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Preface

This work is devoted to the problem of factorizing a birational morphism
through blowing ups at regular centers [9].

The problem is resolved in case of surface. Zariski [1] proved around 1944
that every birational morphism between smooth surfaces over a field &k
is a composition of blowing ups at closed points. Later, around 1966
Shafarevich [2] proved the same theorem for regular schemes of dimension 2.
This leap was fundamental for questions of number theory and the classi-
fication of algebraic surfaces. Counterexamples are known (see [3]) to the
factorization theorem in general in dimension n. Nevertheless, in 1981
Danilov [4] managed to generalize the Zariski theorem. The theorem, which
he proves, is that every projective and birational morphism between smooth
algebraic varieties whose fibre are of dimension =<1 is a composition of
blowing ups at smooth centers of codimension 2. In this work, Danilov
admits the difficulties in the regular case. In the present work we prove the
theorem for regular schemes thus being valid in number theory and provid-
ing a further step in the later classification of algebraic varieties. The
theorem states:

THEOREM 5.3: Let n: X’ — X be a proper and birational morphism between
regular schemes whose fibres are of dimension < 1. n then factors, locally,
through a blowing up at a regular center of codimension 2. Furthermore if ©
is projective then m is a composition of blowing ups at regular centers.

This theorem is obtained as a corollary of a more general theorem in
codimension d which states:

THEOREM 5.2: Let m: X’ — X be a proper and birational morphism between
regular schemes. Let H,, . .., H, be the hypersurfaces of the exceptional
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cycle of m and let v, be the valuations centered at H; and whose center on X is
z;. We assume that:

(a) The exceptional fibres of T are equidimensional and of dimension d — 1.
(b) For every i, the factorization of the pair (Oy . , 0,) is by local regular rings
of the same dimension d.

Then 7 factors, locally, through the blowing up at a regular center of codimen-
sion d. Furthermore, if T is projective then T is a composition of blowing ups
at regular centers of codimension d.

We also obtain as a corollary of this theorem a necessary and sufficient
condition for a birational morphism to be a composition of blowing ups at
closed points. The theorem states:

THEOREM 5.4: Let m: X’ — X be a proper and birational morphism between
regular schemes whose locus is a closed point x. Let v,, ..., v, be the
valuations centered at the hypersurfaces of the exceptional cycle of n. Then n
is a composition of blowing ups at closed points if and only if the factorization
of the pair (U, O,) is by regular rings of same dimension.

Another theorem obtained as a corollary of theorem 5.2 is a different version
of a Moishezon theorem [5] when the exceptional fibre has a unique irreduc-
ible component.

THEOREM: Let m: X’ — X be a proper and birational morphism such that the
reduced exceptional cycle H is simple. Then, n(H) = Z is regular and 7 is the
blowing up at Z.

Before proving the theorem of factorization it is necessary to prove the
regularity of the centers of blowing up centers and concerning this we have
the following theorem.

THEOREM 4.4: Let m: X — X be a proper and birational morphism between
regular schemes whose exceptional fibres are equidimensional. For every x
belonging to the locus of , there exists an irreducible component of the locus
regular at x.

The methodology used in this work is the systematic use of valuations and
their properties (Section 1) and the duality theory for birational morphisms
(Section 3). Thanks to the duality one can define, given an integral scheme
X and a valuation v of its quotient field, one invariant which only depends
on X and v whose existence and properties have become very useful for the
study of birational morphism.



Factorizations for birational morphisms 277

Preliminaries and notations

In this work, it is assumed known the general theory of birational mor-
phisms which can be seen in [8]. The notations used in this paper also are
in [8]. All the rings and schemes, in this paper, are noetherian and excellent.
The following theorem is used no to mention

THEOREM: If X’ — X is a proper and birational morphism between noetherian
schemes where X is regular, then the closed set Z where n is not an isomorphism
(locus of ) has codimension =2 and n~'(Z) has codimension 1.

1. Valuations

Let X be a field. All valuations, in this work, will be discrete of rank 1. We
shall denote the valuation ring of a valuation » by @, and the maximal ideal
of O, by p,.

DEFINITION 1.1: Let X be a scheme having a function field . We shall say
that the valuation « centres on X at the point x € X (or at the irreducible
subscheme Y = {x} <= X) if its valuation ring ¢, dominates the local ring
of X at x, Oy, .

REMARK: Let n: X’ — X be a birational morphism. If » centres on X at the
point x” then » centres on X at the point x = n(x’).

