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In this paper we present some results similar to the well-known Cartan lemma (cf.
[5]) which estimates the set where a potential is large. These results were inspired
by a Hall type lemma proved in [2] and they have useful applications regarding
the behaviour of a subharmonic function at a point or regarding the boundary
behaviour of Green potentials. We further prove a reversed Hôlder inequality for
positive superharmonic functions and in Section 4 we construct a simple
counterexample to an assertion of Tolsted in [10] according to which a Green
potential in the unit disk has boundary limit zero almost everywhere on the unit
circle along rotations of any fixed normal curve.

1. A Cartan-type result

In [2] Davis and Lewis have proved the estimate 03C3({u &#x3E; s}*)  Cu(0)/s. Here u is
surface measure on |x| = 1, u is a positive superharmonic function in |x|  1,
{u &#x3E; s}* denotes the radial projection of the open set where u is larger than s, and
C is a constant only depending on the dimension. Our aim is to estimate {u &#x3E; s}
more closely. We first prove a Cartan type result for potentials which by means of
Riesz decomposition implies a better estimate than the above one for the
projection of the part of {u &#x3E; s} in |x|  2.

THEOREM 1. Let J.1 be a nonnegative measure in R", n  2, and let u(x) be its
Newtonian potential (or logarithmic potential, if n = 2): u(x) = Six - Yl2 - n dJ.1( y)
(or u(x) = 1 loglx - yl - ’ d03BC(y), respectively); if n = 2 we assume in addition that
J.1 is finite with support in |y|  p, where p  1. Then the open set {u &#x3E; s} can for
each sufficiently large s (depending on u(0)) be covered by balls B(xj, tj) such that

In particular, 03C3({u &#x3E; s}*)  C(u(O)/ s)(n-1)/(n-2) ( C exp(-cs/u(0)), respec-

tively). The constants C and c = cp &#x3E; 0 do not depend on u.
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REMARK. From the theorem one can obtain (by means of Riesz decomposition)
some classical facts about the behaviour of a general superharmonic function at
a point; e.g. that u(x) ~ u(O) along almost every radius through the origin (cf.
Deny [3] who proves an even stronger result). Indeed, a standard argument
shows that u(x) ~ u(O) as x - 0 through the complement of a collection of balls

B(xj, tj) such that tj  |xj| and 03A3(tj/|xj|)n-1  oo. (Here as well as in the theorem
the exponent n - 1 could be replaced by any a &#x3E; n - 2). Compare also with the
work of Essén-Jackson [3a] on thin sets.

Proof of Theorem 1. We modify the proof in [5] of the Cartan lemma. Suppose
first that n &#x3E; 2 and, without restriction, that u(O) = 1. Let m be the measure
defined by m(E) := E| y|2-n d03BC(y) so that m([Rn) = u(0) = 1. For fixed x e Rn we
put m(t) := mx(t) := m(B(x, t)), t  0.

Let A  2 be some constant and assume that ùi(t) 5 (At/r)n-1 for 0  t  tao:=
rIA where r := Ixl. For lx - y  to we have |y|  2r, hence

where the last inequality has been obtained by means of an integration by parts
and our assumption on m. Further, for y - x|  t0 we have |y|  Ixl + |y - xl
 (A + 1)|x - yl, hence

Combining the above estimates we conclude that u(x)  s for all x such that

x(t)  (At/r)" -1, where A is defined by s = n(2A)n-2, and where s  n4n-2, say.
Thus the set {u &#x3E; sl can be covered by balls B(x, tx) such that 0  tx  t0  §(x(
and such that m(B(x, tx)) &#x3E; (Atx/r)n-1. The conclusion of the theorem follows
now readily from a suitable version of the Besicovitch covering lemma which
yields a countable subcovering with bounded overlaps (cf. [4]).

For n = 2 a similar proof can be given. 0

2. Another covering result

The full content of the Davis-Lewis result (see § 1) can be obtained if Theorem 1 is
combined with the following related covering result. We formulate it in the rather
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general setting of C1+03B1 and Dini domains (see [11] for the definition of a Dini
domain).

THEOREM 2. Let u be a positive superharmonic function in a C1+03B1 or Dini
domain D C Rn. T hen for each s  0 the set {u &#x3E; sl can be covered b y balls B(xj, ti)
such that

where IIUII1 = Du(x) dx  oo and C = CD.
Theorem 2 can be obtained as a consequence of some recent results of wu [12]

on harmonic measures. However, since the techniques of [12] are rather

complicated we outline an easier direct proof of Theorem 2 in the spirit of the
proof of Theorem 1 (cf. also Kudina [4a]). It is based upon the following classical
estimates due to Widman [11] for the Green function G(x, y) and the Poisson
kernel P(x, y) of a Dini domain D.

