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Introduction

In this paper we shall prove two results. The first one is of interest in number

theory and automorphic forms, while the second is a result in harmonic
analysis on p-adic reductive groups. The two results, even though seemingly
different, are fairly related by a conjecture of Langlands [13].
To explain the first result let F be a number field and denote by AF its ring

of adeles. Given a place v of F, we let Fv denote its completion at v. Let 03C0

be a cusp form on GL2(AF). Write n = Q9v1tv. · For an unramified v, let
diag(cxv, 03B2v) denote the diagonal element in GL2(C), the L-group of GL2,
attached to 1tv. For a fixed positive integer m, let rm denote the m-th

symmetric power representation of the standard representation r, of GL2(C)
which is an irreducible (m + 1 )-dimensional representation. Then, for a
complex number s, the local Langlands L-function [14] attached to 1tv and
rm is

Here qv is the number of elements in the residue field of Fv .
Given a positive integer m, it is of great interest in number theory to define

the local factors L(s, 1rv, rm ) at all other places in such a way that the global
L-function

extends to a meromorphic (holomorphic in many cases) function of s with
a finite number of poles in C, satisfying a standard functional equation (cf.
[14] and [19]).

* Partially supported by NSF grants DMS-8521179 and DMS-8800761.
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On the other hand Langlands functoriality, when applied to the homo-
morphism rm : GL2(C) ~ G Lm+ 1 (C), implies the existence of an automorphic
form u on GLm+, (AF), called the m - th symmetric power of n, such that

where the L-function on the right is the Godement-Jacquet [4] standard
L-function of GLm+ 1. (While the existence of such a (J for all m would lead
to a proof of Ramanujan-Petersson’s Conjecture for the corresponding cusp
form 03C0 on GL2(AF), cf. [14], it is important to remark that the existence of
a even for m = 3 would provide us with the bound q1/6 for the Fourier
coefficients of n.) Consequently, the above mentioned properties of L(s, n,
rm ) would immediately follow from the known properties of L(s, J) (cf. [4]),
and therefore an affirmative answer to the second problem implies one for
the first one. While for m = 1 and 2 both problems have been affirmatively
answered (m = 1 is due to Hecke and Jacquet-Langlands [5], while for
m = 2 they were answered by Shimura [26] and Gelbart-Jacquet [3],
respectively; for m = 2 the second problem has also been solved in [2] using
the trace formula which does not seem to work for m  3 at present),
nothing as definitive is known for m  3, and the first aim of this paper is
to establish as definitive a result as possible for m = 3.

In view of the converse theorem for GL4, it is best to consider another
representation r03 of GL2(C), closely related to r3 and still of dimension 4,
namely ?3 = r3 p (A2r1)-1. In fact if the automorphic representation
6 = ~v03C3v of GL4(AF) is the image of n under the map defined by applying
functoriality to ?3: GL2(C) ~ GL4(C), and if v is an unramified place, then

where e = Ovw is a character of F*B~F, ~F = Ai. Since r03 generalizes the
adjoint square representation r02 = r2 (D (A 2r, 1 of GL2(C) introduced in
[3], in this paper we shall call it the adjoint cube even though r03 does not
factor through PGL2(C). We shall call 6 the adjoint cube lift of n. It is then
clear that J Q m will be the third symmetric power of n, where 03C9 is the

central character of n. To state our results we proceed as follows.
Fix a non-trivial character t/1 = ~v03C8v of FBAF. After defining the local

L-functions L(s, n, r° ) and root numbers e(s, 1tv, ?3, 03C8v) for every place v of
F in Section 1, we let (for Re(s) &#x3E; 1)



247

and

where o - ~v03C1v is a character of F*BUF. Now, if úJ is the central character
of n, write 03C9 = ccy 0 oco where cvo is a character of the compact group F*B~1F
and So is a pure imaginary complex number. Here a is the modulus character
of OF and 0’ F denotes its kernel. In view of the converse theorem for GL4 we
now state our first result, Theorem 4.1, as follows:

Let n be a non-monial cusp form on GL2(AF) (c, f : Section 4 and [3]) with
central character 03C9 = coo ~ ocso. Let 03C1 be a character of F*BU’. Assume that
the L-function L(s, n 0 03C103B1-s0/2) has no zero on the open interval (1/2, 1) or
the half open interval [1/2, 1) according as 03C9003C1 is trivial or not. Then L(s, n,
?3, o) extends to an entire function of s on C. It satisfies

Corollary 4.2 then states our results on the first problem for m = 3 by
restating Theorem 4.1 for the L-function L(s, n, r3).
As it is explained in Remark 1 of Section 4, if one believes in the

Weak Riemann Hypothesis stated there, one would immediately see that
Theorem 4.1 and Corollary 4.2 imply the holomorphy of both L-functions
on the entire complex plane, except possibly at s = 2 if Wo is non-trivial.
When F = Q and rc = 03C0f is a cusp form attached to a holomorphic

modular newform [1] on a congruence group 03930(N), N c- Z’, we prove a
proposition (Proposition 5 .1 ) which allows us to give examples for which the
condition of Theorem 4.1 is satisfied. In particular when f is a rational
newform of weight 2 on ro (N ), Corollary 5.3 proves that for all but 16
values of N  423, L(s, 03C0f, r3) is entire. This we have extracted from the
tables in [17], using a theorem of Shimura [27]. Consequently we have
avoided using any conjecture on elliptic curves in stating our results.

