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0. Introduction

In a recent paper [PS], compact complex manifolds containing C" were con-
sidered under the special aspect of existence of meromorphic functions. This
existence was reduced to a certain conjecture relating formal and analytic
cohomology along hypersurfaces. One of the purposes of this paper is to study
this relation further (and for instance it will turn out that the conjecture
mentioned above needs additional assumptions).

Let X be a complex space, Y c X a closed complex subspace and W an
(9x-module. Then there is a canonical homomorphism

called the comparison map for F (in degree k), where F |Y is the topological
restriction and ,  are the formal completions of X and W along Y. In general,
rk(F) is neither injective nor surjective, but under certain curvature conditions
on the neighbourhood structure of Y in X, some results of this kind are known
(see Section 2 and [Ko 1] (3.4)). This connection was already used in the book
[Ha 2] of R. Hartshorne (p. 94 and p. 225) and recently by U. Karras in [Ka].
The purpose of this paper is on one hand to prove some comparison theorems

between formal and convergent cohomology resp. local and moderate local
cohomology, and to formulate a certain conjecture. On the other hand, there
are interesting examples in the literature, concerning special kinds of neigh-
bourhood structure of Y in X, which give immediately counterexamples to some
natural questions. For instance if n = dim X, then r - is in general not
injective for a locally free sheaf 3F on X, even if Y has a fundamental system of
strictly pseudoconcave neighbourhoods in X.
We discuss especially a class of examples, due to A. Ogus ([Og] (4.17)), which
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is also connected to a problem of Hartshorne ([Ha 2] p. 235) and the formal
principle for holomorphic embeddings. In all examples X is a compact surface
and Y a smooth curve with Y’ = 0.
Then we give a classification of all those compact surfaces X containing a

curve C with e2 = 0 such that XBC is Stein. More specifically, it is shown in
Section 5 that X is either projective or a Hopf surface of algebraic dimension 0.
And if X is projective and minimal, it has to be a certain distinguished Pi-
bundle over an elliptic curve (i.e. a ruled surface).

Results of this kind are applied in the last section to prove that any compact
manifold X containing an irreducible divisor Y such that X) Y ri C3 biholo-
morphically is Moigezon (hence projective) if it has at least one non-constant
meromorphic function.

1. Local cohomology and duality

Let Y C X be complex spaces as in the introduction and 3fl % two Wx-modules.
Then there are two notions of local cohomology groups, or more generally local
Ext-groups

Here the limit is taken over all coherent ideal sheaves f c (9x with V(Y) = ) |Y|.
Obviously, both groups depend only on the reduced structure of Y. The second
group in (1.1) is called the Ext-group of 5’ and e with moderate (or "algebraic")
support along Y. In the special case F = (9x, we also write

By sheafification, we obtain (9x-modules

which are supported on Y and spectral sequences
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and for ff flat:

Moreover, there is a canonical map

for each k which is in general neither injective nor surjective. If we put U := XBY
and set

(Ext with moderate growth along Y), we get the following long exact cohomology
sequences

where we assume in addition F to be coherent in (1.4.3). Here the subscript "c"
denotes "compact support" and X Y is the ringed space (Y, OX|Y) . For the proof
of (1.4.3) resp. (1.4.1), we can use for instance distinguished triangles in D+(X)
(cp. [Bo])

where i : Y ~ X and j : U ~ X are the canonical embeddings, j! is the proper
direct image functor and i’(_):=0Y(X,_)|Y. Note that Extkc(X|Y; F, G) ~
Extkc(X; F, i*i-1 G), since F is coherent.

Let W be an open neighbourhood of Y in X. Then the restriction mappings

are bijective for all k (excision property).
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From now on we shall always assume that,97 and W are coherent (9x-modules.
Then the space ExtkY(X; F, G) resp. Extk[Y](X; F, G) carries a natural QFN-
structure resp. a LQFN-structure (QFN = "quotient-Fréchet-nuclear", L =

"limit" ). Via duality it is possible to relate moderate local cohomology to formal
cohomology and usual local cohomology to convergent cohomology (see also
[Ha 2] p. 95, p. 225 and [Ka] Section 3). We are going to make this precise in
a more general setting.

Let Kx be the dualizing complex of X and assume 57 to be of finite Tor-
dimension. Then there is a canonical pairing

Observe that we have

for Je in D+(X) and O(W):= {A c W closed, A Cc X} for W c X open.
Especially, we get a morphism

which factorizes over the topological dual space ExtkY(X; F, G)’.
Moreover, each Extvc(X|Y; G, F ~LOx KX) has a natural QDFN-structure

("quotient-dual-Fréchet-nuclear"), which will be specified in a moment, and
03A6k(F, G) is continuous. We have

(1.7) DUALITY THEOREM. For F, G ~ Coh (X) and IF of finite Tor-

dimension, the pairing (1.5) gives a topological perfect duality between the associated
separated topological vector spaces. Moreover, ExtkY(X; F, G) is separated, iff
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Proof. First we consider the case F = (9x and use the following fact

for an open Stein subset W Cc X. We fix a countable open Stein covering
W = (Ur)reR of X which is a basis for the topology. If S is the pre-cosheaf
xt0c(X; , KX) on X and (U):={Ur: Ur c U, r ~ R}, we get a short exact
sequence of Cech-cocomplexes of DFN-spaces (see also [Bn] Chap. VII)

where the left hand side is by definition the cokernel of the third map. This
sequence splits canonically in each degree. Taking the topological dual, we obtain
the following short exact sequence of complexes of FN-spaces from (1.7.1)

