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Introduction

Let X be a smooth projective curve over C, and let Uo be the moduli space
of rank 2 semistable vector bundles on X with trivial determinant. When X

is non-hyperelliptic, a canonical desingularization of Uo has been con-
structed by Narasimhan and Ramanan [5] using the Hecke correspondence.
Let Ho denote this desingularization. The main result proved in this paper
is the following.

THEOREM 1: Let X be a smooth projective curve over C of genus g  3 which
is non-hyperelliptic and let Uo be the moduli space of rank 2 semistable vector
bundles on X with trivial determinant. The cohomology group H3(H0, Z) of the
Narasimhan-Ramanan desingularization Ho of Uo is torsion-free and of
rank 2g.

The motivation for proving that H3 is torsion-free is as follows. The

moduli space Uo is known to be unirational, but it is not known whether it
is rational. As the torsion subgroup of H3(V, Z) is a birational invariant
of a smooth projective variety (see [1]), it was of interest to determine

H3(H0, Z) for some non-singular model Ho of Uo.
Narasimhan and Ramanan state that (see [5, page 292]) the desinguliza-

tion Ho can be blown down along certain projective fibrations to obtain
another non-singular model of Uo. A proof of this is given in §4 below
(Prop. 4A2). This new desingularization has the same third cohomology
group as the original desingularization.
The arrangement of this paper is as follows. Let K be the singular locus

of Uo. Let Z c Ho be the complement of the fibres of Ho - Uo over the
points of K of the form j E9 j-l where j is an element of order 2 in the
Jacobian. For any x E X, there is a natural conic bundle C over Z which
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degenerates into pairs of lines over the divisor Y which is the inverse

image of K in Z. Sections 1 to 3 are devoted mainly to proving that the
total space of this conic bundle is smooth. This allows us to apply the result
proved in [6] which relates the topological Brauer class of the P1-bundle
on Z-Y determined by C to the cohomology class in H2(Y, Z) which
is associated to the 2-sheeted cover of the degeneration locus Y deter-
mined by C.

In §4 we show that multiplication by cl (NY,Z) gives an injective map from
H2(Y, Q) to H4(Y, Q) where IVy,z is the normal bundle to Y in Z. Finally
in §5 we complete the proof of Theorem 1.

Remark on notation: In this paper, we have followed the notation used in [5].
In particular, for a point x on the curve X, Lx denotes the line bundle defined
by the divisor x, and Ux denotes the moduli space of all rank 2 stable vector
bundles E on X for which det E is isomorphic to Lx. The moduli space of
all rank 2 stable vector bundles on X whose determinants are isomorphic to
Lx for some x E X is denoted by UX.

§ 1. The morphism from Ho to Hilb (Ux)

Let Ho c Hilb (UX) be the desingularization of Uo, and let x E X be

any point. As a subscheme of Hilb (U.), Ho parametrizes a flat family
W c UX x Ho of subschemes of UX. By [5] Lemmas 7.9 and 7.12 for any
point y E Ho, the Hilbert polynomial of the subscheme Wy of UX with respect
to the ample generator of Pic UX is 2m + 1 where Wy = Wy ~ Ux where
Wy is the fibre of W over y. As Ho is an integral scheme, it follows from the
constancy of the Hilbert polynomial that the family Wx = W n ( Ux x Ho )
of subschemes of Ux parameterized by Ho is a flat family.
The above flat family has a classifying morphism 4J: Ho - Hilb (Ux). It

follows from [5] §7 that 0 is injective. In this section, we prove (Lemma 1.3)
that if 1 = lj w 12 is a limit Hecke cycle (see §7 of [5] for the precise
definition) over a non-nodal point of K c Uo, then the differential do of
4J: Ho - Hilb ( Ux ) is injective at the point 1 E Ho.

LEMMA 1.1: Let S be a non-singular variety, T a non-singular curve, and
P: S ~ T a smooth morphism. Let V ce S be a 2-dimensional closed reduced
subscheme such that either (i) V is irreducible and the morphism V - T is
smooth, or (ii ) V = V1 ~ V2 is a union of exactly two irreducible components
each of dimension 2, and the morphisms V1 ~ T, V2 ~ T, and V1 n V2 - T
are smooth where V1 n V2 is the scheme theoretic intersection of the reduced
schemes Vl and V2 which we assume is a non-singular curve.