Existence of a global adjoint cube life 03C3 for rc requires twisting also by
a cusp form on GL2(AF). Even though a meromorphic continuation and
functional equation for such twisted L-functions can be proved, we prefer
not to discuss it in this paper. Instead in Section 3 we prove the existence of
a canonical local adjoint cube lift for every irreducible admissible represen-
tation of GL2 (F), unless it is an extraordinary supercuspidal representation.
Here F denotes any local field (Proposition 3.1). We refer the reader to
Remarks 2 and 3 of Section 3 on the uniqueness of such a lift.
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Proof of Theorem 4.1 is based on mixing the properties of Rankin-
Selberg L-functions for GL2 x GL3 applied to 03C0 x n (Theorem 4.2) and
those of Eisenstein series on a group of type G2. Here n is the adjoint square
lift of 03C0 (cf. Sections 1 and 4; also see [3]).
There is a second set of results in this paper which is completely local, even

though one of the proofs given is global. To explain, let G be a split group
of type G2 over a non-archimedean field F of characteristic zero. Let P be
the parabolic subgroup of G generated by the long root of G. Write
G = MN. Let A be the center of M. Then the short root a of G may be

identified as the unique simple root of A in the Lie algebra of N. If e is half
the sum of positive roots in N, we let  = 03C1, 03B1&#x3E;-1 03C1 as in [21]. We then
identify C with a subspace of a*, the complex dual of the real Lie algebra
of A by sending s e C to sâ e a*C. For s e C ci a*C and an irreducible
admissible representation 03C0 of M = M(F), there is defined a complex
number p(s, 03C0), the Plancherel Constant attached to s and n, which is of great
importance in harmonic anlysis on G = G(F) (cf. [29]). The second result
of this paper, Proposition 6.1, states that: if 03C0 is infinite dimensional with
central character co, then

Here

y(s, co, 03C8) is the Tate y-function attached to the character co (cf. Section 2),
and y(G/P) is a constant depending on the measures defining the y-functions
(cf. [29]). Moreover the additive character ik is such that the defining
measures are self dual with respect to 03C8.
As consequences of this result we prove two propositions. The first one,

Proposition 6.2, proves a conjecture of Langlands on normalization of
intertwining operators defined by P and n [13], while the second one,
Proposition 6.3, gives an exotic part of the tempered dual of G. More
precisely, it determines when the representation I(03C0) induced from a discrete
series n is reducible. As it is remarked at the end of Section 6, we hope to
study the unitary dual of all the rank 2 split p-adic groups in a future paper.

Proposition 6.1 is an easy consequence of Proposition 2.2 whose proof is
local unless n is supercuspidal in which case we had to use global methods
and frankly we do not see how it can be done locally at present. More
precisely, we have imbedded our supercuspidal representation as the unique
supercuspidal component of a cusp form on GL2(AF). We would like to
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thank L. Clozel for explaining this to us. Thanks are also due to J. Rogawski
for informing us of a reference to this in Langlands’ book [15].

Finally, in an appendix, we prove that if rs is the six dimensional irreducible
representation of SL2(C), the L-group of PGL2, then the L-function

Ls(s, n, r5) is non-zero (and holomorphic if 03C0 is attached to a holomorphic
form; this was first observed by Serre) on the line Re (s) - 1, except
possibly for a simple zero at s = 1 (simple pole at s = 1, respectively). As
it has been pointed out by Serre [20], this will provide us with the best
evidence for the validity of the Sato-Tate’s conjecture [19] so for (see the
remarks before Theorem A).

1. Adjoint cubes and local factors

We start by defining the following representation of GL2(C) which is more
appropriate than the symmetric cube representation r3 for formulation of
our global results. The adjoint square of Gelbart-Jacquet [3], which we
denote by ?2 is simply r2 ~ (039B2r1)-1. We then define a similar representation
attached to r3 by ?3 = r3 ~ (A 2rl)-’ . In this paper we shall call ?3 the adjoint
cube representation of GL2(C). But the reader must be careful with the term
adjoint since r3 does not factor through PGL2(C). We finally remark that for
rm , for example when m is odd, the appropriate substitute is r0m = rm (8)
(039B2r1)-(m-1)/2.
We shall now define the local factors for both r3 and ?3. Throughout this

section we shall assume that F is a local field and n is an irreducible
admissible representation of GL2(F).
We start with the archimedean places. If F is archimedean, let 9 be the

homomorphism from the Weil group WF = W(F/F) into the L-group
GL2(C) of GL2, attached to 03C0 (cf. [16]). We then set

where the L-function on the right is the Artin L-function attached to "3 . (P
(cf. [25]).

If 03C0 = n(p, v) is an unramified principal series, it then immediately
follows that

From the standard relation
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it follows that for every unramified or archimedean place v,

where L(s, n x II) is the Rankin-Selberg L-function for the pair n and II
(cf. [7]) and L(s, 03C0) = L(s, n, r, ) is the Hecke-Jacquet-Langlands L-function
attached to n. Here II is the Gelbart-Jacquet lift of 03C0 (cf. [3]).
We shall now use (1.2) to define L(s, n, r03) for the non-archimedean

ramified places.
If 03C0 = n(p, v) is a ramified principal series (not necessarily unitary), then

it follows at once that (Proposition 9.4 of [7])

as expected.
Next assume 03C0 is special, i.e., 03C0 = 6 (03BC03B11/2, 03BC03B1-1/2), where a denotes the

modulus character aF. Then by [3] TI is the unique square integrable com-
ponent of

Now by Theorem 8.2 of [7], one has

and

We then set

It clearly satisfies (1.2).
It remains to study those n which are supercuspidal. Thus let n be an

irreducible supercuspidal representation of GL2(F), where F is a non-
archimedean local field. Then L(s, n) = 1 and L(s, n x 03A0) = 1 unless
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where 03C0’ is supercuspidal and q is a quasi-character of F*. Here P2,, is the
parabolic subgroup of type (2, 1).

In this case by Proposition 3.3 of [3], 03C0 is not extraordinary, and therefore
by the discussion in page 488 of [3], there exists a quadratic extension
K of F and a character X of WK, the Weil group of K such that if r = Ind( WF,
WK, X), then 03C0 = 7r(T). Observe that we may assume;( E K*. It also follows
from the same discussion that if x’ is the conjugate of x, i.e., X-(a) = ~(03C3(a)),
0" E Gal(KI F), 0" i= 1, and y = Ind( WF, WK, ~~’-1), then 03C0’ = 03C0(03BC) and 1
is the class field character of F* defined by KIF, i.e., Ker (il) = NK/F(K*).
Now observe that L(s, n x 03A0) = L(s, 03C0 x 03C0’) and therefore L(s,

03C0 x II) i= 1 only if 03C0’ ~ 7i @ otso, where a = aF . det and so e C (Prop-
osition 1.2 and Corollary 1.3 of [3]).