If we show that we can identify

we are done by using the lemmata in section 1 of [R-R1]. Replacing G by its
Godement resolution W~(G), we see immediately that C~(uY, G) is quasi-
isomorphic to 0393Y(X, W~(G)).
The proof of (1.7.5) is somewhat more complicated. We begin by recalling a few
standard notions. For an abelian sheaf on X and an open embedding a : W ~ X,
we define

where a, is the proper direct image functor (or the trivial extension here) and set

With the obvious notations, there is the following (augmented) exact sequence of
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Cech-cocomplexes

Here i : Y ~ X and j : U - X are the inclusions. If J( is flabby then the vertical
arrows are all quasi-isomorphisms. For the second and the third one, this follows
from [Bn] Chap VII (3.9).

We fix an injective resolution KX ~ Y° of KX in D+(X) and put

Then each vltv is flabby. Especially

is a quasi-isomorphism. Note that both sides are complexes of c-soft sheaves and
i-1 v, i*i-1 v are flabby. Since C.(O/t, ~c) ~ 0393c(X, ~) and C. (u(U), ~c) -
rc(U, vU.) are quasi-isomorphisms, we get by (1.7.6) that also

is a quasi-isomorphism. It suffices therefore to prove

but this follows from

This shows the case IF = (9x. In the general situation, we first observe that the
above argument can be immediately generalized to G ~ Dbcoh(X), using for
instance the simplicial technique of [Ba] p. 115.
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Moreover, we have (topological) isomorphisms

c.f. [Ba] p. 118,.... So the general case can be deduced from the special one by
applying a truncation procedure, see loc. cit. 0

We obtain now the following commutative diagram with exact lines (F, G ~
Coh(X) with F of finite Tor-dimension)

where the vertical arrows are induced by the duality pairings on U and X. From

(1.7) we get especially

(1.9) REMARK. If ExtkY(X; F, G) is finite dimensional, then 03A6k(F, G) is surjec-
tive and 03A6k-1 (F, G) is injective.

Next, we shall prove a "formal" version of (1.7).

(1.10) THEOREM. Let Y be compact with ideal sheaf  and := F/Fm+1 F
for m E N. We assume that F, G E Coh(X) and 97, Fm are of finite Tor-dimension
for all m. Then there is a natural isomorphism

such that the diagram

commutes, where the left vertical arrow is "completion along Y".
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Proof. We consider first the pairing between finite dimensional C-vector
spaces

which is perfect. This follows for instance from [Ba] Theorem 5.3. Since now

the construction of 03A8k(F, G) is established. By perfectness and functoriality of the
usual duality pairing, 03A8k(F, G) is bijective and the diagram in (1.10) commutes.

D

For the rest of this section we assume F = (9x and W locally free. Furthermore,
one of the following conditions should be satisfied
(i) X is smooth of dimension n,
(ii) X is Cohen-Macaulay of pure dimension n and Y is a locally complete
intersection in X.

Then we have the commutative diagram

with 03A6k(G):= 03A6k(OX, G), 03A8k(G):= 03A8k(OX, G) and 03C1k(G):= 03C1k(OX, G).
This gives the desired connection between convergent (formal) cohomology
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and cohomology with (moderate) support on Y. Moreover, there is the following
topological version of (1.11)

by using (1.7). Here "sep" means the associated separated topological vector
space (resp. map).

(1.12) REMARK. (1) r0(G ~ 03C9X) and 03A6n(G) are injective
(2) if rn-k(G ~ 03C9X) is surjective, then 03C1k(G) is injective
(3) if rn-k(G ~ 03C9X) is bijective and HkY(X, G) finite-dimensional, then 03C1k(G) is
bijective.

2. Some finiteness and comparison theorems

We fix the following situation: Let X be a separated complex space, Y c X
a compact complex subspace, defined by the ideal sheaf f and F a coherent
Ox-module.

(2.1) THEOREM. Assume in addition that Y c X is a locally complete inter-
section and that Y is locally generated by a regular 5’-sequence. Let N YIX be the
normal bundle of Y in X, then

is an isomorphism of finite dimensional C-vector spaces in the following cases
(1) NY|X is a p-convex bundle* and 1  p

(2) NY|X is a q-concave bundle* and 1 + 1  depthx F - q.

(2.2) REMARK. Under the assumption of (2), the map rl(F) is injective for
1  depthxF - q.

The proof of (2.1) and (2.2) is an easy corollary of the vanishing theorem [Ko 1 ]
(4.3).
The estimate in (2.1) (2) should not be optimal, in fact we have the

* In the sense of [Ko 1] (2.8).
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(2.3) CONJECTURE. If NY|X is a q-concave bundle, then rl(F) is bijective for
1  depthx F - q and injective for 1 = depthx F - q.

(2.4) REMARK. There is some evidence for this conjecture, because by [Ko 2]
(3.6) it is true in the case where X = NY|X and F is the pullback of a coherent
sheaf on Y. Note also that an analogous conjecture is not true, if one only assumes
the existence of a q-concave neighbourhood system of Y ~ X. This will be shown
by an example in section 4. A sketch of a possible approach to (2.3) is given in
Section 3.

