \geqslant C_{36}$ and (2.10) implies that

$$
\begin{equation*}
l^{1+\phi} \leqslant C_{37}(\log \log k)^{-2}(\log k)^{1+2 \phi} k^{2-2 \phi}\left(\log \mathrm{~d}_{1}\right)\left(\log \log d_{1}\right) \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\log d_{1} \geqslant C_{38} k^{3 \phi-1} \frac{(\log \log k)^{3+\phi}}{(\log k)^{3+3 \phi}} \tag{5.6}
\end{equation*}
$$

First, we assume Lemma 9 and we proceed to derive Theorem 4. Suppose that equation (1.1) with $b=1$ and (5.1) is valid. Then, by Prime number theory, we see from (5.1) that there is a prime p satisfying $\operatorname{gcd}(p, d)=1, p \neq l$ and (5.3) with $\phi=1$ if $k \geqslant C_{34}$ with C_{34} sufficiently large. Furthermore, since $b=1$, inequality (5.4) with $\phi=1$ is valid. Also, by (2.8), we notice that (5.1) implies $l>4 \omega(d)+2 \geqslant 4 \omega\left(d_{1}\right)+2$. Finally, we apply Lemma 9 with $\phi=1$ to conclude (5.2). Therefore, it remains to prove Lemma 9.

Proof of Lemma 9. We denote by C_{39}, C_{40}, and C_{41} effectively computable positive numbers depending only on ϕ. We may assume that $k \geqslant C_{39}$ with C_{39} sufficiently large. Let μ_{0} with $0 \leqslant \mu_{0}<k$ satisfy

$$
\begin{equation*}
0<\operatorname{ord}_{p}\left(m+\mu_{0} d\right)=\max _{0 \leqslant i<k} \operatorname{ord}_{p}(m+i d) \tag{5.7}
\end{equation*}
$$

By Lemma 5, we can find μ_{1} and μ_{2} with $0 \leqslant \mu_{1}<k, 0 \leqslant \mu_{2}<k$ such that μ_{0}, μ_{1}, μ_{2} are pairwise distinct and

$$
\begin{equation*}
A_{\mu_{i}} \leqslant k^{2}, \quad i=1,2 \tag{5.8}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left(\mu_{1}-\mu_{2}\right)\left(m+\mu_{0} d\right)=-\left(\mu_{2}-\mu_{0}\right)\left(m+\mu_{1} d\right)-\left(\mu_{0}-\mu_{1}\right)\left(m+\mu_{2} d\right) \tag{5.9}
\end{equation*}
$$

By (5.9) and (4.1),

$$
\begin{equation*}
\operatorname{ord}_{p}\left(m+\mu_{0} d\right) \leqslant \operatorname{ord}_{p}\left(B_{1} X_{\mu_{1}}^{l}-B_{2} X_{\mu_{2}}^{l}\right) \tag{5.10}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{1}=-\left(\mu_{2}-\mu_{0}\right) A_{\mu_{1}}, \quad B_{2}=\left(\mu_{0}-\mu_{1}\right) A_{\mu_{2}} \tag{5.11}
\end{equation*}
$$

Further, we notice from (5.11) and (5.8) that

$$
\begin{equation*}
\left|B_{i}\right|<k^{3}, \operatorname{ord}_{p}\left(B_{i}\right) \leqslant 6 \frac{\log k}{\log p}, \quad i=1,2 . \tag{5.12}
\end{equation*}
$$

Consequently, by (5.7), (5.10), (5.12) and (4.2),

$$
\begin{equation*}
0<\operatorname{ord}_{p}\left(m+\mu_{0} d\right) \leqslant \operatorname{ord}_{p}\left(\frac{B_{1}}{B_{2}}\left(\frac{X_{\mu_{1}}}{X_{\mu_{2}}}\right)^{l}-1\right)+\frac{6 \log k}{\log p} \tag{5.13}
\end{equation*}
$$

Now, we apply a result of Yu [22] on p-adic linear forms in logarithms to derive from (5.12), (5.3) and (4.1) that

$$
\begin{align*}
\operatorname{ord}_{p}\left(\frac{B_{1}}{B_{2}}\left(\frac{X_{\mu_{1}}}{X_{\mu_{2}}}\right)^{l}-1\right) & \leqslant C_{40} \frac{(\log k)^{1+2 \phi} k^{2-2 \phi}(\log l) \log (m+(k-1) d)}{l(\log \log k)^{2}} \\
& \leqslant C_{41} \frac{(\log k)^{1+2 \phi} k^{2-2 \phi}(\log l)\left(\log d_{1}\right)}{l(\log \log k)^{2}} \tag{5.14}
\end{align*}
$$

by (2.19) with $\theta \geqslant d_{2}$ and (2.7). Further, we observe that

$$
\begin{aligned}
\operatorname{ord}_{p}(m(m+d) \cdots(m+(k-1) d)) & \leqslant \operatorname{ord}_{p}\left(m+\mu_{0} d\right)+\left[\frac{k}{p}\right]+\left[\frac{k}{p^{2}}\right]+\cdots \\
& \leqslant \operatorname{ord}_{p}\left(m+\mu_{0} d\right)+\frac{k}{p-1}
\end{aligned}
$$

which, together with (5.4), implies that

$$
\begin{equation*}
l^{\phi} \leqslant \operatorname{ord}_{p}\left(m+\mu_{0} d\right)+\frac{k}{p-1} \tag{5.15}
\end{equation*}
$$

Now, we apply (5.3) and (2.11) to derive that

$$
\begin{equation*}
\frac{k}{p-1}+6 \frac{\log k}{\log p} \leqslant \frac{2}{3} k^{\phi}\left(\frac{\log \log k}{\log k}\right)^{\phi} \leqslant \frac{3}{4} l^{\phi} . \tag{5.16}
\end{equation*}
$$

Therefore, by (5.15), (5.13), (5.16) and (5.14), we have

$$
l^{1+\phi} \leqslant 4 C_{41} \frac{(\log k)^{1+2 \phi} k^{2-2 \phi}}{(\log \log k)^{2}}(\log l)\left(\log d_{1}\right)
$$

which, together with (2.12), implies (5.5). Finally, we combine (2.11) and (5.5) to obtain (5.6).