Consequently

Given every quasi-character o of F*, let QIIF E K* be defined by 03C1K/F =
(l°NK/F. Then (03B1F)K/F = ax, the modulus character of K*. Now the above
isomorphism happens if and only if either

or

The first case implies that x factors through the norm. This contradicts the
fact that 03C0 is supercuspidal. The second equality implies ~2~’-1 = oc"’

Consequently, if n = n(i), where i = Ind(WF, WK, x) with x a quasi-
character of K* which does not factor through the norm but ~2~’-1 = 03B1s0K,
then L(s, n x TI) may have a pole. More precisely, by Corollary 1.3 of [3]

if n xé n O 110’ where 110 is the unramified quadratic character of F*, and
equals (1 - q-(s+s0)-1 otherwise.

Finally, suppose 03C0 ~ n Q 110 and assume 110 =1= 1. Then since 110 . NK/F =1= 1, 
this implies
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Consequently

which again implies that x factors through the norm, a contradiction.
Therefore, if 03C0 ~ 03C0 ~ ~, then il = ’10 and K/F is unramified.
Given every field E and a quasi-character (2 of E*, let LE(s, (2), SEC, be

the corresponding Hecke L-function. More precisely, define

if 03C1 is unramified, where ME is a uniformizing parameter for the ring of
integers of E and qE = ImEli1. Otherwise, we let LE(s, 03C1) = 1. We now

summerize what we have proved as:

PROPOSITION 1.1: Let n be an irreducible supercuspidal representation of
GL2 (F), where F is a non-archimedeanfield. Denote by 1-1 the Gelbart-Jacquet
lift of n.

(a) Suppose n = n(r), where r = Ind(WF, WK, X) with [K: F] = 2.
Regard X as a character of K*. Then

(b) Otherwise, i.e., if n is extraordinary, then

Now, let 03C0 be an irreducible supercuspidal representation of GL2 (F). If

Otherwise, set

Observe that by Proposition 1.1 it always satisfies (1.2).
Finally, if E(s, n x fi, 03C8) and e(s, n, 03C8) are the corresponding root

numbers, we let

Here t/J is a non-trivial character of F.
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The factors for r3 are then defined to be

and

Here ce is the central character of n. Observe that

Similarly for 8(S, n, r3, 03C8).
Finally, if 03C0 = n(i) is supercuspidal with i = Ind( WF, WK, X), x E *,

then

This follows from the equality co = xq, where 1 is the character of F*

defined by KIF and X denotes the restriction of X to F*.

2. Adjoint cubes and local coefficients

In this section we shall relate the local factors defined in the previous section
to certain local coefficients defined in [22] (also cf. [23]). Later in Section 6
we shall use this to find a formula for certain Plancherel measures for a

group of type G2.
Let G be a split group of type G2 defined over a local field F of character-

istic zero. Fix a Cartan subgroup T in G and let a and fi be the short and
the long roots of T in B, a Borel subgroup of G containing T, respectively.
Given a root y of T, let H03B3: F* ~ T be the corresponding coroot. Let M be
the centralizer of the image of H203B1+03B2 in G. It is a Levi factor for the maximal
standard parabolic subgroup P of G generated by 03B2. We start with the
following lemma.

Proof Given a root y of T in B, let X03B3 : F - G be the corresponding
one-dimensional subgroup. The group generated by the images of Xp, X-p,
and H203B1+03B2 is a closed subgroup of G contained in M and isomorphic to GL2 .
On the other hand M, being centralizer of a torus, is a connected reductive
group of dimension 4, containing GL2. By connectedness and equality of
dimensions, it then must equal GL2.
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Now, let F be a non-archimedean field. Fix a non-trivial additive charac-
ter gi of F. It then naturally defines a non-degenerate character of the
F-points U of the unipotent radical U of B. Let A be the center of M. Then
a may be identified as the unique simple root of A in the Lie algebra of N,
N g U, the unipotent radical of P. If Q is half the sum of positive roots in
N, we let à = 03C1, 03B1&#x3E;-1 03C1 as in [21]. Then belongs to 03B1*C, the complex dual
of the real Lie algebra a of A. We now identify C with a subspace of a* by
sending s e C to s ~ a*C.

Let 03C0 be an infinite dimensional irreducible admissible representation of
M = M(F). Denote by Cx(s, 03C0) the local coefficient (cf. [22]) attached to sâ,
n, x, and the reflection w203B1+03B2. If the notation of [22] is used, this will be
denoted by C~(-s, n, {03B2}, w203B1+03B2). It is very important to compute Cx(s, n).
Beside its arithmetic importance (cf. Section 4) it can be used to compute
certain Plancherel measures which we shall explain later.
For a quasi-character 0 of F*, let L(s, 0) and 8(S, 0, gi) be the correspond-

ing Hecke L-function and root number. Set

Also let

Similarly define y(s, 7t, r3, 03C8). We shall now prove:

PROPOSITION 2.2: Let n be an infinite dimensional irreducible admissible
representation of GLz(F), where F is a local field of characteristic zero. If 03C9
is the central character of n, then

provided that the measures defining Cx(s, n) are self dual with respect to 03C8.