(2.5) THEOREM. Let G be a locally free sheaf on X. Then the map

03C1k(G): Hk[Y](X, G) ~ HkY(X, G) is an isomorphism of finite dimensional C-vector
spaces and, moreover, all maps in diagram (1.11), if one of the following conditions is
satisfied
(1) X is Cohen-Macaulay of dimension n, Y c X exceptional and k  n - 1
(2) X is Gorenstein of dimension n, Y c X a locally complete intersection,

NY|X p-convex and k  n - p
(3) X is Gorenstein, Y c X a locally complete intersection, NY|X q-concave and

k &#x3E; q + 1.

(2.6) REMARK.
(1) The first assertion has also been proved by Karras in [Ka].
(2) In the situation of (2.5) (1), the C-vector space NKX, G) is separated and 03C1n(G)

has dense image.
(3) In (2.5) (3), Hq+1Y (X, G) is finite dimensional, 03A6q+1(G) is bijective and 03C1q+1(G)

is surjective.
(4) If the Conjecture (2.3) is true, then the estimate in (2.5) (3) may be sharpened to

k &#x3E; q.
(5) For similar results in the algebraic category see [Ha 2].

Proof of (2.5). (1) First we note that Hn-k(X|Y, G  ~ 03C9x) is finite

dimensional since n - k  1. Moreover, HkY(X, G) is separated by the criterion
(1.7). Now diagram (1.11)’ gives the assertion, because rn-k(G  ~ 03C9x) is an

isomorphism for n - k  1 (see [Ko 1] (3.4)).
(2) Again, we show that Hn-k(X|Y, G ~ 03C9X) is finite dimensional and HkY(X, G)
separated for n - k  p.

This follows from the fact that there exists a continuous exhaustion function

~: W ~ [0, ~[ which is differentiable and strictly p-convex on WBY and
~-1(0) = Y (use the construction of K. Fritzsche in [F] §5). Now, we apply (2.1)
(1) and (1.11)’.
(3) Can be obtained by the same method and (2.1) (2), (1.11)’. D

Proof of (2.6). For abbreviation we set F := G ~ cox.
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(2) By (1.7), HnY(X, G) is separated iff H1(X|Y, F) is. But this space is finite
dimensional. So using (1.11)’, (1.7)

is injective. This gives (2) by an Hahn-Banach argument. 
-q(X| Y, F) is(3) By q-concavity of the neighbourhood structure of Y in X, Hn-q(X|Y, F) is

separated and therefore Hq+ 1Y(X, G) too. Moreover, dim Hn-q-1(X|Y, F)  00,

so 03A6q+1(G) is bijective. By (2.2), we see that 03C1q+1(G) is injective and,
consequently, 03C1q+1(G) is surjective.
(4) The same argument as in (3) shows that 03C1q+1(G) is a bijection of finite
dimensional C-vector spaces. D

(2.7) PROPOSITION. Let X be Gorenstein of pure dimension n, Y ~ X a com-
pact hypersurface and G E Coh(X) locally free. If Y has a fundamental system of
strictly pseudoconcave (=1-concave) neighbourhoods, then H1Y(X, G) is separated
and 03A61(G): Hn-1(X|Y, G ~ wx) - H1Y(X, G)’ is an isomorphism. If in addition
the normal bundle Nylx is 1-concave and (2.3) holds, then

is injective with dense image.
Proof From (1.7), we see that H1Y(X, G) is separated. Now

is, by 1-concavity, separated too. This gives the first part of (2.7).
Under the additional assumptions, rn-1(G  ~ 03C9X) is injective. By Hahn-

Banach (and 1.11)’ ), Im(03C11(G))is dense. The injectivity of 03C11(G) follows from that
of 0393([U], G) ~ 0393(U, G), U := XBY, and the comparison of the exact sequences
(1.4.1), (1.4.2) with ff = (9x. D

(2.8) REMARK. The additional assumption in (2 .7) is indeed crucial, as the
example in (4.1) shows.

Let X be a complex space, Y c X a closed complex subspace and F, G E
Coh(X). We denote by

(2.9) (1k(ff, G): Extk([U]; F, G) ~ Extk( U; F, G) the canonical map, where

U := XBY. With this notation we have

(2.10) LEMMA. (1) 03C1k(F, G), 03C1k+1(F, G) bijective ~ 03C3k(F, G) bijective
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(2) 03C1k(F, G) surjective, 03C1k+1 (F, G) injective ~ 03C3k(F, G) injective
(3) X compact, 03C1k+1(F, G) dense image ~ 03C3k(F, G) has dense image.

The proof of (1) and (2) follows immediately from (1.4.1), (1.4.2) and the
five-lemma whilst (3) is a consequence of (2.12). D

(2.11) COROLLARY. In the appropriate situations of theorem (2.5), we have
(with 03C3k(G):= 03C3k(OX, G))
(1) 03C3k(G) is bijective for k  n - 1 and has dense image for k = n - 1, if X is

compact.
(2) 03C3k(G) is bijective for k  n - p

(3) 03C3k(G) is bijective for k  q + 1.

If X is compact, then in the situation of the second part of (2.7), we have
(4) 03C30(G) is injective with dense image, especially

The following lemma was used above.
Given a commutative diagram of C-vector spaces

where both lines are exact. We assume that the bottom line is a complex of
topological vector spaces with QF-spaces F2, G2 and H2 finite dimensional and
separated.