311

Let t E T be a closed point and let St (resp. Vt) denote the fibre of S
(resp. V) over t. Then

(1) V is a local complete intersection in S.
(2) Vt is a local complete intersection in St .
(3) The normal bundle Nv. t, s of Vt in S, is the restriction to Vt of the normal

bundle Nv,s of V in S.

Proof of Lemma 1.1: As V1 and V2 are nonsingular subvarieties of the
non-singular variety S such that the scheme V, n V2 is a non-singular
variety, the reduced scheme V = T1 ~ V2 is a local complete intersection by
[5] Lemma 8.2. This proves (1).

If V is irreducible, by assumption the morphism V - T is smooth. Hence
Vt is a nonsingular variety in particular a local complete intersection. If
V = Vl ~ V2 then as above, both V1,t and V2,t are non-singular varieties. As
V, n V2 ~ T is also smooth, it follows that the scheme theoretic intersection
of V1,t and V2,t is a regular scheme and hence the scheme V, (which is reduced)
is a local complete intersection as above. This proves (2).
To prove (3) we prove the dual statement about conormal bundles,

namely, that N*Vt,St ~ N;s |Vt. A local section of N*V,S| Vt is locally defined by
a local section of N:s which is a differential 1-form on S which kills vectors
tangent to V. This defines a 1-form on S, which kills vectors tangent to V, .
This defines a morphism of vector bundles from N*V,S| Vt to N* From the
hypothesis of this lemma it is easy to see that this morphism is injective on
each fibre hence an isomorphism as these vector bundles are of the same rank.

LEMMA 1.2 : Let P: S - T be as in lemma 1.1. Let W c S x R be a flat
family of subschemes of S parameterized by a variety R, such that for each
point r E R, the subscheme wr c S sutisfies the conditions imposed on V c S
in lemma 1.1. Let t E T be a point and let the.family W - W n (S, x R) of
subschemes of S, parameterized by R again be.flat. Let 0: R - Hilb (S) and
~: R ~ Hilb (St) be the classifying morphisms, for the, families W and Wt. For
rER,let

03A8r: TO(r) Hilb (S) ~ T~(r) Hilb (St)

be the restriction map from H0(Wr, Nwr,s) to H0(Wrt, NWrt,St) where

NWrt,St ~ Nwr,s |Wrt by lemma 1.1. Then the following diagram of vector spaces
is commutative.
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Proof of Lemma 1.2 : By functoriality, it is enough to prove a similar statement
where the variety R is replaced by Spec k[03B5]/(03B52). In this set up, the lemma
follows immediately by taking a suitable affine open cover of S and looking
at the defining equations of the family with respect to this open cover.
Now let Ho be the desingularization of Uo and let 0: H0 ~ Hilb (Ux) be

the morphism defined at the beginning of this section.

LEMMA 1.3: Let 1 = Il U 12 be a limit Hecke cycle over a non-nodal singular
point ~j ~ j-1~ e U0, and let 1 be represetited by a point y e Ho. Then the
differential map

d~y: Ty H0 ~ T~(y) Hilb (Ux)

is injective.

Proof.- Let P: S ~ T be the map det: Ux - X. Then the hypothesis of lemma
1.2 is satisfied by the restricted universal family W parameterized by Ho, and
so do,, is the restriction map from

H° (l, Nl,UX) ~ H° (lx, Nl, Ux |lx)

The injectivity of this map follows from lemma 1.4 below.

LEMMA 1.4: Any global section of Nl,UX which restricts to zero an lx = l ~ Ux
is identically zero.

For the proof of lemma 1.4, we need the following

LEMMA 1.5 : Let U be a non-singular variety and let Y, , Y2 be closed non-
singular surfaces in U which intersect transversally along a non-singular curve
X. Let Y = Y, U Y2 (which is a local complete intersection). Then there is a
short exact sequence of sheaves on YI as follows.

In particular, any global section of Ny,u |Y1 which vanishes identically over
X is the image of a global section of NY1, U .

Proof of Lemma 1.4 : Let N 
1 
= Nl,UX| 1 li and N2 = Nl,UX| 112. Then we have the

following exact sequence on 1.
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Let 0 E JIÜ (1, Nl,UX) which restricts to zero on lx = 1 n Ux . Then 0 defines
sections el and 03B82 of N’ and N2 respectively such that 03B81 = 0 on 1,@., =
Il n Ux, 82 = 0 on 12,x and el - e2 on X = Il n l2 . By lemma 1.5 we have
an exact sequence.