Proof. Assume first that 03C0 is not supercuspidal. Then it is a subrepresenta-
tion of a principal series (not necessarily unitary) 03C0(03BC, v), (03BC, v) E (F*)2.
Moreover C~(s, n) = C~(s, n(J.1, v)). The identification M = GL2(F) is such
that H03B2(t) = diag(t, t-1) and H203B1+03B2(t) = diag(t, t), t E F. This then implies
H303B1+203B2(t) = diag(t, 1), H303B1+03B2(t) = diag(l, t), H03B1(t) = diag (t-1, t2), and
finally H03B1+03B2(t) = diag(t2@ t-1), t C F. Using Proposition 3.2.1 of [22] and
Lemma 4.4 of [23], it can now be easily shown that
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where m = 03BCv. The proposition in this case is now a consequence of
Theorem 3.1 and Remark 3.3 of [7] which imply the equality of

with

Next suppose 03C0 is supercuspidal. We may assume it is unitary. By the
discussion in Pages 227-230 of [15], there exists a cuspidal automorphic
representation o- = ~v03C3v of GL2(AK), K global, such that if Kvo - F, then
6vo - n, while for every other finite place v ~ vo of K, 6v is unramified.
Whether a is monomial or not, let E be its lift as in [3] (cf. Page 491

of [3] for the lift of a monomial representation). When (7 is monomial Y- is
not cuspidal but still automorphic and always equals a full induced repre-
sentation from either P2,1(AK) or B3(AK) (cf. [3]). At any rate (2.2.1) now
follows from comparing the functional equation proved in [22] and those
satisfied by L(s, u x E) and L(s, 03C3) (cf. Theorem 4.1 of [22], together with
Theorems 5.1 of [24] and 3.1 of [25], respectively, for L(s, a x L)). This
completes the proposition.

COROLLARY: Replace n by 71 ~ co. Then

3. Local adjoint cube liftings

In this section F again will be a local field of arbitrary characteristic. Given
an irreducible admissible representation Q of GL4 (F), let L(s, 03C3) and
8(S, a, 03C8) denote its standard L-function and root number defined by
Godement and Jacquet in [4], respectively.

Fix an irreducible admissible representation 03C0 of GL2(F). Given a quasi-
character Q of F*, let

and
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DEFINITION: An irreducible admissible representation 03C3 of GL4(F) is called an
adjoint cube lift of n if the following conditions are satisfied:

(i) If w is the central character 017r, then the centeral character of a is W2 ,
and

(ii ) for every quasi-character 03C1 of F*

and

REMARK 1: Suppose 03C8 is replaced by 03C8a defined by 03C8a(x) = 03C8(ax), where a
and x are in F and a ~ 0. Then it can be easily shown (using the results of
[7]) that

Moreover by relation (3.3.5) of [4]

and

where Wa is the central character of 6. But now condition (i) implies that if
a is a lift for some 03C8, then it is a lift for every 03C8, and therefore the lifting does
not depend on the choice of 03C8.

REMARK 2: The uniqueness of local adjoint cube liftings will require twisting
of 03C3 with irreducible admissible representations of GL2(F) as well; and since
that is not yet available, one cannot expect a uniqueness statement (cf.
Remark 3 below).

In this section we shall prove:

PROPOSITION 3.1: (a) Unless F is non-archimedean and n is extraordinary,
every n admits a canonical adjoint cube lift 03C3 which is explicitly given in the
proo f.

(b) If F is non-archimedean and n is extraordinary and admits a lift a, then
6 is either supercuspidal or is a constituent of a representation induced from
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a supercuspidal representation of GL2 (F) x GL2 (F), regarded as Levi factor
of GL4(F).

Proof : First assume F is archimedean. Let cp: WF ~ GL2(C) be the homo-
morphism attached to n. Then r03 · 9: WF ~ GL4(C) defines an irreducible
admissible representation of GL4(F). We contend that this is our 6. In fact

Similarly for root numbers.
Now suppose F is non-archimedean. First assume n = n(p, v). Write

J.1V-l = ~03B1t with 1 unitary and t E R. Here a = aF is the modulus character.
Let

If t = 0, then 03BE is irreducible and quasi-tempered. We let o = 03BE. Now
condition (i) is trivial while (ii) follows from Theorem 3.1 (i) and Proposition
8.4 of [7]. Otherwise if t &#x3E; 0, 03BE may fail to be irreducible but it has a unique
irreducible (Langlands) quotient. We then let u be this quotient. Condition
(ii) in this case is a consequence of Theorem 3.1 (i) and Proposition 9.4 of
[7].
Next assume n is special, 1,e., x = 6 (Mal /2 03BC03B1-1/2). The representation

has a unique quasi-square integrable constituent. We then let J be this
constituent. Its central character is J.14 = w2. Givenv E F*, it is easily seen
that (cf. Theorem 7.1 of [4])

The equality of root numbers now follows from the identity

and (3.1.1 ).
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Finally assume 03C0 is a non-extraordinary supercuspidal representation.
Then there exists a quasi-character x of K*, [K : F] = 2, such that n = 7r(ï),
where i = Ind( WF, WK, X). For simplicity, let for every quasi-character
0 of K*, n(Q) = 03C0(03C403C1), where r, = Ind( WF, WK, Q). The representations
03C0(~2~’-1) and 03C0(~) = 03C0 have ~~ as their common central character. Here X
denotes x |F* and 1 is the quadratic character of F* defined by K. Write
~|F* = ~03B1t, ~~ = 1 and t E R. Then 03C0(~2~’-1) ~ 03B1-t/2 and 03C0(~) Q 03B1-t/2 are
both tempered and therefore the induced representation

being quasi-tempered is irreducible with central character ~2|F*. We contend
that this is a 6 which lifts 03C0 = 03C0(~).

Clearly for every quasi-character o of F*, relation (1.3) implies:

For root numbers, consider

But

and thus (3.1.2) equals:

But by equations (1.5.6) and (1.5.7), and paragraph (1.8) of [3]

Moreover
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Since the Gelbart-Jacquet lift of 03C0 is

it follows immediately that (3.1.3) is equal to

which by definition is y(s, n, ?3, Q; 03C8). The equality of root numbers is now
a consequence of the equality of L-functions. This completes part (a). We
leave the trivial argument proving part (b) to the reader.

