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Abstract. The paper gives some connections between the second generalized Bernoulli numbers of
even quadratic Dirichlet characters and class numbers of appropriate imaginary quadratic fields.
There are applied formulas of an old paper of M. Lerch of 1905.

0. Introduction

Let K2 be the functor of Milnor. The Birch-Tate conjecture for real quadratic
fields F with the discriminant d takes the form:

Here Op and (d ·) denote the ring of integers and the character (the Kronecker
symbol) of F respectively. B2,(d ·) denotes the second Bernoulli number belonging
to the character (d ·) (for information on the numbers Bk,~, see [6]).

B. Mazur and A. Wiles [4] have proved the conjecture up to 2-torsion.
Let h(d) denote the class number of a quadratic field with the discriminant d.

It is known that for d  0:

Hère B1,(d ·) denotes the first Bernoulli number belonging to (d). Denote

k2(d) = B2,(d ·). Let D and A, D, A &#x3E; 0, D = 1(mod 4), LB = 3(mod 4) be natural
numbers and let D and - 0394 be the discriminants of quadratic fields. Then

are all the discriminants of quadratic fields except

All the results of this paper are consequences of two following theorems:
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THEOREM 1. Let for k = 0, 1, 2 and 3

Then for D =1= 5:

THEOREM 2. Let for k = 0, 1, 2 and 3

Then for LB =1= 3:
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We prove these theorems using the methods of an old paper of Lerch [3]. The
theorems give us some congruences for k2(d), d &#x3E; 0 and h(d’), d’  0 modulo

powers of 2, where d, d’ belong to

We obtain from these congruences some relations between the exact divisibility
of k2(d) and h(d’) by some powers of 2 (4, 8, 16, 32 and 64). In view of these results
one may expect some corresponding conjectures for IK20FI (where F is a real
quadratic field with the discriminant d) are true. On the other hand our

Corollary 2(iv) to Theorem 1 proves a conjecture about values of zeta-functions
implied by the Birch-Tate conjecture made by K. Kramer and A. Candiotti in
[2].

Similar problems were dealt with in [5] and [1]. The results in the present
paper are some further generalizations of those ones.

1 would like to thank A. Schinzel for pointing out the paper [3] to me and to J.
Browkin for his advice.

1. Notation

Let d be the discriminant of a quadratic field. It is well known that for d &#x3E; 0

and for d  0

Here w is the number of the roots of unity in the quadratic field with the
discriminant d, and L(s, d) = L(s, (d ·)), where

for any Dirichlet character x (for details, see [6]).
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Let [x] denote the integral part of x. Let

It is well known that

where the summation is taken over all odd natural numbers (see [3]).
Let T(d) denote the Gaussian sum belonging to (d ·). It is well known that

(see [6]).
Hence and from (1.3) we easily get that the following formulas hold for natural

m prime to d:

where

(for details, see [3]). Let R(x, d) denote for fixed m the left hand side of (1.4).
We are also going to use the following formulas:

(see the exercise 4.2(a), [6]), and

for d ~ 5, 8. (1.6) follows from (1.4) (for x = 0 and m = 1) and (1.5) (see [3]).
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2. Formulas for R(x, d)

Let d be the discriminant of a quadratic field and let m be a fixed natural number
prime to d. We are going to define a partition of the interval [0, Idl) into disjoint
parts:

(Ik ~ Ik, = ~ for any k, k’ ~ K, k ~ k’).
These intervals Ik will depend on x.
Let in the case x = 0:

Put in the case x = i:

and

Set in the case x = 1 8:

Denote

Note that for l E Ik
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Hence we get

Moreover, for 1 ~ l ~ |d| - 1 we have for x = 0:

and for x = 4:

In the case x = 1 8 the situation is more complicated. Denote in this case:

and for 1 ~ k ~ 2m - 1

and

Then

Now, we see that for 1 ~ l ~ |d| - 1 in the case x = i:

Let in the case x = i:
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and

Then

Therefore we obtain in the case x = 0, d &#x3E; 0:

in the case x = 1 4, d  0:

in the case x = 1, d &#x3E; 0:

and in the case x = -L, d  0:

Hence and from (2.1) we get in the case x = 0, d &#x3E; 0:
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because