Now Il = P(E1) and 12 = P(E2) where the vector bundles El and E2 occur
in exact sequences

In 1 = 1, u l2 , the bundles P(E1) and P (E2 ) are identified along the sections
defined by j2 and j -2 respectively. Hence, NX,l1 ~ j-2 and NX,l2 ~ j2. Hence
we get the short exact sequence

Now, 0j E H° (l, , N’ ) vanishes over l1,x = l1 n Ux . Hence the image of 0j in
H° (X, OX) must vanish at x E X and hence be identically zero. Hence by
exactness of the sequence, 01 E H° (l, , NI) is the image of an element 0’,’ E
H’(1,, Ml1,UX). Now, 03B8’1 must also be zero on l,,x . Hence to complete the proof
of lemma 1.4, it is enough to show that any global section of Nl¡,ux which is
zero on ll,x = Il n Ux is identically zero.
The bundle Nl1,UX occurs in the following exact sequence.

Hence we have to prove that any global section of M1,p(D¡) and any global
section of NP(Dj),UX lj which vanish over l,,x are identically zero. Now, Ml1,P(Dj)
is isomorphic to a direct sum of g - 2 copies of i where i is the hyperplane
bundle on li = P(E1). As El occurs in the exact sequence

it follows that dim H0 (l1, 03C4) = 1, and the non-zero sections vanish precisely
over X c l, . Hence, any section of Nl1,P(Dj) which vanishes over l1,x is identi-
cally zero. We now consider NP(Dj),UX|l1. We have the following exact
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sequence on P(Dj) (see [5], lemma 6.22)

where "trivial" denotes a trivial vector bundle, 03C0: P(Dj) ~ X is the projec-
tion, and F(j) is a vector bundle on X. Restricting attention to li c P(Dj),
we get

where nI: Il ~ X. Now, it is obvious that any global section of r-’ Q
nt F(j) is identically zero, while any global section of the trivial bundle is
constant. Hence, any global section of NP(Dj),UX|l1 which is zero on Il, ’1: is

identically zero. This completes the proof of lemma 1.4.

Proof of Lemma 1.5: By [5] Lemma 8.2, there is an exact sequence

We apply the functor Hom ( -, OY1) to the above sequence to get the short
exact sequence

where L is the cokernel sheaf of the first morphism. Note that a non-zero
section of L is defined by a homomorphism a: Niu Y1 ~ (Dy, which does not
extend to a homomorphism from N*Y1,U to OY1. Hence it follows that the

support of L lies inside X. Now, let P E X and let f be a regular function on
Y1 defined in a neighbourhood of P which locally defines the divisor X. Then
there exists a local basis (el, ... , en-2) for N*Y1,U and a local basis (e’1, ... ,
e’n-2) for N*Y,U in a neighbourhood of P such that the homomorphism
Nivl Y1 ~ N*Y1,U is defined by e’1 - f. el and e; - e; for 2  i  n - 2,
where n = dim U. Note that when restricted to X, el defines a local frame

e1 of N*X,Y2 by the exactness of

Let a be a local homomorphism from N*Y,U| Y, to (9 such that
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where the gi are regular functions defined locally. To a we associate a local
section ex of Lx Q X,Y2 defined as follows where Lx is the line bundle on Y
defined by the divisor X. Note that f-1 is a local frame for the line bundle
LX. Then we define - = g1 ·f-1 ~ él . Now, a extends to a local homo-
morphism from Ni: l, U to (9y, if and only if gl vanishes along X. Hence we
locally get a well-defined isomorphism between and Lx Q Ñx, Y2. It is easy
to see that these local isomorphisms patch together to give a global iso-
morphism between and Lx Q X,Y2 . Now by the adjunction formula,
LX|X ~ NX,Y1, and hence LX Q X,Y2 ~ X,Y1 @ X,Y2 which completes the
proof of the lemma.