REMARK 3: To obtain a unique lift one would need to require more con-
ditions (cf. Remark 7.5.4 of [6]). As global considerations dictate, these extra
conditions must be related to the local factors attached to twists of 03C3 with
irreducible admissible representations of GL2(F). We are not able to state
these extra conditions since a similar result in the side of n is not yet
available. At any rate we believe that the lifts given in Proposition 3.1 are
in fact the ones which will satisfy the extra conditions yet to be defined. That
is why we call them canonical.

4. Global results

Throughout this section Fwill be a number field. We use AF and OF to denote
the adeles and the ideles of F, respectively. Moreover if a denotes the
modulus character of OF, and 0’ is the kernel of a, then OF = UF x R* , where
Rt is the multiplicative group of positive real numbers. Given a character
0 of F*BUF, there exists a unique pure imaginary complex number so and a
unique character o0 of the compact group F*BOF such that o - 03C10 ~ aso. In
this way every character of F*BOF may be considered as one of F*B~F, trivial
on Rt .

Let n be a cusp form on GL2 (AF) . We shall assume that ’Ir is not monomial
(cf. [3]). This means that n is not of the form 03C0(03C4), where r is a two
dimensional irreducible representation of W(F/F), Weil group of FIF,
induced from W(,FIK), where [K : F] = 2. This is equivalent to the fact that
if 17 is the quadratic character of OF defined by K, then 03C0 ~ 03C0 ~ ~ (cf. [12]).
Then by [3] there exists a cusp form n on GL3(AF) for which
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where the L-function on the left is the standard Godement-Jacquet [4]
L-function of II. This is the global Gelbart-Jacquet lift of n.
An automorphic form 03C3 = ~v03C3v on GL4(AF) is called an adjoint cube lift

of n = ~v03C0v if for every v, uv is an adjoint cube lift of 1rv. Observe that by
strong multiplicity one theorem for GL(4) (cf. [9]) and equation (1.1), if a has
a cuspidal adjoint cube lift, then the lift is unique. It is of great importance
to see whether a cusp form n on GL2(AF) admits an adjoint cube lift on
GL4(AF) which is cuspidal. (This, for example, would lead to the bound ql/6
for the Fourier coefficients of non-monomial cusp forms on GL2 (AF) and in
particular, when F = Q, for Maass wave forms.) In view of the converse
theorem for GL4, it is in the direction of this existence that we shall prove
Theorem 4.1 below. We need some preparation.

Fix a non-trivial additive character t/1 = ~v03C8v of AF trivial on F. We shall
now define our global L-functions and root numbers. More precisely, given
a character g = OvQv of F*BUF and for Re (s) &#x3E; 1, let (cf. Theorem 5.3 of
[9] for convergence):

and

where the local factors are defined as in Section 3.

We set

and

where 03C9 is the central character of n. Similarly for root numbers. We observe
that the existence of a global adjoint cube implies the existence of a global
symmetric cube a (8) w which satisfies

and
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Write 03C9 = 03C90 0 03B1s0, where So E C is pure imaginary and ccy is a character
of the compact group F*B~1F. They are both uniquely determined by cv. The
following theorem may be considered as the first step towards the existence
of global adjoint cubes. It is different from any previous result since we are
now able to twist with any character of F*BUF. (In fact it is enough to twist
with characters of F*B~1F.)

THEOREM 4.1: Let n be a non-monomial cusp form on GL2(AF) with central
character 03C9 = ccy 0 03B1s0. Let 03C1 be a character of F*B91. Assume that the
Hecke-Jacquet-Langlands L-function L(s, n 0 (la-so/2), has no zeros on the
open interval (1/2, 1) or the half open interval [1/2, 1) according as 03C9003C1 is

trivial or not. Then L(s, 03C0, r3, (l) extends to an entire function of s on C. It
satisfies

COROLLARY 4.2: With notation as in Theorem 4.1 assume that the Hecke-

Jacquet-Langlands L-function L(s, 03C0 ~ wOCX-so/2) has no zeros on the open
interval (1/2, 1) or half open interval [1/2, 1) according as (03C930 is trivial or not.
Then L(s, 7r, r3) extends to an entire function 01 s on C. It satisfies

REMARK 1: The Weak Riemann Hypothesis for the Hecke-Jacquet-
Langlands L-function must state that L(s, n Q a-so/2) is non-zero for all real
s unless s = 1/2. If one believes in this, one would immediately see that the
theorem and its corollary imply the holomorphy of both L-functions on the
entire complex plane, except possibly at s = 1/2 if cvo is non-trivial.

REMARK 2: One remarkable fact about the adjoint cube (and in fact odd
degree adjoint cube L-functions L(s, 03C0, r0m), r0m = rm Q rl(m-l)/2) L-functions
is that

for every character 03C1 of F*BU, and therefore the twisting with a character is
attained by twisting the original form n. This is not the case with the even
degree adjoint L-functions. In fact, defining r0m - r m (8) r-(m-2)/21 for even m,
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it is clear that if nv is unramified and a, is the class one representation of
GLm+1(Fv) which satisfies

then

This may justify the use of the two sheet cover of GL (2) in [3, 26] when
m = 2.

To prove Theorem 4.1 we need some preparation.
Fix an integer n  1. Let - ~v03C3v and o - Q9v(!v be two cusp forms on

GLn-l (AF) and GLn(AF), respectively. For Re (s) &#x3E; 1, let

where at each v  oo, L (s, 6v x 03C1v) is the Rankin-Selberg L-function
defined in [7]. Moreover, when v = oo, we let L(s, 6v x Qv) be the Artin
L-function attached to the tensor product of the representations of W(Fv/Fv)
which correspond to (Jv and through local class field theory at v (cf. [8]).
We shall now show how the following result can be deduced from the
existing literature.

THEOREM 4.3: (Jacquet-Piatetski-Shapiro-Shalika) The L-function L(s,
a x o) extends to an entire function of s on C.