On the other hand from (1.6) we obtain for d &#x3E; 8

Therefore in the case x = 0, d &#x3E; 8 we get:

Next, in the case x = -1 d  0:

where
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and

We have used this notation because

On the other hand we have

because

We have used the well known formula

Therefore in the case x = 1 4, d  - 4:

Now, we consider the case x = 1 8. We have from (2.1)
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where

and

Hence in the case x = 1 8, d &#x3E; 0:

where



257

because

and

Next

Therefore in the case x = -1 d &#x3E; 0 we get:

Now, in the case x = -1, d  0:
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where

and

We have used this notation because

Next

because

Therefore in the case x = 1 8, d  0 we get:

3. Formulas for U(x, d )

Let d be the discriminant of a quadratic field and let m be a fixed natural number

prime to d. We have from (1.1) in the cases x = 0, d &#x3E; 0, x = 1 4, d  0, and x = 1 8,
d &#x3E; 0
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where

d* = d in the case x = 0, d &#x3E; 0, and in the remaining considered cases d* is the
discriminant (of a real quadratic field) defined by the following equalities:

We have defined d* as above because of

Finally, we obtain from (1.4) and the above formula for U(x, d)

4. Proof of Theorem 1

Let D - 1(mod 4), D &#x3E; 5 be the discriminant of a quadratic field. We shall use
the formula (3.4) for x = 0 and d = D. We get from (3.4) and (2.2) for natural m
prime to D:
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where

because

and

Here Tm = 0.
Now, to prove the part (i) of the theorem it suffices to put m = 2 in the above

formula for k2(D). Then

We have used the following formula:

To prove (ii) it is sufficient to put m = 4 in the formula for k2(D). Then

because of (4.1) (for T2) and of
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The last two formulas follow immediately from the formula

(here we must assume x + (1/D) ~ Z for 1 ~ l ~ D - 1, see [3]) for x = 1 8 and 3 8
because of (1.2), (3.1) and (3.3).
To prove the parts (iii) and (iv) of Theorem 1 we shall use the formula (3.4) for

x = 1 8 and d = D. We get from (3.4) and (2.5) for natural m prime to D:

Now, to prove (iii) it suffices to put m = 1 in the above formula. Then

Therefore by (4.2) and (4.3) (iii) follows. To prove (iv) it is sufficient to apply (i),
(ii), (iii) and (1.6). D

5. Proof of Theorem 2

Let LB = 3(mod 4), A &#x3E; 3 and let - 0394 be the discriminant of a quadratic field. We
shall use the formula (3.4) for x = 4 and d = - A. From (3.4) and (2.4) for natural
m prime to A we get:

where
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and

In fact, putting

we get

Now, to prove the part (i) of the theorem it is sufficient to put m 
= 1 in the

formula for k2(40). Then

Indeed, for 0394 ~ 3 we have the following formula:

(here we must assume x + (l/A) ~ Z for 1 ~ l ~ A - 1, see [3]). Hence for x = 1 4
we get the formula for T1.
To prove (ii) it suffices to put m = 2 in the formula for k2(40394). Then
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Indeed, the last equality follows immediately from (5.1) for x = land i
respectively. Namely from (1.2) and (3.2) we get:

To prove (iii) and (iv) we shall use the formula (3.4) for x = 1 8 and d = -0394.
From (3.4) and (2.6) for LB =1= 7 and for natural m prime to 0 we get:

To prove (iii) it is sufficient to put m = 1 in the above formula. Then

Therefore by (5.2), (5.3) and (2.3) (iii) follows. To prove (iv) it suffices to apply the
parts (i), (ii) and (iii) of this theorem. D

6. Corollaries to Theorem 1

Let D - 1(mod 4), D &#x3E; 5 be the discriminant of a quadratic field.

COROLLARY 1. Let 9 denote Euler’s totient function.

