Supersingular primes for elliptic curves over real number fields
Compositio Mathematica, Tome 72 (1989) no. 2, pp. 165-172.
@article{CM_1989__72_2_165_0,
     author = {Elkies, Noam D.},
     title = {Supersingular primes for elliptic curves over real number fields},
     journal = {Compositio Mathematica},
     pages = {165--172},
     publisher = {Kluwer Academic Publishers},
     volume = {72},
     number = {2},
     year = {1989},
     mrnumber = {1030140},
     zbl = {0708.14020},
     language = {en},
     url = {http://www.numdam.org/item/CM_1989__72_2_165_0/}
}
TY  - JOUR
AU  - Elkies, Noam D.
TI  - Supersingular primes for elliptic curves over real number fields
JO  - Compositio Mathematica
PY  - 1989
SP  - 165
EP  - 172
VL  - 72
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1989__72_2_165_0/
LA  - en
ID  - CM_1989__72_2_165_0
ER  - 
%0 Journal Article
%A Elkies, Noam D.
%T Supersingular primes for elliptic curves over real number fields
%J Compositio Mathematica
%D 1989
%P 165-172
%V 72
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1989__72_2_165_0/
%G en
%F CM_1989__72_2_165_0
Elkies, Noam D. Supersingular primes for elliptic curves over real number fields. Compositio Mathematica, Tome 72 (1989) no. 2, pp. 165-172. http://www.numdam.org/item/CM_1989__72_2_165_0/

[1] H. Davenport, Multiplicative Number Theory, 2nd ed. New York-Heidelberg -Berlin: Springer-Verlag 1980. | MR | Zbl

[2] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, (1941) 197-272. | JFM | MR | Zbl

[3] N.D. Elkies, The existence of infinitely many supersingular primes for every elliptic curve over Q. Invent. Math. 89, (1987) 561-567. | EuDML | MR | Zbl

[4] B.H. Gross and D. Zagier, On singular moduli. J. Reine Angew. Math. 335, (1985) 191-220. | EuDML | MR | Zbl

[5] S. Lang and H. Trotter, Frobenius distributions in GL2-extensions. Lect. Notes in Math., vol. 504. Berlin-Heidelberg-New York: Springer 1976. | MR | Zbl

[6] J.-P. Serre, A Course in Arithmetic. New York- Heidelberg-Berlin: Springer-Verlag 1973. | MR | Zbl