Proof.- The discussion in Paragraph 3.5 of [10] (page 801) implies that the
zeta function given by the left hand side of equation (3. 5.1 ) of [ 10] (page 801 )
is in fact entire. Moreover for each v, the L-function L(s, uv x Qv) has
exactly the same poles as the local zeta function ’P(s, Wv , W’v) in the notation
of [10] (cf. [7] for v  oo, while for v = oo we refer to the discussion at the

end of page 14 of [8] for the case n x (n - 1)). But now the theorem is a
consequence of the fact that for Re(s) sufficiently large 1-IvY(s, Wv, Wv’) is
just the right hand side of equation (3.5.1) of [10].

Proof of Theorem 4.1: The functional equation (4.1.1) is just a special case
of Theorem 4.1 of [22]. Next for every finite v, let Pv be the unique poly-
nomial in qv 1, satisfying Pv(0) = 1 such that Pv (qv s) is the numerator
of 03B3(s, 03C0v ~ Qv, r’, 03C8v). It is easy to see that unless nv 0 Qv is a class one
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complementary series representation of GL2(Fv)

Consequently by Proposition 2.2, the L-function L (s, 03C0v, r3, ov ) will appear
in the numerator of C~v(s, 03C0v Q and therefore the poles of L (s, 03C0v, r03, Qv)
are among those intertwining operators (Part (b) of Proposition 3.3.1 of
[22]). In particular if F = Q, the L-functions given in Section 1 of this paper
are the same as those defined in Section 6 of [21]. Moreover if nv is a class
one complementary series, then the polynomial L(s, 03C0v, r03, 03C1v)-1 will have
no multiple factors and therefore by Proposition 5.9 of[21] again the poles
of L (s, 03C0v, r3,Q,,) are among those of intertwining operators. Finally let us
consider those v = oc for which nv 0 03C1v is ramified. Then it is either

tempered or a non-class one (i.e. ramified) complementary series. If it is

tempered then it is easily checked that L (s, 03C0v, r’, Q,) has no poles for
Re (s) &#x3E; 0. Otherwise, the estimate that results from part (4) of Theorem
9.3 of [3] will be more than enough to assert the same fact, at least when
Re (s)  2. We should remark that the fact that the representation is

ramified is crucial.
Let S be a finite set of places containing all the ramified ones (archimedean

or not), such that if v = oo and 1Lv (D Qv is of class one, then v e S. Now the
proof of Theorem 6.2 of [21] implies that for Re (s) 1 2, the poles of

are all on the interval [1/2 - so, 1 - so).
Next the discussion at the beginning of this proof and an argument similar

to Lemma 6.3 of [21] shows that for Re (s)  1 2, the poles of llves L(s, n,
ro, Q,) outside the line Im(s) = - so/2 are among the zeros of LS(s, 03C0, r03,
Q) and therefore for Re (s) 1 2, all the poles of L(s, nv, r03, ov) belong
to the interval [1/2 - so /2, 1 - (so /2)). Observe that if L(s, 03C0 (8) 03C103B1-s0/2
has no zeros on [1/2, 1), then the same is true for L(s, 03C0 (8) Q) on
[1/2 - so /2, 1 - (so /2)).

Finally, we appeal to Corollary 6.5 of [21] to conclude that L(s, n, r03, Q)
has no pole at 1/2 - so /2 if 03C90 03C1 is trivial (assuming the Weak Riemann
Hypothesis discussed above this is very important). Now the Theorem is
a consequence of the functional equation (4.1.1 ) and the holomorphy of
L(s, 03C0 x (rl (8) 03C1)) on this interval by Theorem 4.3.

REMARK: The introduction of the polynomial Pv(q-sv) is not necessary in the
proof of Theorem 4.1. In fact unless 03C0v Q ov is a class one complementary
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series, L (s, n , r03, 03C1) will have no poles for Re (s) &#x3E; 0. We have intro-
duced the polynomials P(q-s) as to show that, at least when F = Q, the
L-functions defined here agree with those defined quite generally in [21].
We now state the following Corrollary of the proof of Theorem 4.1.

CORROLLARY: Let n be a cusp form on PGL2(AF). Then L(s, n, r3) is

holomorphic at the middle of the critical strip s = 1/2.

5. Examples

Throughout this section we shall assume F = Q. There is a wealth of

examples when the assumption of Theorem 4.1 holds. In fact as it is

remarked in [18], direct computations have shown that for every holo-
morphic cusp form (with respect to SL2(Z)) of weight less than or equal
to 50, L(s, 03C0) ~ 0 for s E (1/2, 1) and therefore for these forms L(s, n, r° ) =
L(s, 03C0, r3) is entire.
Now, for a positive integer N let 03930(N) be the congruence group

If 1)* is the union of the upper half plane b and the cusps of ro(N), let
Xo(N) = F0(N) b*. The image I of [0, ioo] in Xo(N) is called the funda-
mental arc.

Let k be a positive integer. Fix a newform f e S2k(r0(N)) in the sense of
Atkin and Lehner [1]. Here S2k(03930(N)) denotes the space of cusp forms of
weight 2k with respect to 03930(N). Then f is an eigenfunction for all the Hecke
operators and therefore has real Fourier coefficients. Consequently
f(iy) = 03A3~n=1 ane-2nny takes only real values. We now prove:

PROPOSITION 5.1: Let f ~ S2k(03930(N)) be a newform. Denote by 1tf the corre-
sponding cuspidal automorphic representation of GL2(Aa). Assume that the
real valued function f| never changes sign. Then L(s, 03C0f) ~ 0 for s e (1/2,
1) and therefore L(s, 1tf’ r3) is en tire.

Pro of. Let s’ = s + k - 1/2. Then for Re (s’) &#x3E; 1 + k (cf. Theorem 3.66
of [28])
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where A - N- 1/2 and i = -1. Changing y to 1/Ny and using the

equation

where

(notation as in [28]), the first integral in (7.6.2) can be written

Since f is a newform, part (iii) of Theorem 3 of [1] implies that g = ± f
and therefore (5.1.1) equals to

But for y &#x3E; A = N-1/2 and s’ &#x3E; k, i.e., s &#x3E; 1/2, (5.1.2) is non-zero since
f(iy) never changes sign. This completes the proposition.