DEerINITION 1.2: If x € X is a regular point, we define the normal valuation
of x (or »,-adic valuation) as the valuation », such that: for each f € O, ,,
v (f) = nifand only if f' € »/, and f ¢ »/*'. We denote v, = V, if Y is the
closure set of x in X.

This valuation is the multiplicity function at x; that is «,(f) = multiplicity

of (f), at x.

ReMARK: If X is normal and x € X is a point of codimension 1 then there
exists a unique valuation centred at x (its normal valuation). Indeed: O , is
a valuation ring and there are no dominating morphisms between valuation
rings.

DEFINITION 1.3: Let O be a local ring and let ¢, and 0O,, be two valuation
rings containing (. We shall say that »; < v, (with respect to 0) if

v, (f) £ v, (f) for every fe 0.
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PROPOSITION 1.4: Let O be a local regular ring with a closed point x.
(a) For every y € Spec O and z € { y}, v, £ v,.
(b) If v is a valuation with center x on Spec O, then v, < ».

Proof: (a) Is satisfied because the multiplicity is an upper semicontinuous
function [6].

(b) If O, o 0 and f, N O = s, then «(f) = 1 for every f€ m,. As
o(f*8) = v(f) + v(g) and o(f + g) 2 min{(/), v(g)} then fe !
implies »(f) = n.

PROPOSITION 1.5: Let m: X — Y be a birational and proper morphism between
regular schemes. If v, is the normal valuation of y € Y then v, centres on X at
an irreducible component F of 1~ ( y) and coincides with the normal valuation
of F.

Proof: Assume that », centres on X at x € X and let F be the irreducible
component of n~'(y) which goes through x. By proposition 1.4 »; <
v, £ v, with respect to Oy . Furthermore, by (b) of the same proposition

v, £ vy with respect to Oy ,. As Oy, < Oy, wehave vy, £ v, S v, £ vy

with respect to Oy . Therefore vy = v, = v, and so {x} = F.

DEFINITION 1.6: Let O be a local ring, « an ideal of ¢ and ¢, > (@ a valuation
ring. The value of v on a is v»(x) = min,,, {+(f)} = minimum value v of a
set of generators of a. »(«) does not depend on the ring @ in the following
sense: If 0 < 0" = 0,, thenv(a) = »(a + O") becauseiff|, . . ., f, generate
o, they also generate o+ (0.

PROPOSITION 1.7: Let O be a local regular ring having a closed point x; let o
be an ideal such that (&), has an irreducible component of codimension 1 and
let v be a valuation with center x. If v(o) = 1 then a is principal.

Proof: Let H be the irreducible component of (x), of codimension 1.
o= f) S =10, 1 =@ =r2(f) =g x)=12@E+
v(x;). Therefore »(x;) = 0and so x;is an invertible. Hence g = f;/x; € « and
a = (g)

COROLLARY 1.8: Let O be a local regular ring and let o be an’ideal of O whose
radical is the maximal ideal .. Let 1: X — X = Spec O be the blowing up
along sm,. If, for each point y € n~'(x), v,(¢) = 1, then « = s,.
Proof: By the previous proposition « - O is a principal ideal at each point
of X. Let f,, ..., f, a system of generators of a. As v (x) = 1 we can
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assume that v, (f;) = 1foreachi. Let H = (f;), and H, the strict transform
of H, by n. We have that: «* O¢ = (g)* (f,, . . ., f,) where g = 0 is the
local equation of n~'(x) and £, = 0 is the local equation of H,. Since
a+0p = (g) one has that A, n... N H, = ¢. Now, H nn"'(x) is a
hypersurface in n~'(x) ~ P,_, whose degree is equal to v.(f;) = I.
Therefore H, n n='(x), ..., H, n n~'(x) are hyperplane without any
point in common. So there exists n of them: A, N n~'(x), . . ., H, n n7'(x)
which do not meet. This says that f;, . . . , f, are linearly independent on
m|m*. Therefore f,, . . ., f, is a system of generators of .. Q.E.D.

DEFINITION 1.9: Let @, be a local ring having a closed point x and let » be
a valuation with center x. Let X; = Spec O be the blowing up at x and 0,
the local ring of X, at x, (the center of » on X}). One has O, = 0, = 0,.
We repeat this with ¢, and so on; one has O, = O, = 0, =

- < 0,. This process is called the factorization of the pair (0., 0,) by
monoidal transformations.