(2.12) LEMMA. Assume e and h to be bijective. If g has dense image, so does f

Proof. We put I,:= Im (y,). Then, obviously, the diagram
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has exact lines and I1 ~ I2 is an isomorphism. We fix a section of G 1 ~ I1 which
gives also a continuous section of G2 ~ I2. By putting Kv := Ker(y,), we are
reduced to the case H1 = H2 = 0 (observe that K2 is again a QF-space and
g : K 1 ~ K2 has dense image).
Now take xe F2 and a sequence (Yi)ieN in G1 with

We choose x’i ~ F1 with yi = 03B21(xi). Then

so

Since P2 is an epimorphism of QF-spaces, there is a sequence (wi)i~N in F2 with

We fix zi E E 1 such that

Setting xi := x’i + al (zi), we obtain

so f has dense image. D

3. An approach to the conjecture (2.3)

We start by giving an equivalent reformulation of (2.3).

(3.1) LEMMA. The conjecture is equivalent to

Proof. We consider the following short exact sequences, coming from the long
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exact cohomology sequence for 0 ~ m+1 F ~ F ~ Fm ~ 0

Since k - 1  depthX F - q, we get by the q-concavity of the neighbourhood
structure of Y c X (and [A - G]) that dimc Kk-1m  oo for aH m. Moreover,
Bk-1m, Wkm are finite dimensional and

because Y is compact. Therefore we get the short exact sequence

and

This gives the assertion. D

To prove (2.3), it is sufhcient to treat the case k = depthx W - q by [Ko 1] (4.3).
With the above notations, we first indicate how to prove lim Km = 0.

(3.2) LEMMA. Let V be an open neighbourhood of Y in X. Then

m

for all v.

The proof is clear by using the appropriate version of the last two short exact
sequences in (3.1.1).
(3.3) We fix an open neighbourhood V of Y c X and consider the short exact
sequence of tech-complexes
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From now on, we assume for simplicity that X, Y are smooth and 5’ is

locally free, n := dim X, k := n - q. We take z ~ Zk(V, F), such that there exist
wm E Zk(V, m+1 F) and cm E Ck-1(V, F) for any m with

Here 03B4 denotes the Cech-coboundary. We fix shrinkings V2 C Vl C Y containing
Y and assume that there are constants M1, C &#x3E; 0 with

where 1..1.. are some suitable square-integrable norms on the Cech-complex with
respect to a suitable covering. By Schwarz’-Lemma, there is a pe]0,l[
(essentially the "shrinking factor" from Yl to V2 ) and a constant M2 &#x3E; 0,
depending only on 3F and V1, such that we have

If the shrinking V2 is chosen sufficiently small, we find an e E ]0, 1 [ with

Consider the canonical commutative diagram

where "b" means bounded cohomology. By the estimate (3.3.4), we see that the
image of z in Hkb(V2, F)sep, which is a Banach space, is zero. If we choose V2 to be
q-concave, then Hk(V2, F) is separated, so z 1 V2 is zero in Hk(V2, F).
Now the essential step is to prove an estimate as in (3.3.3). For this we consider

the commutative diagram
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We would like to have a section sm and a section rm on Bk(Y, Fm) together with
the estimates

where C 1, C2 are constants not depending on m. In our situation, (3.3.6) can be
easily established. Note that it is sufficient to allow a shrinking V1 of V for the
construction of s. and r. (but simultaneously for all m). The estimate (3.3.5) is
much more difhcult to obtain since here the q-concavity of the normal bundle
comes in.

Let 03C0: Nyjx - Y be the bundle projection,  the ideal sheaf of the zero-section,
:=03C0*F0 and m:= /m+1 . By using the deformation to the normal
bundle and a general argument on parametrized complexes (essentially that the
splitting property is an open condition), we should seek a splitting hm of

where 4Y is some fixed finite suitable cover of Y, such that

Now, if 4Yi 1 « 4Y is a small shrinking of 4Y, it is not difficult to find a map

such that an estimate as in (3.3.8) holds and bhm = restriction. This follows from
the two facts:

(i) Hk(W, JI) is separated for a q-concave neighbourhood W of the zero-
section,

(ii) Hk(Y, m) is in a canonical way a direct summand of Hk(W, ) by
"expansion" along the fibres of 03C0.

For a similar argument, compare also [B-K] Kap. II (1.5) and [Ko 3] (7.2)(1).
Next we need to avoid the shrinking from 4Y to 1. For this purpose we must

have a smoothing technique (in the V-sense for instance). Probably we can
achieve this by 7-methods (and Hôrmander’s theorem). The point here is that the
smoothing operator can be estimated by C’m+1 for each m and a constant C’
independent of m. This seems quite plausible by Hôrmander’s method. Applying
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the analogous argument as in the proof of [B-K] (II 1.6), we are able to obtain
a map

with bhm = id and such that (3.3.8) holds (being more precise, we should replace
OU by 1). Since we use preferably V-norms here and Bkb(, m) is closed in
Ckb(, m), we take the orthogonal projection on Bkb(, m) and compose with
hm. This gives us the desired splitting.