Next, let X be a smooth projective variety over Q for which

X(C) = Xo(N). Assume k = 1, i.e., f is a newform in S2(03930(N)). Suppose
f has rational Fourier coefficients. Then by Theorem 1 of [27], there exists
an elliptic curve E over Q and a non-constant Q-morphism cp: X ~ E such
that ~*03C9 = f(z) dz, where co is a differential of the first kind on E(C). We
observe that since f is a newform this will not be the case for any Xo (M ) with
M  N. As in [17], we shall call the ramification points of 9 (as a map
between Xo(N) and E(C)) which lie on the fundamental are I, the funda-
mental critical points of E. Finally we refer the reader to [17] for the
definition of involuntary and semi-involuntary curves. Then by Corollaries
5 and 6 of §3 of [17], they have, at most, only one fundamental critical point.
We now prove.

PROPOSITION 5.1: Let f be a newform in S2(03930(N)) with rational Fourier
coefficients. Denote by nr and E the cuspidal automorphic representation of
GL2(Aa) and the 0-rational elliptic curve attached to f, respectively. Let cp:
X ~ E be the corresponding 0-rational map. Assume that 9 has at most
one fundamental critical point (in particular if E is involuntary or semi-
involuntary). Then L(s, nf, r3) is entire.
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Pro of. Let div(qJ*w) denote the divisor of ~*03C9, and denote by deg
(div(~*03C9)) its degree. If at every P E Xo(N), ep is the corresponding ramifi-
cation index, then

Moreover if g is the genus of Xo(N), then deg (div(~*03C9)) = 2g - 2. Let Po
be the only possible ramification point on I. Since the zeros of 9* are
symmetric with respect ot I, it then immediately follows from (5.2.1) that

and consequently eP0 - 1 must be even. Thus the order of the zero of

f dz = 9*co at Po must be even, and therefore f(z) never changes sign on I.
Now the proposition is a consequence of Proposition 5.1.
The following corollary is a consequence of the tables in §4 of [17].

COROLLARY: Suppose N  423. Let f E S2(r’,(N» be a 0-rational newform.
Denote by n¡the corresponding cuspidal automorphic form on GL2(Aa). Then
except possibly for 16 values of N, L(s, nf , r3) is entire.

Proof: These 16 values (which are explicitly given in Table 4 of [17]) are those
where there are two or more (in fact three if N 5 423) fundamental critical
points.

6. Plancherel measures and R-groups

Throughout this section F dentoes a non-archimdean local field of charac-
teristic zero. In what follows we shall obtain a formula for the Plancherel

measure for G, a p-adic split group of exceptional type G2, coming from the
parabolic subgroup P = P(F) of G generated by its long root. A conjecture
of Langlands in this case (Proposition 6.2) as well as the reducibility of
certain induced representations (Proposition 6.3) will follow.

Let n be an infinite dimensional irreducible admissible representation of
M(F) = GL2(F). Using the notation of Section 2, given s e C, let I(s, 7r) be
the representation of G induced from
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of MN. Here Hp : M ~ Hom (X(M), R) is defined by

x E X(M), where X(M) is the group of F-rational characters of M.
We use w to denote a representative for the reflection about the root

2a + fi. Given f in the space of I( s, 03C0) and for Re(s) sufficiently large, we
define:

This is the standard intertwining operator attached to 03C0. The Plancherel
constant J.1(s, 03C0) is then defined through the relation (cf. [22], [29])

where 03B3(G/P) is a positive constant, depending on the measure dn, defined
in [29]. It does not depend upon the choice of w. We shall now prove:

PROPOSITION 6.1: Let n be an infinite dimensional irreducible admissible
representation of M = GL2(F) with central character co. Then

where defining measures are self dual with respect to 03C8.

Proof.- By Proposition 3.1.1 of [22] we have

since w-’ = w. Hp( - 1), where w is the standard representative for the
reflection about 2a + 03B2. Using Proposition 2.2 it is now enough to show
w(x) = à. We shall show w(03C0) = 03C0 Q w-1 which is isomorphic to 7r. It is

easy to check that for every m E SL2(F) c M, w(n)(m) = n(m). Now,
using the identification H303B1+203B2(t) = diag (t, 1), t E F, it can be shown that

proving w(n) = 03C0 (8) w-1. The proposition is now proved.
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REMARK: This could also be proved using the equivalent identity

Now set

where the right hand side is defined by taking limits as s approaches zero.
Observe that r’ 3 EB A2rl is the adjoint action of ’M = GL 2 (C), the L-group
of M, on the Lie algebra LU of LN, the L-group of N. Thus we have the
following result which proves a conjecture of Langlands [13] in this case.

PROPOSITION 6.2: Let n be an infinite dimensional irreducible unitary rep-
resentation of M = GL2(F). Denote by A(03C0, w)* the adjoint of the operator
A(03C0, w) with respect to the Hilbert space structures of I(0, 03C0) and 1(0, w(n)).
Then

and

Pro of. We only need to prove part (b) and that follows from the identities

and

the last of which is a consequence of the relations

and
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COROLLARY: Let n be an infinite dimensional irreducible unitary represen-
tation of M = GL2(F). Assume s is pure imaginary. Then

We now prove:

PROPOSITION 6.3: Let n be a discrete series representation of M = GL2(F)
with central character w. Denote by I(n) the representation of G induced from
n Qx 1 on MN. Then I(n) is irreducible unless:

(a) 03C0 is an extraordinary supercuspidal representation of GL2(F) and
03C0 ~ 03C9 ~ 03C0 (i.e., 03C0 ~ it) with w =1 1, or

(b) 71 is a supercuspidal representation of GL2(F) of the form n = 03C0(03C4),
where r = Ind( WF, WK, X), [K: F] = 2, X E K*. Moreover either ~3 ~ 1

while XI F* = 1 or X2 = 1 while ~| F* =1 q, where ~ is the quadratic character
of F* defined by K.