THEOREM 1.10: Let n: X — Y be a proper and birational morphism where X
is normal. Let O be the local ring of Y at y and v a valuation with center y.
If v centres on X at a point x of codimension 1, then the factorization of the
pair (0, 0)) is finite.

Proof- m is a morphism of finite type and so, locally at x, it is @ — O[f,/f;
..., flf]1 =B, f, fe 0 and O, = B,. Therefore, it is sufficient to show
that f,/f € O, for some i. Let a = (f, f;). We have to prove that a * 0, is
principal for some i. a0, < s, O, = (g,). Thereforea - O, = (g,) * ;.
If 0@, is not principal, then o, S »,. a0, < »,0,, = (g) and
@+ 0, = (g2) * o and so on; we have o« 0, = (g))° (&) * - * (g) " %,
v() = v(a-Oy) = v(g,) + v(g,) + - + v(g) + v(x). Therefore for
some i, v(x;) = O and hence a - O, = (g, * - - - * g).

REMARK: The only valuations which will be used in this work will be those
of the valuations of the above theorem.

2. Dualizing sheaf for a birational morphism

We use the theorems of the general theory of duality. These theorems and
the notations used have appeared in [6].

If n: X’ — X is a birational and proper morphism, we will call locus of
7 the closed set of points where 7 is not an isomorphism and we will call
exceptional fibre of n, n~' (locus of ).
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THEOREM 2.1: Let X be a regular scheme and let X = X be a proper and
birational morphism where X is normal. If Dy, is the dualizing complex of m,
then there exists an open set U < X containing the points of codimension 1 of
X such that

(@) #H'(Dyx)ly = 0fori # 0and #°(Di )|y = wgy is an invertible sheaf.

(b) If f: X' — X is another proper and birational morphism where X' is
normal and U and U’ are as in (a), then

(1)/\7/X|V = CU/‘"///Y ®f*(1)/\7/X|V where V = U’ (\fﬁl(U)

Proof: We can assume, locally at X, that one has the commutative diagram:

i
d
c Py

1/

If U is the set of regular points of X we have that i, restricted to U, is a
regular immersion. By the theory of duality for immersions one obtains, on
U, that

(——><|

Dt

) 0, i#d
H'(Dypy) = . ) .
an invertible sheaf wgpe, i = d

Since Dxpy ® i* Dpgx in derived category and

A 0fori # —d
H'(Dpyix) = ) . )
wp4,x, an invertible sheaf for i # —d

one can conclude (a).
(b) Is deduced from the following formula in derived category

D,i"/x = DX'/X' @ _f * Dj?/x

THEOREM 2.2: Let m: X — X be as above. Then

(a) The dualizing sheaf wyg,y defines a unique divisor Kyy on U whose support
is contained in the exceptional fibre of 7.

(b) If f+ X' —» X is another morphism as in the previous theorem, then
Keyy = Ky + f*Kgyon V =U" n f1(U).
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Proof: (a) As wgy = Oy out of the exceptional fibre of n, there exists a
divisor Ky, associated to wyg,, whose support is contained in the exceptional
fibre. If K%,y is another divisor in the conditions of Ky y then Kgy — Kgy =
D(f) where f has neither zeros nor poles in X outside the exceptional fibre.
Since the locus of 7 has codimension >2 we have that f has neither zeros
nor poles in X. That is to say it is an invertible and so D(f) = 0.

(b) By part (b) of the previous theorem Ky, + f* - Kgy is a divisor
associated to wg,, whose support is contained in the exceptional fibre of o f.
By (a) one concludes.

3. Definition of »(D) = value of divisor D for a valuation »
Let X be a regular scheme and let D be a Cartier divisor of X. Let ¥ be the
function field of X and » a valuation of . Let X > X be a proper and
birational morphism where X is normal and « centres, on X, at a point x,
of codimension 1. We define »(D) = coefficient of (n*D + Kgy) on x,,
Ky x being the divisor associated to wyy (dualizing sheaf of ).
THEOREM 3.1: »(D) does not depend on the chosen scheme X.
Proof: Let X’ be another scheme in the same conditions as X. We can
assume that there exists a morphism f: X’ — X since one can compare both
schemes with the normalization of the graph of the birational transforma-
tion existing between X and X".