(3.4) Finally, we want to sketch how to obtain the vanishing in (3.1) for
k = depthx F - q. First note that we have

Especially

is injective for mo &#x3E; 0, m &#x3E; 0. Now, if we can replace F by X"’°G in (3.3), which
seems to be possible, we get from (3.1.2)

and so the vanishing in (3.1) could be achieved.

4. Some examples of neighbourhood structures

(4.1) We first show that an analogous conjecture (2.3) for the injectivity of rn - is
not true in the case when Y c X has only a fundamental system of strongly
pseudoconcave neighbourhoods.

In our case, X is a compact algebraic surface and Y c X an elliptic curve with
the following properties
(1) Nyjx is trivial
(2) there is a projection : X - Y such that 7r Y = idy
(3) U = XBY is Stein, but not affine algebraic.

Such a surface has been constructed by Serre, see [Ha 2] p. 232-234 or (5.2).
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Now we take  ~ Pic(Y)’, non-torsion, and put

We show the following

(4.2) LEMMA. (1) dim H1(, ) ,Do
(2) dim H1(X|Y, e) = oo, dim H1Y(X, F) = oo
(3) dim H0([U], F)  ~, dim H1[Y](X, F)  oo.

Proof. (1) We have the short exact sequences

and, moreover,

Since Hl(y, 2) = 0, we get H1(X, k)  H1(X, k-1), k  1, which proves (1).
(2) By using the long exact sequence (1.4.3)

it is sufHcient to show for the first part that

But this holds by duality and because U is Stein.
Now, H1(X|Y, e) and H1Y(X, F) are separated. For the last space, this follows

from the criterion in (1.7) and Siu’s vanishing theorem, and for the first one
because of

and H1(V, G) is separated if V is chosen to be strongly pseudoconcave. So the
second part of (2) is a consequence of (1.7).

(3) This follows immediately from the moderate local cohomology sequence
(1.4.2) and (1.11), together with (1). D

(4.3) REMARK. The example above also disproves the conjecture of [P-S] (1.7).
As an additional assumption we should add Yn ~ 0 in (1.7).
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(4.4) Next, we are going to discuss an example, treated also by A. Ogus in [Og]
(4.17). Here X is the compact complex surface which is obtained by blowing up
9 points in P2C, lying on an elliptic curve Y’ c P2C, and Y ~ X is the strict
transform of Y’. Moreover, the normal bundle N = Nyjx is in Pic(Y)° and
non-torsion. We have the following properties

(1) H0(X,03A91X) = 0
(2) dimCH0(X|Y,03A91X)  1
(3) there is a unique isomorphism :   1V with | Y = idy
(4) there is a unique section g:  ~ Y of Y  
(5)  is convergent iff dimH0(XBY, 03A91x) = 1.

Especially, if 1 is convergent, so is .
By (1), the sequence

is exact and H1c(U, 03A91x) is separated (use the criterion in [R - R1] and Siu’s
vanishing theorem), so

is bijective by duality theory. If we know, for instance, that U is Stein, then

H0(X|Y,03A91x) = 0 and q cannot be convergent.
There is now the following theorem which follows from the results of V.I.

Arnold [A] and the paper [I-P1] on the neighbourhood structure of embedded

elliptic curves (or more generally complex tori).

(4.5) THEOREM. There exist configurations of 9 points in P2C, lying on an elliptic
curve, such that 1 is convergent.

On the other hand, we have

(4.6) THEOREM. If the points pl, ... , pg E Y’ blown up are in general position,
Y has a neighbourhood which is both pseudoconvex and pseudoconcave, but Y has
no strongly pseudoconcave neighbourhood; in particular U = XBY is not Stein.

Proof. "General position" means that pi,..., P9 are chosen in such a way that
the normal bundle N = NY|X is not contained in some subset of Pic0(Y) of
measure 0 (with respect to an invariant measure) to be specified in a moment. By
Ueda [U, Section 4 Theorem 3 and Section 5] there is a set S of measure 0 in
Pic0(Y) such that if N ~ S, then our claim holds or C has finite order in the sense of
Ueda. But of course, if we enlarge S, we may assume that N is non-torsion and
hence C is of order oo ([U, p. 595/596]).

(4.7) REMARK. It is open what happens if p1,...,p9 are in special position. The
reason is the following problem. Suppose we have a regular family of projective
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surfaces (Xt) over the unit disc A. Suppose further that we have a family (Ct) of
smooth curves over A, such that C, c X t, Cf = 0. Let X o BCo be Stein. Under
which conditions is XtBCt Stein for t ~ 0, t near 0?

5. Stein compléments in compact surfaces

In this section we deal with the following problem: Given a compact surface X (i.e.
a 2-dimensional connected compact manifold) and an irreducible curve C c X
such that C2 = 0 and XBC is Stein. What pairs (X, C) can really occur?

(5.1) THEOREM. Let X and C be as described above. Then either X is algebraic
or X is a Hopf surface of algebraic dimension 0 with exactly one curve. In the latter
case, C is elliptic and XBC ~ C* x C*.

Proof. As usual we denote by a(X) the algebraic dimension of X. X is algebraic
iff a(X) = 2. So let a(X)  2.

(1) Assume a(X) = 1. Let X o be the minimal model of X. Then Xo is an elliptic
surface, and we obtain a surjective map i : X - Co onto a compact Riemann
surface Co (see e.g. [BPV]).
Assume r(C) = Co. Denoting by F a general smooth fiber of r, this means

(C . F) &#x3E; 0. But (C + F)2 = 2(C. F) &#x3E; 0, hence X is algebraic (Kodaira). So i(C) is
a point. But then XB C contains compact curves, hence cannot be Stein.