§2. The spécial Hecke cycle

A. Preliminurie.s

Let x E X be fixed. Then for a general j E J, we can identify a point of Ho
over ~j ~ j-1~ E Uo which represents a limit Hecke cycle having some
special property. In this section, we define such a special Hecke cycle 1 (see
definition 2.8) and then explicitly determine the normal bundle Nlx,Ux of its
restriction lx = 1 ~ Ux in Ux (see lemma 2.11 ).
A crucial part of the argument in this section is the following tech-

nical lemma about the normal bundle of the union of two smooth curves

which intersect transversally inside a smooth variety. We shall use this
lemma for

LEMMA 2.1: Let U be a smooth variety and L1 and L2 smooth closed curves in
U meeting transversally at a single point ,sr. Let the tangent space T, U have a
direct sum decomposition

where V1 = TsL1 and V2 = TsL2. Let the normal bundles of L1 and L2 in U
have direct sum decompositions as follows
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Under the quotient map

let the images of V2, ..., Vm be contained respectively in the subspaces
(F2)s,..., (Fm)s of (NL1,U)s, and let the induced maps Vi ~ (Fi )s for i =1 1 be

isomorphisms. Similarly, let the images of V1, V3, ..., hm under the quotient
map ~2: Ts U - (NL2’ U)s be contained respectively in the subspaces (GI)5’
(G3)s, ..., (Gm)s of (NL2,U)s, and let the induced maps Vi ~ (Gi)s for i =1 2 be

isomorphisms. 
Under the above hypothesis, the normal bundle of LI u L2 in U has the

following direct sum decomposition. Let for i  3, Fi V Gi denote the bundle
on L, u L2 obtained by identifying (Fi)s and (G¡)s through their isomorphisms
with vi.

Let FI (s) and F2(s) denote the line bundles F2(s) = F2 Q OL1(s) and
G 1 (s) = G 1 0 OL2(s). Then

where F2 (s) v G1 (s) is the line bundle on L, u L2 obtained by sonie identifica-
tion between the fibres of F2 (s) and G, (s) at s.

Proof of Lemma 2.1: We shall prove the dual statement about the conormal
bundle of L, u L2, namely,

We have an exact sequence

Now, N*L1,U ~ F*2 ~ F*3 ~ ··· C F*m, and the map N*L1,U ~ r.:L2 maps
F, * to zero for i  3. Hence N*L1~L2,U| L, is canonically isomorphic to F ~
F3* ~ ··· ~ £,/* where F is the kernel sheaf of the map F*2 ~ TsL2, which
is just F2* ( - s), the sheaf of all section of F* which vanish at s. We thus get
an isomorphism
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Note that at the point s, the image of (F*i) under fs for 1 a 3 in (N*L1~ L2,U)s
is precisely the subspace of (A*L1~L2,U)s corresponding to V*i c Ts* U.
Similarly, we have an isomorphism

such that for i  3 the image of (G*i)s under gs in (NLBUL2,U t, is precisely the
subspace corresponding to V*i c T,* U.
Hence under the isomorphism gs 1 · fs between the fibres over s of

F*2(-S) ~ F3* ~ ··· ~ F*m and G1*(-S) C G*3 C - ’ ’ Ef) Gm*, the image
of (F*i), (i  3) is precisely (G,*),. Now it is easy to see that the induced
maps from (F*2(-S))s to (Gi*)s are all zero for i  3. Hence under g-1s · f ,
(F*2(-S))s maps isomorphically onto (G*1(-S))s. Hence N*L1~L2,U is isomor-
phic to the direct sum

This proves the lemma.

B. The special Hecke cycle

In this subsection we define the special Hecke cycle. Let Dj,x = H’ (X, j2 @
L-1x) for j2 =1 1, and let P(Dj,x) be imbedded in Ux as in the §6 of [5]. P(Dj,x)
parameterises a family of triangular bundles, and hence the imbedding
P(Dj,x) ~ Ux has a lift P(Dj,x) ~ Hx, where Hx ~ Ux is the dual projective
Poincaré bundle. Let s(j,x) = P(Dj,x) n P(Dj-1,x), and s( j,x) - P(Dj,x) n
P(Dj-1,x). Let J’ be the subset of J where j2 i= 1. When x is fixed, we get
morphisms f.1: J’ ~ Ux and 03BC: J’ ~ Hx where 03BC(j) = f.1(j-l) = s( j, x) and
03BC(j) = 03BC(j-1) = s( j, x). Note that y is the lift of p to Hx.

Remark 2.2: It can be checked that the differential of f.1 is everywhere
injective on J’. As fi is the lift of f.1, it follows that d03BC is also everywhere
injective on J’.