Let x/ and x, be the centers of » on X’ and X respectively. By part (b) of
theorem 2.2 we obtain that

coef (Kgy) on x/ = coef (f*Kgy) on x| + coef Ky z on x|
Since as f'is an isormophism at x/ one has that

coef (f*D) on x, = coef D on x,, for any divisor D of X, and

coef (Kg ) onx, = 0

Therefore:

coef (1*D + Kgy) onx, = coef (f*n*D) on x; + coef (f*Kgy)

onx, = coef (f* z*D + Ky.,)onx Q.E.D.
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Properties of v(D)

We shall call the divisor zero on X, O,.

(a) The compute of »(D) is local; that is to say, if « centres at x € X and
Ui: - X is an open set of X containing x then »(D) = »(i*D).

(b) If » centres on X at a subscheme H of codimension 1 then »(D) =
coefficient of D on H.

(©) ©»(Oy) = v(Kyy) where n: X — X is such that » centres on X at a
point of codimension 1.

() »(Dy + D,) = v(D)) + v(Dy) — v(Oy).

(e) If /- X’ - Xis a proper birational morphism where X’ is normal and
v centres on X at a point where Ky, is defined, then

’U(D) = U(f*D) - U(OX') + U(KX'/X)

In particular, for D = Oy, +(Oy) = »(Ky/x).
(f) If fe X and D(f) is the divisor of zeros and poles of f, then

»(D(f)) = »(f) + »(Ox)

Proof: (a), (b) and (c) are proved by the definition.

(d) Let ¥ > X be such that » centres on X at a point of codimension 1.
By (b) and (c). »(D, + D,) = »(n*D, + n*D, + Kzy) = v(n*D, +
Kex + 7T*Qz + Kyy — Kgix) = ©(Dy) + U(Dz) — ¢(Oy).

(e) Let X = X’ be such that » centres on X at a point of codimension
1ov(D) = o(m*f*D + Kgx) = v(@*f *D + Kgy + n*Kgy) = «(f*D) +
v(*Kyx) = »(f*D) + v(m*Ky;x +Kgyy — Kgy) = «(f*D) +
U(KX'/X) __U(KX’/X') = »(f*D) + U(KX'/X) __’U(OX')-

(f) Let X = X be such that » centres on X at a point of codimension 1
o(D(f)) = «(@*D(f) + Kgx) = (D(f)) + »(Kgix) = »(f) + «(Oy).
Since every Cartier divisor is locally D(f), the properties (a) and (f) permit
one to reduce the computation of (D) to the computation of +(Oy).
Furthermore, we can get, by blowing ups, » to centre at a point of codimen-
sion 1 (theorem 1.10). So, by property (e), in order to compute »(Oy) it
suffices to compute K, where X’ — X is the blowing up a point.

PROPOSITION 3.2: Let O be a regular local ring with a closed point x. If p:
X - X = Spec O is the blowing up at x then Kgzx = (n — 1)E where
E=p'(x)and n = dim 0.

Proof: E is the divisor associated with the sheaf 0(1). As wgy is equal to
Oy outside E, one has that wgy = Og(K).p~'(x) = P%' = projective
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n — 1space over K = Spec O/n,. On the one hand w,_,,, x = Op;-'(—n),
and on the other; Wgspecx = j* W5y ® wppwherej: E — X is the canoni-
cal embedding. wgz = (fz//5)* = Op(—1). Therefore O(—n) = Ox(K) ®
O(—=1) = Og(K — 1).

COROLLARY 3.3: In the conditions of the theorem, if v, is the normal valuation
of x then v (Oy) = dim O — 1.

Proof: v, = vy by proposition 1.5 and so, «.(0y) = v, (Kgy) =
ve((n — DE) = n — 1.

COROLLARY 3.4: In the conditions of the corollary above, if D = X}_, nH,
is a divisor of X then v.(D) = Z[_, njm H, + n — 1 where s H, =
multiplicity of H, at x.

Proof: D = D(f)wheref = f" - - -+ - f"and (f;), = H,. By the property
(), v (D) = v, (f) + v (O,) = Zine (f) + 1 — 1.

PROPOSITION 3.5: Let X be a regular scheme and let v be a valuation having
a center x € X. If the codimension of x is n then v(Oy) = (n — 1)v(s,) the
equality being given if and only if v = v,.

Proof: We can assume that X = Spec O and let X 5 X be the blowing up
at x. »(0y) = v(Kgy) = v((n — 1)E) where E = p~'(x).m,* Op =
(f) = - By property (f) o((n — DE) = (n — Do(f) + «(0p) =
n — Do(se,) + »(O%).