(2) Now let a(X) = 0, i.e. there are no non-constant meromorphic functions on
X.

(a) First let X be Kähler. Then (by the Kodaira classification) X o (the minimal
model) is either a torus or a K3 surface. If X o is a torus, by homogenity, X o
contains no curve at all ([BPV, p. 129]). On the other hand - denoting by
03C0: X - X o the blow-down - 03C0 cannot contract C except C = P1. But then X is
algebraic by [BPV, p. 142]. So the torus case is excluded. Now Xo is a K3 surface.
If X ~ Xo, we find a (- l)-curve C’ such that C n C’ ~ ~. Hence (nC + C’)2 =
n(C. C’) - 1 &#x3E; 0 for n &#x3E; 2 and X is algebraic again. So X = X o .

Since Hl «9x) = 0 and 03C9X ~ OX, we compute from

Since a(X) = 0, h0(OX(C))  1, so h’«9c) = 0, i.e. C ~ P1. This contradicts the
adjunction formula.

(b) Finally let X be non-Kähler. Then by the Kodaira classification X is of type
VII.

Arguing as in the K3-case, we may assume X minimal. First let b2(X) &#x3E; 0. Now
we use Enoki’s classification ([E]) of surfaces of type VII with b2 &#x3E; 0, containing
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a curve and containing a divisor D ~ 0 with D2 = 0. Applying his structure
theorems (with D = C), we conclude that XBC ~ YBC’ where Y is a ruled surface
over an elliptic curve with "eccentricity" e = b2(X) (see Hartshorne [Ha 3]) such
that C’2 = -e. So XBC is not Stein. We are thus reduced to b2(X) = 0. By
Kodaira ([K2], [E]), X is a Hopf surface.

Such a Hopf surface either has exactly one or two curves. If X has two curves,
call the second C’, then C n C’ = ~ contradicting XBC Stein. So X has one curve
C and, by Kodaira ([K1]), XBC ~ C* x C* (in fact XBC ~ YBC’ where Y is the
ruled surface given by the bundle 0 ~ Oc0 ~  ~ Oc0 ~ 0 over an elliptic curve
and C’2 = 0; this is just the Serre example discussed in Section 4). This ends the
proof. D

(5.2) Now we turn to the projective case and doing this, we restrict ourselves to
elliptic C. We call a pair (X, C) as above the Serre example, if X = P(03B5), where 8 is
the rank-2 bundle 8 over an elliptic curve Co given by the non-splitting extension

and where C is the uniquely determined section with C2 = 0. Then XBC ~
C* x C*.

(5.3) THEOREM. If X is a minimal projective surface, C c X an elliptic curve with
c2 = 0, such that XBC is Stein then (X, C) is the Serre example.

Proof. (a) First we show K(X) = - 00.
First let K(X) = 2. We obtain by the adjunction formula (03C9X.C) = 0. But

this is known to be possible only if C is a ( - 2)-curve (see [BPV, Chapter 7]). If
K(X) = 1, (01 is globally generated if 03BC  0. We consider the associated map
4J: X - P(H°(X, 03C903BCX)) whose image is a curve. 4J contracts exactly the curves C’
with (03C9X.C’) = 0. Since (wx.C) = 0, ~ contracts C, contradicting XBC Stein.
So assume finally K(X) = 0. If X is a torus, we obtain (using an automorphism)

an elliptic C’ ~ C, C’ - C. Since C n C’ ~ ~, (C.C’) &#x3E; 0, so C2 &#x3E; 0, contradic-
tion. If X is K3, then we compute as in (5.1): h0(OX(C)) = 2 and obtain a curve C’
as above. If X is an Enriques surface, we have - using [BPV, VIII. 17] - an elliptic
fibration f : X ~ P1 contracting C which is impossible.

Finally, if X is hyperelliptic then there are two elliptic curves E 1, E2 such that
X = (E 1 x E2)G, quotient by some finite group (see [BPV, Chapter V]). Denote
by p : E 1 x E2 ~ X the projection map. Clearly (E1 x E2)Bp -l(C) is Stein, hence
p -1 (C) is connected. Now p -1 (C)2 = 0, so if p -1 (C) is reducible, it must contain
an exceptional curve in El x E2 . This does not exist, so 03C1-1 (C) is irreducible. So
03C1-1(C) = {x} x E2 or El x {y}, which contradicts (El x E2)B03C1-1(C) Stein.

(b) Now we know that K(X) = - oo, X is either 1P2 or ruled. Clearly X ~ 1P2.
Let p : X - Co be a ruling. Since g(C) = 1 and dim p(C) = 1, we obtain g(C0)  1.
If C0 = P1, C2 = 0 implies first X ~ P1  P1. So X = E. = P(O E9 (9(m)),
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m ~ N. But any curve with self-intersection 0 in 03A3m is known to be a fiber of the

ruling, see [Ha 3], contradiction.
So g(Co ) = 1. Let F be a fiber of the ruling, C ~ X a curve of minimal C2 . Let

e:= - C2 . Write for numerical equivalence C ~ aC + bF. Then C2 = 0 just says
b = -lae.
Furthermore (C.) = b - ae = -1 2ae.. Since (C.)  0, we conclude ae = 0.