LEMMA (cf. [11]). The following uniform estimates hold for G and P (d(.) denotes
distance to DD):

Proof of Theorem 2. Since u is positive it has a global Riesz decomposition
u = G03BC + Pv, where Gp(x) = ID G(x, y)dJl(Y), Pv(x) = 1,, P(x, y)dv( y) . (y is the

Riesz measure and v is the "boundary" measure of u.) We define the measure m by
m(E) = E~Dd(y)d03BC(y) + v(E naD). Then m(D)  oo, cf. (5) of the lemma. More-
over, with the aid of the Fubini theorem it follows readily from the estimates (2),
(4), (5) and (6) of the lemma that m(D) ~ ~u~1. Hence it suffices (cf. the proof of
Theorem 1) to show that u(x)  s for all x E D satisfying m(B(x, t))  Cstn-1,
t  0, where C = CD. An integration by parts in the integrals defining G03BC and Pv
shows that this is indeed the case: for Gp we use (1) if Ix - yl  2d(x), (3) if

lx - y  2d(x), while for Pv we use (4). 0

Next we obtain a reversed Hôlder inequality for positive superharmonic
functions which seems to be new:

THEOREM 3. Let D and u be as in Theorem 2. Then ~u~p is finite for
0  p  n/(n - 1). Moreover, given 0  p  q  n/(n - 1), there is a constant
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C = C(p, q, D) such that

Proof. By Hôlder’s inequality it suffices to show that ~u~q  Cq~u~1,
1  q  n/(n - 1), and ~u~1  Cp~u~p, 0  p  1. We may assume that ~u~1 =
1. Let 03C9(s) denote the Lebesgue measure of the set {u &#x3E; s}. Then Theorem
2 implies the weak type estimate

The inequality Il u Cq for 1  q  n/(n - 1) follows now from (7) (for s  1)
and the identity Duq dx = q~0 sq-1 cv(s)ds. The second desired inequality may be
obtained by repeatedly using the first one together with the superharmonicity of
uP when 0  p  1. D

3. Some applications

(i) Rippon [8] and Wu [ 13] have obtained the following extension of Littlewood’s
radial limit theorem in the unit disk: suppose to each 03BE E ôD (where D may be any
Dini domain) there corresponds a curve y, in D which tends to ç nontangentially;
suppose also that the family r := (y,) satisfies the separation condition:

(8) distance (y,, 03B303BE’)  c|03BE - 03BE’| for 03BE, 03BE’ e ôD,

where c is a positive constant. Then every Green potential G03BC(x) := DG(x, y)d03BC(y)
satisfies G03BC(x) ~ 0 for x ~ 03BE along y,, for almost all 03BE E DD. This result can be
obtained directly from Theorem 2. Indeed, a standard argument shows that
Gp(x) - 0 for x - ôD outside a family of balls B(xj, Q with 03A3tn-1j  03B5, where

e &#x3E; 0 may be chosen arbitrarily small; further (8) implies that the "r-projection"
of those balls onto ôD has surface measure bounded by C8.

(ii) A minor modification in the proof of Theorem 2 yields the following
extension of the theorem: if w(x) is any positive function in D then the set {uw &#x3E; s}
can be covered by balls B(xj, tj) such that 03A3tn-1j/w(xj)  C~u~1/s. Choosing in
particular w(x) = d(x)" -1, where as before d(x) denotes the distance of x to DD, we
obtain the following analogue of the statement above: namely, d(x)" -1 G03BC(x) ~ 0
for x ~ ~D outside a family of balls B(xj, tj) such that Y-(tjld(xj»"- 1  8. This is an

improvement and generalization of a result of Stoll [9] for the disk and may be
compared to results obtained in [6] and [7].
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4. A counterexample

Dahlberg [1] has shown that the separation condition (8) is rather essential for
the above-mentioned Rippon-Wu result by constructing a C1+03B1 domain in R2
with the property that Littlewood’s theorem fails for the family of interior
normals. Here we present a similar but more explicit construction directly in
a halfplane for the special case where the family r consists of translations of
a fixed curve y. This construction was motivated by an incorrect statement of
Tolsted ([10], Corollary 3.23) according to which the mere existence of a tangent
at the endpoint of y would imply the validity of Littlewood’s theorem for the
family of rotations e"°y. (Tolsted worked in the unit disk rather than in the
halfplane.)

THEOREM 4. There exist a Green potential u(z) in the halfplane Rez &#x3E; 0 and

a rectifiable curve y in Rez  0, with parametrization t ~ t + i~(t), 0  t  1,
where ~(0) = ~’(0) = 0, ~ is piecewise linear for t &#x3E; 0 and Hôlder continuous of
order a  1 on [0, 1], such that lim supz~iy, z~03B3y u(z) = ~ for all y e R. Here

yy := y + iy denotes the vertical translation of y over y.

REMARK. According to the Rippon-Wu result of Section 3 the family (yy) of the
theorem can not satisfy (8). On the other hand, it is not hard to prove that the
family of vertical translations of a given curve t ~ t + i~(t) satisfies (8) if and only
if ~ is Lipschitz continuous. The theorem shows that the analogue of Littlewood’s
theorem for such a family does in general not hold under any weaker smoothness
condition.

Proof of Theorem 4. Fix r1 e (0, 1) and put ak := 2-k2, 03B5k := ak/k, 03B4k := 03B51/03B1k(k  2).
Then one can verify that the function 0(t) which is 0 at the points t = 0, t = ak,
equals the value - Ek at the points t = ak - Ôk, and is linear on each of the
intervals [ak+1, ak - 03B4k] and [ak - 03B4k, ak], satisfies the requirements. Also
y : t - t + i~(t) is rectifiable.
We now define a Green potential u(z) by

where cjk = ak + ibik and where the real numbers bjk(1  j  2k2, k  2) are so
chosen that the intervals [bjk’ bjk + Bk] cover the real axis infinitely often. This is
possible since E2k2 Bk = 03A31/k = 00. Also u ~ oo since
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As the translations 03B3y := y + iy intersect the disk - cjk  bkfor y E [bjk’ bjk + 03B5k]
(because this is true for y = b jk and for y = b jk + Ek, by definition of 0), it follows
that each yy intersects infinitely many disks Iz 

- cjk|  bk’ However, in each disk
|z - cjk|  bk we have

This completes the proof of Theorem 4. 0
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