If + centres on X at a point of codimension 1 then + = v, (proposition
1.5) and «(Oy) = 0. If » # «, we repeat the process and obtain »(Oy) =
(K — Do(se;) + v(0g) where % is the center of » on X and X’ in the
blowing up of Spec O ; at x and so on. We repeat the process up to centres
at a point of codimension 1 and we have then finished.

PROPOSITION 3.6: Let n: X — Y be a proper and birational morphism between
regular schemes whose exceptional fibre is formed by the hypersurfaces
H,, ..., H,. For each point y € Y the following is satisfied.

dim F, = Y vy (Oy) mH,

xeH,

F, = {x} being the irreducible component of n~'( y) at which v, centres on X
and m H; = multiplicity of H; at x.
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Proof: 1If n = codimension of y and K = codimension of x then

n—1 = 5,0 = vKyy) = vy<i »H,(0y>H.-)

i=1

= Y on(O) mH + K — 1

xeH,

The last equality is held by corollary 3.4.

4. Regularity of the centers of blowing up

PROPOSITION 4.1: Let n: X' — X be a proper and birational morphism between
regular schemes such that the exceptional fibres are equidimensional. For any
x € locus of m, the normal valuation of x, v,, centres on X', precisely at the
irreducible component of n='(x), F,, such that:

(@) There exists a unique irreducible component H of the exceptional cycle
going through F..

(b) H is regular at the generic point of F,.

(¢) The normal valuation of H coincides with the normal valuation of n(H);
that is vy = vyu).

Proof: Since the exceptional fibres are equidimensional, the irreducible
components Z,, ..., Z, of the locus of n are equidimensional and all
hypersurfaces H; of the exceptional cycle fulfill the expressions n(H;) = Z,.
Assume the codimension of Z; = d, and so.the dimension of the exceptional
fibres are d — 1. By proposition 3.6 one has:

d—1 = dmF, = Y v,(04) mpH,

FycH,

By proposition 3.5, v,(0Oy) = codimension of =n(H) — 1 =d — 1.
Therefore, there can only be one hypersurface, H, of the exceptional cycle
containing F,. Furthermore, »; H = 1 and v4(0y) = d — 1.

Part (c) is deduced from proposition 3.5.

Conversely: v (Oy) = vp (Kyx) = vp(Z vy, (Ox)H;) = Zp g vu(0Ox) *
mg H; + v (Oy). Since (a), (b) and (c) are satisfied, one has that

UFX(OX) = vn(H)(OX) + UFX(OX’) =d-1+K-1

where d = codimension of n(H) and K = codimension of F,.
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Therefore vz (Oy) =d — 1 +n—(d—-1)—1=n—1where n =
dim Oy, . By proposition 3.5 we conclude that v, = v,.

PROPOSITION 4.2: Let n: X* — X be a proper and birational morphism between
regular schemes and let x € X. If the normal valuation of x, v, centres on X',
at X', then m* Oy. . = m, .

Proof: By corollary 1.8, it suffices to prove that ».(»,) = 1 for each x €
p~'(x"), p: X > Spec 0Oy, being the blowing up along .. Since the problem
is local, we can assume that X' = Spec 0y . Letn = dim 0y,, K = codimen-
sion of x" in X’ = dim 0O, and s = codimension of X in X = dim 0.

One has n = K = s because n(x’) = x and p(X) = x’. Assume that
Ky x, the relative dualizing divisor of n is, locally at x’, the divisor of zeros
of g and assume that / = 0 is the local equation, at x, of p~'(x"). We know,
by proposition 1.5, that », = »,,

n—1

50 = veKpy) = vy(@) + v, (Oy)
= v(@ + K- 1

That is to say »,.(g) = n — K, (1).
By proposition 3.5

(n — 1) ve(om,) < v:(Oy) = ”i(KX'/X) = v:(g) + v:(Oy)
= v(8) + v:(Kgy) = v:(8) + v:(D(f*7)
= v:(9) + v)'((fk_l) +v:(08) = vi(@ + K—1+s5s—1 (%)

If g = 0 is the local equation of the strict transform of g = 0 by p and
m = multiplicity of g = 0 at x’, then one has that g = f”+g and
vi(8) = m + v:(8).