REMARKS. The proof of Theorem 1 for $l \neq 3$ is entirely elementary. In the case $l=3$, we use a result of Evertse. By using an elementary argument, we can prove, instead of (2.9) with $l=3$, that there is an effectively computable absolute constant $c_{18}>0$ such that

```
3 (d)}>\mp@subsup{c}{18}{}\mp@subsup{k}{}{1/6}
```

(ii) The arguments of the proof of Theorem 1 are valid for the more general equation

$$
\begin{equation*}
\left(m+d_{1} d\right) \cdots\left(m+d_{t} d\right)=b y^{l} \tag{5.17}
\end{equation*}
$$

where d_{1}, \ldots, d_{t} are distinct integers between 1 and k. In particular, we have: for every $\varepsilon>0$ there exist effectively computable numbers C_{42} and C_{43} depending only on ε such that equation (5.17) with $k \geqslant C_{42}$ and

$$
t \geqslant k-C_{43} k \frac{H(k)}{\log k}
$$

implies (2.7), (2.8) and (2.9), where $H(k)=h(k)$ if $l \geqslant 3$ and $H(k)=1$ if $l=2$. Much better results have been proved by Shorey [12], [13] for equation (5.17) with $d=1$ via the theory of linear forms in logarithms and irrationality measures of Baker proved by the hypergeometric method.
(iii) By applying an idea of [12, Lemma 6], it is possible to give a proof of Theorem 4 where we require only the estimates on p-adic linear forms in logarithms with an independence (Kummer) condition. Thus, the results of [21] are sufficient for the proof of Theorem 4.

References

1. P. Erdös, Note on the product of consecutive integers (I) and (II), J. London Math. Soc. 14 (1939), 194-198 and 245-249.
2. P. Erdös, On a diophantine equation, J. London Math. Soc. 26 (1951), 176-178.
3. P. Erdös, On the product of consecutive integers III, Indag. Math. 17 (1955), 85-90.
4. P. Erdös and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301.
5. P. Erdös and J. Turk, Products of integers in short intervals, Acta Arith. 44 (1984), 147-174.
6. J.-H. Evertse, On the equation $a x^{n}-b y^{n}=c$, Compositio Math. 47 (1982), 289-315.
7. D. Hanson, On a theorem of Sylvester and Schur, Canad. Math. Bull. 16 (1973), 195-199.
8. H. Iwaniec and J. Pintz, Primes in short intervals, Monatsh. Math. 98 (1984), 115-143.
9. M. Langevin, Plus grand facteur premier d'entiers en progression arithmétique, Sém. Delange-Pisot-Poitou, 18e année, 1976-77, no. 3, 7 pp.
10. R. Marszalek, On the product of consecutive elements of an arithmetic progression, Monatsh. Math. 100 (1985), 215-222.
11. O. Rigge, Über ein diophantisches Problem, 9th Congress Math. Scand., Helsingfors, 1938, Mercator, Helsingfors, 1939, 155-160.
12. T. N. Shorey, Perfect powers in values of certain polynomials at integer points, Math. Proc. Camb. Phil. Soc. 99 (1986), 195-207.
13. T. N. Shorey, Perfect powers in products of integers from a block of consecutive integers, Acta Arith. 49 (1987), 71-79.
14. T. N. Shorey, Some exponential diophantine equations, New Advances in Transcendence Theory, ed. by A. Baker, Cambridge University Press, 1988, pp. 352-365.
15. T. N. Shorey, Some exponential diophantine equations II, Number Theory and Related Topics, Tata Institute of Fundamental Research, Bombay, 1988, pp. 217-229.
16. T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression, A Tribute to Paul Erdös, Cambridge Univ. Press, to appear.
17. T. N. Shorey and R. Tijdeman, Perfect powers in arithmetical progression, J. Madras Univ., Section B, 51 (1988), 173-180.
18. J. J. Sylvester, On arithmetic series, Messenger Math. 21 (1892), 1-19 and 87-120.
19. R. Tijdeman, Applications of the Gel'fond-Baker method to rational number theory, Coll. Math. Jańos Bolyai, 13. Topics in Number Theory (Debrecen, 1974), North-Holland, Amsterdam, 1976, pp. 399-416.
20. R. Tijdeman, Diophantine equation and diophantine approximations, Number Theory and Applications, Kluwer Acad. Publ., Dordrecht, 1989, pp. 215-243.
21. Kunrui Yu, Linear forms in the p-adic logarithms, Acta. Arith. 53 (1989), 107-186.
22. Kunrui Yu, Linear forms in p-adic logarithms II, Compositio Math. 74 (1990), 15-113.

[^0]: ${ }^{1}$ Research supported in part by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.) and by Grant \# D.M.S.-8610730(1).