Since C ~ F, a &#x3E; 0, so e = 0. Hence either X = Co  P1 - which is clearly
impossible - or X = P(&#x26;) as in the Serre example. Observe that C = C is uniquely
determined in X by C2 = 0.

(5.4) REMARK. (1) If we don’t assume X to be minimal in (5.3), we take
a minimal model p: X - Xo and conclude (wxo. p(Co))  0. Hence it is a priori
clear that K(X) = - ce and moreover that X o is P2, a rational ruled surface or
a ruled surface over an elliptic curve.

(2) Neeman [N] has also investigated the problem of classification of the pairs
(X, C) as above. He additionally assumes that the "Ueda class" of C is non-zero.

For application in the next section, we state the following version of (5.1):

(5.5) THEOREM. Let X be a compact surface, D a non-zero divisor on X such
that D2 = 0 and XBsupp(D) is Stein. Then either X is algebraic or X is a Hopf
surface with a(X) = 0 having just one curve (hence XBsupp(D) = XBC ~
C* x C*).
The proof is along the lines of (5.1) and thus omitted. Observe that we need (5.5)

only for X minimal; then it is almost word by word the same proof as in (5.1).

6. On Compactifications of C3

In relation with the problems considered in Section 5 we now look at

compactifications of C3.
This means that we consider pairs (X, Y) where X is a compact manifold,

Y c X a hypersurface and X)Y rr C3 biholomorphically. We always assume
b2(X) = 1 which is equivalent to saying that Y is irreducible. We let OX(1) denote
the line bundle on X given by Y. Then c1(OX(1)) generates H2(X, Z) ~ Z.

(6.1) LEMMA. If the algebraic dimension a(X)  2, then y3 = c1(OX(1))3  0.

Proof. We have seen in [PS] that y3 &#x3E; 0 implies X projective. So we
must only exclude Y3 = 0. Assume Y3 = 0, we have also Y’ = 0 (since the
intersection form H2 x H4 ~ H6 is non degenerate). But Y2 = c1(NY|X) and
since H2(X, Z)  H2(Y, Z) via restriction, cl (Nylx) generates H2(Y,7L), so

Y2 * 0. D

(6.2) THEOREM. a(X) ~ 1.
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Combining with the results of [PS], we obtain:

(6.3) COROLLARY. If X is not projective, any meromorphic function on X is
constant (a(X) = 0).

Proof of (6.2). Let

be an algebraic reduction of X. Then Z is a compact Riemann surface and all
fibers of q are connected (see Ue]). p can be taken as sequence of blow-up’s with
smooth centers. Since b1(X) = 0, we have Z -r P 1. We put Xs = q-1(s), Xs =
p(Xs), se P1. Furthermore let F := (p*q*Oz(1))**. F is a line bundle on X. We
claim:

(1) ci 0.
Proof. Let f:  ~ Y be the normalization of Y (observe that by [PS] Ymust be

non-normal!) and 03C0 :  ~  a minimal desingularization, 03C3 :  ~ Ym a minimal
model. By [PS, proof of 1.5], a(Y) = 1.

Let i : Ym - C be an algebraic reduction which is here an elliptic fiber space
(cp. [BPV]). Clearly, there is no curve Co c Ym such that T(CO) = C (other-
wise (C0 + n·fiber)2 &#x3E; 0 for n large and Ym would be algebraic). Hence
dim 03C403C3(Z(03C0)) = 0, Z(7r) the center of n. Let E be the non-normal locus of Y,
f-1(E) = É. We know E ~ ~, so E is purely 1-dimensional (Y being Gorenstein).
We conclude as for Z(03C0): dim 03C403C303C0-1() = 0. Let =03C3-103C4-1(x),  = n(o,
1 = 1 (x) = f() for x E C. Then by our consideration, we see that 1 n S( Y) = ~ for
x generic, S( Y) being the singular locus of Y. In particular, 1 (x) is a Cartier divisor
on Y, thus

(where OY(1):= OX(1) 1 Y).
Now 1(x)2 = 0, hence by (6.1) we conclude k = 0; in particular 1(x) ~ 0 in

homology. Since all 1 (x) are homologous, we obtain 1 (x) - 0 for all xe C.
Now we compute (Y.Xs)’ Since OX(Xs) ~ F, we have just to show (Y.Xs) = 0

in order to prove (1). Write (Y.Xs) = [EaiCi] in H4(X, R).
The curves Ci are contained in Y, so Ci c l(xi) for some xi. Now for any x,

either l(x) ~ Xs or l (x) n X s = ~ (since (l(X).Xs) = 0!).
So in fact (Y.Xs) = [Eail(xi)] = 0. This proves (1).
If we knew H’(X, 19) = 0, 3° would have to be trivial and so X could not exist.