2@ = me(@o < Mm@ N (] £ degree of [@)y N (N in p~'(x) =
Pl = mp(g)y = vel®) = .
Therefore v,(g) = » + (@) < 2 v (9).
Going back to (*) we have that

= Dogm) <2 0,8 +K—1+s—1(1)20n —K) + K— 1
+s—1220—K) +2K—-1) = 2(n - 1)

Therefore vy(me,) = 1.
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LEMMA 4.3: Let O — (O be a finite morphism between complete local rings
with maximal ideals m and ' respectively. Assume that O’ is regular, O is
integrally closed and m+ G = s»’. Then O is regular and O = O’ is a
faithfully flat morphism.

Proof: We will prove this by induction on # = dim ¢. For n = 0 there is
nothing to say and suppose the theorem is true until n — 1. Let f € » and
fem*. f+ 0 0O = (f) = . Indeed: Let x € O such that x e - ©". We
have that x = f- ¢, t € O’. Therefore x/f e 0" and O = O[x/f] = O'.
Since O = O[x/f] is a finite morphism and as @ is integrally closed we
conclude that x/f € 0. If O/fis integrally closed, applying induction over the
morphism O/f = O’/f one has that ¢/f'is regular and so ¢ is regular. Let
us show that O/f is integrally closed: Let @, be the integral closure of O/f. We
have O)f = 0, = O’|f and O, = n~'(0,), being n: O’ — O’[f the
canonical projection. As n7'(0) = f+ 0" = 0, we can deduce that 4, =
f+ 0, is a prime ideal and @, = 0,/f. Tensoring by 0, (localized at z).
0, — 0,, we obtain a finite morphism such that 4 - (D'V, = (f) = 4. By
Nakayama ¢, = ), and so ¢ and (), are birational. Therefore ¢ = 0.
In order to prove that @ —, (" is a faithfully flat morphism it suffices to
prove that ¢ is a free ¢-module. Let K = dim,,,O/#’. By Nakayama’s
lemma ¢’ has K generators. Therefore, there exists the exact sequence:
0N 0@ - @® 0 - 0 - 0. Tensoring this sequence by O/»"
we have N/w'N 25 @, Olwd' - 0’| — 0, (1). If N, = Im ¢,, taking
lengths we obtain:

K-£(0l»") = £(N,) + £,(O|m™)

(O |m™) = Lo(O]n") - dimy,, O [
Therefore:

K-t(Oln") = ¢(N,) + K-£o (O [22™)
£ (O]m") = £,(O']m"") because Samuel’s polynomial is the same for all
local regular rings with the same dimension.

Therefore £ (N,) = 0andso ¢, = 0. Taking lim in the exact sequence (1)

we obtain

N =N%lmN -®0 = @0 - 0 -0

Thatisto say @ = |¢,| = ¢ = 0. Q.E.D.
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THEOREM 4.4: Let X’ > X be a proper and birational morphism between
regular schemes such that the exceptional fibres are equidimensional. For each
x € X, there exists an irreducible component Z of the locus of m which is
regular at x.

Proof: For each x € X, let F, be the irreducible component of n~'(x) at
which », centres. Let H be the irreducible component of the exceptional fibre
given by proposition 4.1. We will prove that Z = n(H) is regular at x. Let
X’ € X’ be the center of », on X”. So {x’} = F,and v, = »,. Let 0 and ¢’
be the local ring of X and X’ at x and x’ respectively. We know that
m, 0" = m, by proposition 4.2.

Firstly, we will show that we can suppose that ¢ is complete. If we
complete/xwth respect to the ideal »x m the morphism O/, < O’/ we
obtain O/ f; = O'[py ®,0 s 0 /ﬁ,, where O’/ is the completion of
O’ [ oy With respect to th%deal wm, . Since H is regular at x” we have that
g P is integral and so )/ #, is also integral. As O]z is regular if and only
if (9/ /2 1s regular, taking the morphism X"xg,., Spec 0 = Spec O instead
of © we can suppose that ¢ is complete.

By proposition 4.1, there exists a closed point y € F, where H and F, are
regular and s, * Oy, = 4, . If dim F, = K, let Z, be a regular subscheme
of H of codimension K which meets F, transversally at y. Restricting the
morphism 7 to Z,, we obtain a finite morphism 7: Z, —» Z. Applying lemma
4.3 we conclude if we prove that Z is integrally closed.