(i) k2(D) - 2h( - 4D) + 2~(D) + e (mod 32),

where e = 0 unless D = p ~ - 3(mod 8) a prime or D = pq, where

p == q =1= 1(mod 8) or p - q + 4 - 3(mod 8), p,q-primes. I n these cases e = 16
f p ~ q --- - 3(mod 8), 03B5 = -8 if p ~ q ~ -1(mod 8) and e = 8 otherwise.
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where a = 1 if p ~ - 3 (mod 16) and a = 0 otherwise, and 03B2 = - 1, - 3, resp. 5 if
p ~ 1 (mod 8), p ~ 5 (mod 16), resp. p m - 3 (mod 16),

where a = 0 if p == 1 (mod 16) and a = 1 otherwise, and fi = -1, - 3, resp. 5 if
p - 1 (mod 8), p ~ -3 (mod 16), resp. p --- 5 (mod 16).

Proof. For (i), note that by the theorem on genera and (4.1) 4| h( - 4D) unless
D = p ~ -3 (mod 8) a prime, in which case 2 ~ h(-4D). Therefore always

For a positive number x and a positive integer n let A(x, n) be the number of
positive integers ~ x that are prime to n. We have

To prove (i) it suffices to use (i) of Theorem 1 and Nagell’s formulas (2), (3) [5].
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Since for D == 1 (mod 4)

the part (iii) of the corollary follows. The part (iv) is a consequence of (iv) of
Theorem 1 in view of

Indeed, from (2.3) (see the formulas for h( - 4D) and h( - 8D) given in [5]) we get

The first part of (v) is a particular case of (i) of the corollary. Since

and

the remaining cases of (v) follow from (6.1) and from the divisibility

COROLLARY 2.

(i) 4 Il k2(D) ~ 2 h(- 4D) ~ 2 il h( - 8D) ~ 4 Il k2(8D) ~ D = p 3(mod 8) a
prime,

(ii) 8 Il k2(D) ~ 4 h(- 4D),
8 Il k2(8D) ~ 4 h(- 8D),
(for (i) and (ii) see also [5]),

(iii) 16 ~ k2(D) ~ (8 ~ h( - 4D) and 16| qJ(D) + e/2) or (16 h( -4D) and
8 ~ (p(D) + e/2) ~ (8 Il h( - 4D) and 8 h(- 8D)) or (16| h(- 4D) and
4 h(- 8D)), where e is defined in Corollary 1(i), 
16 ~ k2(8D) ~ (8 Il h( - 8D) and 8 1 h(- 4D» or (16| h( ’ 8D) and 4 ~ h(-4D)),
32 | k2(D), k2(8D) otherwise,
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(iv) If D = p ~ 1 (mod 8) a prime then
16 ~k2(D) ~ (8 ~ h(-4D) and p ~ 1(mod 16)) or (16Ih(-4D) and p ~

9(mod 16)),
32 ~ k2(D) (8 h( - 4D) and (h( - 4D)/8) + (h( - 8D)/4) ~
2(mod 4)) (8 ~ h(-4D) and 4 ~ h( - 8D) and
(h(-4D)/8) ~ (h(-8D)/4) (mod 4)) or (16 ~ h(-4D) and
16 | h( - 8D)) or (32 | h( - 4D) and 8 Il h(- 8D)),
64 | k2(D) ~ (8 | h( - 4D) and (h( - 4D)/8) + (h( - 8D)j4) =
0(mod 4)).

Proof. To prove (i), (ii) of the corollary it is sufficient to use the congruence (i)
of Corollary 1 modulo 16 i.e.

k2(D) - 2h( - 4D) (mod 16),

and the congruence (iii), and (6.2). To prove (iii) of Corollary 2, suppose
8 | h( - 4D). Then, it suffices to apply (i) of Corollary 1. The second part of (iii) for
k2(D) is an immediate consequence of (ii). The exact divisibility of k2(8D) by 16
follows from (iii) of Corollary 1. (iv) follows from (v) of that corollary. 0

REMARK. J. Browkin has proved (unpublished) the first proposition of (iv) of
Corollary 2 for D = p - 1(mod 8) a prime. He has used the formula (i) of
Theorem 1 for D = p - 1(mod 8) and the first congruence of (v) of Corollary 1
that he has got with the methods from [5].

7. Corollaries to Theorem 2

Let LB = 3(mod 4), 0 &#x3E; 3 and let - 0394 be the discriminant of a quadratic field.