But this vanishing is not at all obvious.
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(2) Let Z(p) be the center of p in X. Then

Proof. Clearly we may assume p(Z(p)) n,c-z X s.
Choose s, s’ ~ Z, s ~ s’. Then (X.,. X.,,) [03A303B1il(xi)] + [03A303B2jBj] where the Bj

are the components of X, n Xs, which are not contained in Y (clearly
dim Bj = 1). By ( 1 ), [03A303B2jBj] = 0. Since f3j &#x3E; 0 and Bj n Y =1= (/) (XBY is Stein), we
would have (Y.03A303B2jBj) &#x3E; 0 if there is some Bj. So Xs n XS, c Y, hence

p(Z(P» e Y.
(3) It is sufficient to prove projectivity for some X s. In fact, then we find a curve

C’ c X S such that C’ n Y is finite. Hence ( Y. C’ ) &#x3E; 0. On the other hand C’ - 0 in

X, since X, - 0; hence the non-existence of X is proved.
(4) So it remains to show a(s) = 2. We have s ~ p-1(Y) = C 1 ~ ··· U

Cq =: D, XSBD is Stein as closed subvariety of C3. We want to apply (5.5). First let
us convince ourselves that D contains an elliptic curve. In fact, q(Y) = Z, Y the
strict transform of Y in 9 (otherwise any meromorphic function on X would be
constant on Y; on the other hand there are clearly meromorphic functions on
X which are not constant on Y). Hence for general s, Y ~ s contains an elliptic
curve (since a(Y) = 1). So D contains an elliptic curve.

For reasons of minimality we have to check that there is no (-1)-curve in X-,,
not contained in D. In fact, if there is some, say C’, then let C" = p(C’) and we
would have (Y.C") &#x3E; 0, contradicting C" ~ 0.

In order to apply (5.5) we have to find a divisor 0 ~ D with supp(D) = D, such
that D2 - 0. Assume that for any such D we have 2  0. Then for all

U = (ul, ... , uq) E ZqB{0}:

Hence (Ci. Cj) is negative definite and D thus exceptional. But this is impossible
since Xs BD is Stein!

So we are now in position to apply (5.5) and hence Xs is either algebraic or its
minimal model is a Hopf surface with one curve.

(5) In order to finish the proof we have to exclude the latter. From our
discussion in (1), concerning curves in Y it is clear that for general x

XsB(Xs n Y) being Stein, X S n Y must be connected. Hence for general s : Xs n Y
is of the form l(x). Now l(x) n 1(x’) = (D in general, so for general s, XS does not
meet any X,,,. But this means that F is globally generated and we may take
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1 = X 1 ! Observe that the smooth surfaces Xs have to be minimal! Let C, =

X S n Y So for general s, C, is an elliptic curve, in fact the uniquely determined
curve in Xs.
Now we are in position to prove:

First we observe: R2q*(OX) = 0.
To see this, we must show h2((!Jxs) = 0 for all s, q being flat. Equivalently,

hO(coxs) = 0. For general s this is true. So q*(03C9X) is torsion. Since h0(03C9X) = 0
(by a theorem of Kodaira [K3]), q*(03C9X) = 0, hence h0(03C9Xs) = 0 for all s. Since
q*(OX) = OP1, the invariance of ~(OXs) gives R lq*((!Jx)E Pic(P1), even R1q*(OX) =
OP1(a), a  0 (since h ’«9x) &#x3E; 0).
We consider the exact sequence

So R2q*(OX(1)) = 0.
Generically hO((9xs(l)) = h0(OXs(Cs)) = 1 and also h1(OXs(Cs)) = 1 (Riemann-

Roch).
So q*(OX(1)) and R lq.((9x(l)) have generically rank 1. If q.((9x(l)) has a torsion

part, we conclude h0(OX(1))  2, hence K(X, OX(1))  1. But in [PS] it was proved
that then X is algebraic. So q*(OX(1))~Pic(P1) and by the same argument:
q*(OX(1)) = (9pc 1. Hence R1q*(OX(1))~ Pic(P1) too. For our Hopf surface Xs we
have:

([K1]). First let m &#x3E; 3. Then the normal bundle NCs|Xs is topologically trivial, but
not trivial. Consequently, q*(OY(1)) is torsion as well as R1q*(OY(1))2. By the
above exact sequence, R1q*(OX(1)) ~ R1q*(OX). Now we exclude m = 2.

Assuming m = 2, NCs|Xs ~ (9cs and so q*(OY(1)) and R1q*(OY(1)) would have
rank 1 generically and hence everywhere by the exact sequence. Hence

q*(OY(1)) ~ R1q*(OX) = OP1(a), a  0.
So h0(OY(1)) &#x3E; 0. Since (9y(l) * F Y and F | Y ~ (9y(Cs)’ we get a curve

1 This means that, instead of the algebraic reduction, we just consider the map X ~ I?(HO(X, F)).
’Since OY(1)|Cs ~ Nc.1x..
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Co c Y not contracted by q Y. But then Y must be algebraic (similar arguments
have been used earlier), contradiction (we know a(Y)  1).
Now we know: q*(OX(1)) = (9p,; Riq*(OX(1) = Riq*(OX), i &#x3E; 0. So by the

Leray spectral sequence, we obtain easily: ~(OX(1)) = X((9x), proving (*). Now
Riemann-Roch for X((9x(l)) gives - setting c1(X) = k Y, c2(X) = 03BBY2 and using

hence (since Y3 ~ 0):

With the same methods we obtain also:

(since Riq*(OX(-v)) = 0, v = 1, 2, i = 0,1, 2, for v = 2 use that m ~ 2 where

03C9Xs = OXs(-mCs), see proof of ( + )).
Now by Riemann-Roch we obtain:

Altogether, the three equations ( + ), ( + + ), ( + + + ) have no common solution,
hence the proof is finished. D
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