Let Z be the integral closure of Z. We have Z, - Z —» Z where Z %> Z
and Z, » Z are finite morphisms. Let X = ¢~ '(x). By lemma 4.3
0;; = 0, ,is a faithfully flat morphism. Therefore e, = e, ®g, 05, =
m,* Oz g, Oz, and s0 m; = m,* O,. By Nakayama’s lemma we finish if
Oz/m, = Oz]m;. In order to see this it suffices to prove that @'/, has no
algebraic elements over O/s,. If v, is the normal valuation of x then
Oc0 c0, and K = Olm, = O’ < 0,4,

Let #, = (x;,...,x,) be a minimal system of generators of x,,
O - 0[x,/x,...,x/x]=0c0, and £, 00O = (x;) = m0,.
Therefore O, /£, = K(x;/x,, . .., x,/x;). Q.E.D.

5. Theorems of factorization

DEFINITION 5.1: We shall say that the birational morphism n: X’ —» X
factors locally through a blowing up along a regular subscheme if for every
x € X there exists an open set U and a regular subscheme Z containing x
such that n='(U) = U factors through the blowing up at U n Z.
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THEOREM 5.2: Let n: X — X be a proper and birational morphism between
regular schemes. Let H,, . .., H, be the hypersurfaces of the exceptional
cycle of mand let v, be the valuation centred at H, with center, on X, z,. Assume:
(a) The exceptional fibres of m are equidimensional and of dimension d — 1.
(b) For everyi, the factorization of the pair (Oy . , 0, ) is by local regular rings
of the same dimension d. Then, ©t factors locally through a blowing up along
a regular subscheme.

Proof: We can assume that X = Spec ¢ where @ is a local regular ring
having a closed point x. Let Z be the regular component of the locus of ©
given in theorem 4.4. We know that n(H) = Z where H is just the irreduc-
ible component of the exceptional cycle which goes through the center of »_
on X’. We will prove by induction onn = dim @, that = factors through the
blowing up along Z. For n = 1 there is no problem.

Let X, X5 X the blowing up along Z and let I" be the graph of the
birational transform between X’ and X,

We have to prove that p, is an isormorphism. p, is an isomorphism precisely
at the points x" € X’ such that 4, - 0. . is principal.

Letx # y € Xsuchthatx e {y] € Z Themorphismn: X’ x, T > T =
Spec Oy, holds the assumptlons of the theorem and dim (QX‘ < n. So, by
hypothesis of induction, £, * ¢, . is principal for each x" € X’ such that
n(x’) = y. Therefore, we can assume that the locus of p, is contained in
n~'(x). Let Z, be an irreducible component of the locus of p, of codimension
=2, such that p;'(Z,) has codimension 1. Let A be an irreducible com-
ponent of p;'(Z,) and let Z, = p,(H). We have the following commutative
diagram:

(—'——-m|
‘—:—N

><

and H < Z, x, Z,.

dim Z, < n — 1. Indeed: If dim Z, = n — 1 then Z = x, Z, = p~'(x)

and V,, = Vj. By proposition 1.5,», = V,_,, = V;, and v, centres on X”
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at a point of codimension 1 (notice Z = x). But },, = V}j centres on X" at
Z, and one obtains a contradiction.

Since H is contracted on Z,, we have that p, is not an isomorphism at Z, .
Besides, n — 1 = dim A < dim Z, + dim Z,. Therefore dim Z, > n — d
since Z, < n~'(x) and so dim Z, > 1. (*)

Let H’ be the irreducible component of the exceptional cycle of p, which
goes through the center of ¥V, on I'. Let p,(H') = Z,.

dim Z, < n — 1. Indeed: if dim Z, = n — 1 then V3, = ¥, and since Z,
is an irreducible component of the exceptional cycle of &, by hypothesis (b),
V,, centres on X and on X, at points of codimension d. So, V7, centres on X
at Z and on X, at the subscheme of codimension d, p,(H"). But Z, < p,(H’)
and by (¥) we conclude that dim Z, = n — d and p,(H') = Z,. As
V,, centres on X at x, which is the center of V. on X, we obtain that Z = x
and d = n. But then dim Z, = 0 and this contradicts (x).

As H’ is contracted on Z,, one has that p, is not an isomorphism at the
points of Z,. Let y € Z, be the point at which V7, centres. On one hand
VaOp) = Vy(Ky) ===V, [d — DE] = d = 1 + V,(0y) =
d—1+codZ, — 1 £ 2(d — 1), and the other V,(Oy) = V,,(Kyx) =
Vo (Bioy V(O H) = Zyen, Vi (Og) * Vo, () + V2, (Oy) where f; = 0 is
the local equation of H; at y.

