Groups of components of Néron models of jacobians
Compositio Mathematica, Tome 73 (1990) no. 2, pp. 145-160.
@article{CM_1990__73_2_145_0,
     author = {Lorenzini, Dino J.},
     title = {Groups of components of {N\'eron} models of jacobians},
     journal = {Compositio Mathematica},
     pages = {145--160},
     publisher = {Kluwer Academic Publishers},
     volume = {73},
     number = {2},
     year = {1990},
     mrnumber = {1046735},
     zbl = {0737.14008},
     language = {en},
     url = {http://www.numdam.org/item/CM_1990__73_2_145_0/}
}
TY  - JOUR
AU  - Lorenzini, Dino J.
TI  - Groups of components of Néron models of jacobians
JO  - Compositio Mathematica
PY  - 1990
SP  - 145
EP  - 160
VL  - 73
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1990__73_2_145_0/
LA  - en
ID  - CM_1990__73_2_145_0
ER  - 
%0 Journal Article
%A Lorenzini, Dino J.
%T Groups of components of Néron models of jacobians
%J Compositio Mathematica
%D 1990
%P 145-160
%V 73
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1990__73_2_145_0/
%G en
%F CM_1990__73_2_145_0
Lorenzini, Dino J. Groups of components of Néron models of jacobians. Compositio Mathematica, Tome 73 (1990) no. 2, pp. 145-160. http://www.numdam.org/item/CM_1990__73_2_145_0/

[1] M. Artin and G. Winters, Degenerate fibers and stable reduction of curves. Topology 10 (1971), 373-383. | MR | Zbl

[2] G. Cornell and J. Silverman, Eds. Arithmetic Geometry. Spinger-Verlag, 1986. | MR | Zbl

[3] M. Deschamps, Réduction semi-stable. In Séminaire sur les pinceaux de courbes de genre au moins deux (1981), L. Szpiro, Ed., pp. 1-34. | Zbl

[4] I. Dolgačev, On the purity of the degeneration loci of families of curves. Invent. Math. 8 (1969), 34-54. | EuDML | MR | Zbl

[5] A. Grothendieck, Exposés I and IX in the Séminaire de géométrie algébrique SGA 7 I. Lect. Notes Math. 288, Springer-Verlag, 1970.

[6] S. Lang, Introduction to Arakelov Theory. Springer-Verlag, 1988. | MR | Zbl

[7] H. Lenstra, and F. Oort, Abelian varieties having purely additive reduction. J. Pure and Applied Alg. 36 (1985), 281-298. | MR | Zbl

[8] J. Lipman, Introduction to resolution of singularities. In Algebraic Geometry, Arcata 1974 (1975), AMS Proc. Symp. Pure Math. 29. | MR | Zbl

[9] D. Lorenzini, Arithmetical graphs. To appear in Math. Annalen. | EuDML | MR | Zbl

[10] D. Lorenzini, Dual graphs of degenerating curves. To appear in Math. Annalen. | MR | Zbl

[11] W Mccallum, The component group of a Néron model. Preprint.

[12] T. Oda and C. Seshadri, Compactification of the generalized jacobian variety. Trans. of AMS 253 (1979), 1-90. | MR | Zbl

[13] A. Ogg, Elliptic curves and wild ramification. Amer. J. Math. 89 (1967), 1-21. | MR | Zbl

[14] F. Oort, A construction of generalized jacobians varieties by group extensions. Math. Annalen 147 (1962), 277-286. | MR | Zbl

[15] F. Oort, Good and stable reduction of abelian varieties. Manuscr. Math. 11 (1974), 171-197. | MR | Zbl

[16] M. Raynaud, Spécialisation du foncteur de Picard. Publ. Inst. Hautes Etudes Sci., Paris 38 (1970), 27-76. | Numdam | MR | Zbl

[17] T. Saito, Vanishing cycles and the geometry of curves over a discrete valuation ring. Amer. J. Math. 109 (1987), 1043-1085. | MR | Zbl

[18] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math. 15 (1972), 259-331. | MR | Zbl

[19] J.-P. Serre and J. Tate, Good reduction of abelian varieties. Ann. of Math. 88 (1968), 492-517. | MR | Zbl

[20] J. Silverman, The Néron fiber of abelian varieties with potential good reduction. Math. Annalen 264 (1983), 1-3. | MR | Zbl

[21] J. Silverman, The Arithmetic of Elliptic Curves. Spinger-Verlag, 1986. | MR | Zbl

[22] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil. In Modular functions in one variable IV (1975), Springer Lect. Notes in Math. vol. 476. | MR

[23] E. Viehweg, Invarianten der degenerierten Fasem in lokalen Familien von Kurven. J. Reine Math. 293 (1977), 284-308. | MR | Zbl

[24] G. Winters, On the existence of certain families of curves. Amer. J. Math. 96 (1974), 215-228. | MR | Zbl