@article{CM_1990__73_1_107_0, author = {Crew, Richard}, title = {Universal extensions and $p$-adic periods of elliptic curves}, journal = {Compositio Mathematica}, pages = {107--119}, publisher = {Kluwer Academic Publishers}, volume = {73}, number = {1}, year = {1990}, mrnumber = {1042455}, zbl = {0742.14013}, language = {en}, url = {http://www.numdam.org/item/CM_1990__73_1_107_0/} }
Crew, Richard. Universal extensions and $p$-adic periods of elliptic curves. Compositio Mathematica, Tome 73 (1990) no. 1, pp. 107-119. http://www.numdam.org/item/CM_1990__73_1_107_0/
[1] Hodge-Tate periods and p-adic abelian integrals, Inv. Math. 78 (1984) pp. 351-379. | MR | Zbl
,[2] Iwasawa theory of elliptic curves with complex multiplication, Academic Press 1987. | MR | Zbl
,[3] Residues and Duality, Lecture Notes in Math. 20, Springer-Verlag 1966. | MR | Zbl
,[4] The Eisenstein measure and p-adic interpolation, Amer. J. Math. 99 (1977) pp. 238-311. | MR | Zbl
,[5] The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Math. 264, Springer-Verlag 1972. | MR | Zbl
,[6] Universal extensions and one-dimensinal crystalline cohomology, Lecture Notes in Math. 370, Springer-Verlag 1974. | MR | Zbl
, and ,[7] Abelian Varieties, Oxford 1970. | MR | Zbl
,[8] Periodes p-adiques, C. R. Acad. Sci. Paris 300 (1985) pp. 455-457. | MR | Zbl
,[9] p-divisible groups, in Proceedings of a conference on local fields, (NUFFIC Summer School, Driebergen), Springer-Verlag 1967. | MR | Zbl
,[10] On two-variable p-adic L-functions, Ann. of Math. 115 (1982) pp. 411-449. | MR | Zbl
,