By proposition 3.5, V. (Oy) 2 cody — 1 and V,(0y) =2d — 1.
Besides, cod y — 1 = 1 because y is a point where p, is not an isomorphism.
Therefore, X, Vy, (Oy) - VZ,(f)) < 2(d — 1), and so there exists a unique
hypersurface H, such that y € H,. Furthermore, V,(f)) < V,(f,) = 1 and
Vi (Oy) < 2(d — 1). But ¥, (Op) = Vy(Kyy) = (d — 1) Vi (f) +
V4, (Oy). By hypothesis (b) and proposition 3.5, V,(Oy) 2 d — 1.
Therefore Vyy, = V, ., = V; and so H, = H (proposition 4.1). Hence
fiz° Oy, S sy is an ideal of codimension 1. But V, (4, 0y,) =
Voi(fiz) = V(o7 Ox) = V() = 1and by proposition 1.7 we obtain
a contradiction.

THEOREM 5.3: Let n: X’ — X be a proper and birational morphism between
regular schemes whose fibres are of dimension < 1. Then © factors, locally,
through a blowing up along a regular subscheme of codimension 2.

Proof: One has to verify conditions (a) and (b) of the above theorem. In this
case the exceptional fibres have dimension 1 and so 0y, is of dimension 2
for each ;. Therefore, condition (b) is satisfied because dim ¢, < dim 0, ,
for each ring ) of the factorization of the pair (0., 0,).
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THEOREM 5.4: Let m: X” — X be a proper birational morphism between regular
schemes whose locus is a closed point x. If v,, . . . , v, are the valuations with
centers of codimension 1 on X' then 1 is a composition of blowing ups at closed
points if and only if the factorization of the pair (Oy ., 0,) is by local regular
rings of the same dimension.

Proof: This is a corollary of theorem 5.2 noticing that there is only one
exceptional fibre: 7' (x) and noticing that one can factor successively by
blowing up at points because condition b) is always satisfied.

THEOREM 5.5: In the hypothesis of theorem 5.2. If n: X’ — X is, furthermore,
a projective morphism then  is the composition of the blowing up along regular
centers.

Proof: 1t is sufficient to prove that n factors through the blowing up along
a regular center since one is then able to factor the morphism successively
until no irreducible components of the exceptional cycle exist.

If X’ X is a projective morphism, then one has the commutative
diagram:

X <P

|/

X

If Z is an irreducible component of the locus of n then we call n, =
min (m,H being H = n(H) and H the intersection of X’ with a hyperplane
of P%).

Let{Z,, ..., Z,} be the irreducible components of the locus of 7 and let
Z, be such that n, = n, fori = 1,..., n. We shall prove that = factors
through the blowing up along Z,. Let x € Z,. We know by theorem 5.2 that
7 factors, locally at x, through the blowing up along Z, . In order to conclude
we have to show that Z, = Z,.

Assume that Z, # Z, and let U be an open set such that n='(U) — U
factors through the blowing along Z, n U. We have:

n~ ' (U)
I

U L X,

where p is the blowing up along Z, n U.
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Let F = p~'(x) and F = strict transform of F by 7. We take a generic
hyperplane, H, not containing F such that m, (n(H N X’)) = n,,. Let
H =a(Hn X'),n(Hn X’') = H, Z, = strict transform of Z, by p and
x € Z, n F a closed point. Since H’ does not contain F we have that
my, H = m H. Furthermore m H = degree of F n H' in P{~' = F which
is larger than m . H’. Therefore:

myH > m.H 2 my; H = my;H 2 ny
Hence one obtains n,, > n, and this contradicts the choice of Z,.

THEOREM 5.6: Let n: X’ — X be a proper and birational morphism such that
the reduced exceptional cycle H is simple. Then, n(H) = Z is regular and n
is the blowing up along Z.

Proof: By the theorem 4.4 and 5.2 it is sufficient to show that the exceptional
fibres of 7 are equidimensional. Let x € Z and F an irreducible component of
n ' (x). If d = cod Z thendim F > d — 1 because i: H —» Z is a propsr
morphism. We have that Vi(Oy) = Vi(Kyx) = Ve(V4(Oy) - H)
Ve(d — 1)H) =d — 1 + cod F — 1. By proposition 3.5, Vi(Oy) =
n — 1 where n = dim ¢y,. Therefore cod F2n —d + 1 and so
dmF <d-— 1. Q.E.D.
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