LEMMA 2.3: Consider the morphism J ~ Uo which is defined by the family
R E9 R-’ of vector bundles on X parame terized by J where R ~ X x J is the
Poincaré line bundle. Then the open subset of J on which the differential of this
map is injective is a non-empty set.

Proof.- Let K c Uo be the singular set with reduced subscheme structure.
Then the morphism J - Uo factors through K ~ Uo. Let 0 * K* c K be
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the smooth open part of K and let J* c J be its inverse image. As J - K
is surjective, J* ~&#x3E; K* is surjective. Now, dim J* - dim K* = g, and both
J* and K* are smooth. Hence there exists a point in J* at which the map
J* ~ K* is of maximal rank. This proves the lemma.

DEFINITION 2.4: Let x E X be fixed. By (2.2)-(2.3), there exists a non-empty
sub-set of J such that

the differential of the map J1: J - U, sending j H s( j, x) is injective (in
particular the differential of fi: J - H, is injective) and the differential of the
map J - UO: j ~ ~j ~ j-1~ is injective for any j in this open subset of J.
We will call such a j a general point of J.

LEMMA 2.5: Let x E X be fixed and let j be a general point of J (see 2.4). Then
the tangent space to H, at the points = sei, x) has the following direct sun1
decomposition.

Proof- We have a commutative diagram

where v(j) = ~j ~ j-1~. Now as , j E J is a general point, dv is injective at
j. Hence by the commutativity of the above triangle, dh is injective on the
image d03BC(TjJ) of T, J inside TsHx. On the other hand, dh is zero on both
TsP(Dj,x) and TsP(Dj-1,x), which in turn are linearly independent as shown
in [5] §6. Hence the three subspaces are linearly independent in TsHx. As
their dimensions add up to 3g - 2 which is the dimension of TsHx, the
lemma is proved.

LEMMA 2.6: For a general j, let Lj ~ TsHx be the kcrnel o f the di fferential map
TsHx ~ T, Ux at the point s = s(j, x). Then there exists a generalj E J such
that the prqjection o f L, on oach of the three direct summands of TsHx given
by lemma 2.5 is non-zero.
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Remark 2.7: Though we do not need it here, with some extra calculations we
can in fact prove that the conclusion of lemma 2.6 is true for all general j.

Proof of Lemma 2.6: P(Dj,x) and P(Dj-1,x) intersect transversally inside Ux .
This shows that Lj is not contained in TsP(Dj,x) E9 TsP(Dj-1,x). Hence the
projection of Lj on d03BC(TjJ) is always non-zero for a générale. Also, as df.1
is injective by remark 2.2, Lj is not contained in d03BC(TjJ). Hence the projec-
tion of Lj on TsP(Dj,x) EB TsP(Dj-1,x) is always non-zero for a general j.
Now, the condition that the projection of Lj on TsP(Dj,x) is zero is a closed
condition in the Zariski topology. By the irreducibility of the open subset of
J of general points j, we see that if the lemma is false, then either

im Lj c TsP(Dj,x) for all general j or im Lj c TsP(Dj-1,x  for all general j.
Note that the open subset c J of all general j, is stable under j ~ j-1.
Hence we get a section of the canonical map of J to the Kummer variety

over a non-empty open set (namely the image of V). This contradiction
proves the lemma. 

Now choose a general j satisfying lemma 2.6, and let û, E TsP(Dj,x),
Û2 E TsP(Dj-1,x) and Ù3 E d03BC(TjJ) be the projections of a non-zero vector in
Li . Note that ùl + û2 + Ù3 E Lj. Hence, if u1, u2, u3 ~ TS Ux are the images
of Mi, û2, Ù3 respectively, then each ui is non-zero, but ul + U2 + U3 = 0. Let
LI and L2 be lines in P(Dj,x) and P(D¡-I,x) respectively, each passing through
s = P(Dj,x) n P(Dj-1,x), given by the tangent vectors ul E TsP(Dj,x) and
U 2 E TP(D 1 By §6 of [5], there exists a unique limit Hecke cycle 1 such
that lx = LI u L2 where /y denotes 1 n Ux.

DEFINITION 2.8: The limit Hecke cycle 1 above will be called a special Hecke
cycle and lx = L, u L2 will be called a restricted special Hecke cycle.

Remark 2.9: Note that L1 and L2 are defined by the tangent vectors ul ,

u2 E T, U, above. The vector U3 above, which satisfies u1 + u2 + u3 = 0, is
tangent to the image of f.1: J’ ~ Cf,.