COROLLARY 1.

where e = 0 unless 0394 = p --- 3(mod 4) a prime, or A = pq, where

p = q + 2 ~ -1(mod 8), p, q-primes, or A = pqr, where p ~ q ~ r ~ -1,
3(mod 8), or p - q ~ -1, resp. 3 (mod 8) and r - 3, resp. -1(mod 8), p, q, r-
primes. I n these cases e = 4 if A = p - -1 (mod 8), e = - 4 if
A = p --- 3(mod 8) and 8=16 otherwise.
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where a = 1 if p - 7 (mod 16) and a = 0 otherwise, and fi = -1, 3, resp. 11 if
p =- - 1(mod 8), p ~ 3 (mod 16), resp. p ~ 11 (mod 16).

Proof. For (i), we have

so + s 1 = A(A/4, A) - A(A/8, A) (mod 2).

Now it suffices to use the part (i) of Theorem 2 and Nagell’s formulas (2), (3) [5].
The part (ii) of the corollary is a consequence of (ii) of Theorem 2. Indeed

unless 2 f h( - A), A == 3(mod 8). Hence (ii) follows. (iii) is an immediate corollary
from the part (iii) of Theorem 2 by
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(iv) is a consequence of (iv) of Theorem 2 in view of

41 h( - 8A) for 0 ~ -1 (mod 8), (7.2)

and

4 | 2h(- A) ± h( - 8A) for 0 - 3 (mod 8). (7.3)

In fact, by the theorem on genera (7.3) holds unless 0 = p ~ 3 (mod 8) a prime.
In this case 2  h(-0394) and 2 /ï(-8A) so (7.3) is also true.
The first part of (v) is a particular case of (i) of the corollary. Since so ± S3 is

even except p ~ 7(mod 16) the remaining cases of (v) follow from (7.1), (7.2) and
(7.3). D

COROLLARY 2.

(i) If 0394 ~ -1(mod 8) then

16|k2(40394).

Moreover in this case:

16 ~ k2(40) p g II ~(0394) + 03B5 2 E p 4 II h( - 80394),

32 | k2(40) ~ 16 | ~(0394) + 03B5 2 ~ 8 I h( - 80394),

where B is defined in the part (i) of Corollary 1,

16 ~ k2(80394) ~ 8 ~ h(-80394),

32 | k2(80394) ~ 16 | h(-80394).

(ii) If 0 = p ~ -1(mod 8) a prime then:

16 ~ k2(40394) ~ p ~ 7(mod 16),
32 ~ k2(40394) ~ p ~ -1(mod 16) and 8 ~ h(-80394),
64 | k2(40394) ~ p = -l(mod 16) and 161 | h(-80394),
32 ~ k2(80394) ~ (p ~ 7(mod 16) and 32 | h(-80394)) or (p=-l(modl6) and

16 ~ (-80394)),
64 | k2(80394) ~ (p ~ 7(mod 16) and 16 ~ h(-80394)) or (p ~ -1(mod 16) and

321 | h(-80394)).
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(iii) If A =- 3(mod 8) then:
4 Il k2(40394) ~ 2 1 h(-0394) ~ 2 Il h( - 8A) ~ 4 k2(8LB) ~ A = p = 3(mod 8)
a prime,
8 Il k2(40394) ~ 2 ~ h( - 0394),

8 ~ k2(80394) ~ 4 ~ h( - 8A),

where e is defined in the part (i) of Corollary 1,

16 Il | k2(80394) ~ (16 h( - 8A) and 2 ~ h( - LB)) or (8 Il h( - 8A) and 4 | h(- A»,
32 | k2(80394) ~ (16 | h(- 8à) and 4 h(- A» or (8 Il h( - 8à) and 2 ~ h( - A».

Proof. If 0394 ~ -1(mod 8) then we get from (i) of Corollary 1

k2(4A) =- 2~(0394) + 03B5 (mod 32).

Hence and from (ii), (iii) of Corollary 1 the part (i) of Corollary 2 follows. The
first equivalence of (ii) follows from the first one of (i). The remaining ones are
consequences of the last two congruences of the part (v) of Corollary 1. If
A == 3(mod 8) then we get from (i) of Corollary 1

Hence and from (ii), (iii) of Corollary 1 in the case LB = 3(mod 8) the part (iii) of
Corollary 2 follows.
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