In either case the corresponding R-group is Z2 and therefore I(n) has two
inequivalent tempered components.

Pro of. By the general theory of R-groups if there is any reducibility, we must
have w(03C0) ~ 03C0 and therefore 03C0 ~ n ~ 03C9. To compute the R-groups we
must study the zeros of 03BC(0, 03C0) (cf. [11], [29], [30]). By the above corollary
it would be enough to look at L(O, a»-’. L(O, n, r’)-’. If n = 03C3(03BC03B11/2,
03BC03B1-1/2), i . e . n is special, then 03C0 ~ 03C9 ~ n requires y2 = co = 1 which

provides a zero for L(0, 03C9)-1. Consequently I(03C0) will be irreducible. It

remains to study supercuspidal representations.
Assume first that n is extraordinary and n p 03C9 ~ n. Then L (0, n,

r03) = 1, and L (0, 03C9)-1 = 0 if and only if w = 1. The assumption w =1 1

now proves part a.
Next let 03C0 = 03C0(03C4), 03C4 = Ind( WF, WK, X), [K : F] = 2. Then (J) = X 1 F- - 1

and 03C0 ~  if and only if

But this happens if and only if either ~ = x’ -’ or y = x-’ . In the first case
~~’ = 1 which implies X - NK/F = 1. Consequently XI,. is either or trivial.
The first case implies m = 1 and therefore to get reducibility we may assume
~|F* = 1. It remains to check L(0, x, r’) 3 which equals LK(0, ~2~’-1) by
relation (1.3). Using ~~’ = 1, Lx(o, x2x’-’ )-’ is zero if and only if X3 = 1.

This proves the first case in part b.
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Finally assume ~2 = 1. Then LK(0, ~2~’-1)-1 = LK(0, ~’-1)-1 is zero if
and only if X = 1. But this is a contradiction since x is supercuspidal.
Consequently 03BC(0, x) is zero if and only if ~|F* = fi. This completes the
proposition.

REMARK: The representations induced from the other maximal parabolic
subgroup are much easier to treat since the Plancherel measures are much
simpler. Having a formula for the Plancherel measure in hand must make
it now possible to have a complete classification of non-supercuspidal
tempered representations of a split p-adic group of type G2 (cf. [11] ] for
the minimal parabolic). It must also give us the formal degree of non-
supercuspidal discrete series representations, as well as examples of non-
tempered unitary representations. Since the cases of other rank two split
groups are fairly similar, we hope to address the unitary dual of rank two
split p-adic groups in a future paper.

Appendix

Let x be a cusp form on PGL2 (A,) and let r5 be the six dimensional

irreducible representation of SL2(C) = LPGL2 , the fifth symmetric power
representation of SL2 (C) . Write TC = ~v 03C0v and let S be a finite set of places
of F containing the archimedean ones such that for every v e S, nv is

unramified. Finally, let

where L(s, 03C0v, rs ) is the inverse of a polynomial of degree 6 in q. s, defined as
in the introduction. In Theorem 4.1.2 of [22], it was proved that Ls ( s, 03C0, r5)
extends to a meromorphic function of s on C which satisfies a standard
functional equation.
As it has been pointed out by Serre [20], the following theorem can be

used to obtain the best available evidence for the validity of the Sato-
Tate Conjecture (cf. [19]) at present. More precisely, using this result, he
showed that: There exist infinitely many primes p such that r:(p)lpll/2 &#x3E;

2 cos (2x/7) £é 1.24697961, where i denotes the Ramanujan 03C4-function (by
the Ramanujan conjecture - 2  03C4(p)/p11/2  2). When 03C0 is attached to a
Q-rational newform f in S2(03930(N)) (cf. Section 5), this implies that there
exist infinitely many rational primes p such that
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where Np is the number of rational points of E modulo p, E being the elliptic
curve attached to f

THEOREM A: (a) Suppose n is not monomial. The Ls(s, 03C0, r5) =1= 0 for all s with
Re (s) = 1 with the possible exception of a simple zero at s = 1.

(b) Assume further that 03C0 is an automorphic representation attached to a
holomorphic cuspidal modular form. Then for Re (s)  1, the partial
L-function LS(s, 03C0, r5) is holomorphic and non-zero with the possible exception
of either a simple zero or a simple pole at s = 1.

Proof.- Let Il be the Gelbart-Jacquet lift of 03C0 [3]. It is a cusp form on

PGL3(AF). Applying Theorem 5.1 of [22] to the case F4 - 2 of [21], we
conclude that

for all t E R, where i = -1. Here LS(s, II x II) is the partial Rankin-
Selberg L-function attached to (II, II). By Proposition 3.6 of [10], one knows
that LS(1 + 2it, II x II) is holomorphic (in fact by the proposition it is
continuous, but then since it is meromorphic it must be holomorphic) for all
t e R, except t = 0. Moreover, if t = 0, then LS(1, II x II) has a simple
pole. On the other hand every other partial L-function, except LS(1 + it, n,

rs ), in (A.1 ) is holomorphic and non-zero (necessary for LS(1 + 2it, n, r2))
for Vt E R. The first assertion then follows.

If n comes from a holomorphic modular cusp form, the Ls(s, n, rs ) will
be absolutely convergent for Re (s) &#x3E; 1. This is a consequence of the

validity of the Ramanujan-Petersson’s conjecture which is due to Deligne.
A standard use of equation (2.7) of [21] will then immediately imply that

is holomorphic for all t E R, except, possibly, for a simple pole at t = 0.
Now the second statement is a consequence of the non-vanishing of the
first two L-functions for all t e R (cf. Theorem 5.3 of [22] for the second
L-function).

REMARK: Part (b) of the theorem is also due to Serre [20].
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