Remark 2.10: The lines LI c P(Dj,x) and L2 c P(Dj-1) have the following
direct description (which we do not use). LI is given by the 2-dimensional
kernel of the linear map H1(X, j2 Q L-1x) ~ H1(X, j2 ~ Lx) and a similar
description holds for L2. The vector u3 E d03BC(TjJ) lies in the image under df.1
of the kernel of the map Hl (X, OX) ~ H1(X, Lx) where H’ (X, OX) = T J.

C. Normal bundle of the restricted special Hecke cycle

LEMMA 2.11: Let x E X be, fixed and let j E J be a general point for this x. Let
lx c Ux be the restricted special Hecke cycle corresponding to (x, j), with
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lx = LI ~ L2, where each Li is a line in the projective space P; . Then the
normal bundle Nlx,Ux of lx in Ux has the following direct sum decomposition into
subbundles.

where

and D ~ Qg-’ Olx is the trivial bundle of rank g - 1.

Proof.- Choose splittings of the tangent spaces of Pl = P(Dj) n Ux and
P2 = P(Dj-1) n Ux at the point s = Pl n P2 as follows. Let TS P, -
Jt; ~ V3 and let SsP2 = V2 ~ V4 where V1 = TsL1 and V2 = TS L2 while V3
and V4 are arbitrary supplements. Let U3 E d03BC(TjJ) be as in remark 2.9, and
choose an arbitrary splitting

Then by lemma 2.6, we get a direct sum decomposition of T, U, as follows.

Note that dim V1 = dim V2 = 1, dim V3 = dim V4 = g - 2 and dim V5 =
g - 1. Now the normal bundle NPiUx of Pi (i = 1, 2) in t/, occurs in the exact
sequence (see [5] lemma 6.22 and the proof of lemma 7.10)

such that under the canonical map TsUx ~ (NPi,Ux)s, the subspace d03BC(TjJ ) c
1: Ux maps identically on H1(X, OX) c (NPi,Ux)s. Hence the splitting 6f
d03BC(TjJ) as ~u3~ ~ V5 induces a splitting of the trivial bundle H1(X, OX)Pi
on P; for i = 1, 2, and we denote these splittings by H1 (X, OX)P1 ~ 2 0 F’s
and H1 (X, OX)P2 ~ 1 ~ 5 where the bundles F2 , F5, G1, G5 are all trivial.
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Now, as H1(pn, O(1)) = 0 for any projective space, we can choose a
splitting of the exact sequence

for i = 1, 2 to give direct sum decompositions as follows.

and

Now, the normal bundles NL,.uy for i = 1, 2 fit in the exact sequence

As NLt,Pt ~ ~g-2 (DL, (1), the above exact sequence splits, and so we can
choose a direct sum decomposition

Let F2, F5 be the restricted bundles P21 LI and Psi LIon L, while let

G, = GIIL2 and G5 = G5|L2. Note that F2, F5, G1, GS are trivial bundles.
Now define bundles F3 and F4 on LI and G3 , G4 on L2 by F3 = OL1 (1)~g-2,
F 4 = OL1 (- 1)~g-2,

Then we get the direct sum decompositions

while

Now from the definitions of the V’s, Fi’s and Gi’s above it is immediate that
the hypothesis of lemma 2.1 is satisfied. Hence by lemma 2.1, the normal
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bundle of 1, = LI u L2 in Ux has the direct sum decomposition

while it is obvious that

and

This completes the proof of the lemma.

§3. The conic bundle over the desingularization

We first recall the definition of a conic bundle as given in §4 of [5].

DEFINITION 3.1: A scheme C together with a very ample line bundle h is said
to be a conic if its Hilbert polynomial is 2m + 1. A scheme C over T is said

to be a conic bundle over T if with respect to a line bundle on C its fibres are
conics and the morphism C ~ T is proper and faithfully flat.
For example, let Hilb ( Ux )’ be the open subset of Hilb (Ux) where the

Hilbert polynomial is 2m + 1. Then the correspondence variety W c
Ux x Hilb (Ux)’ is a conic bundle over Hilb (Ux)’.

Remark 3.2: Let E be a rank 3 vector bundle on T together with a global
section q of the projective bundle P(S2E*) where S2E * is the second

symmetric power of E *. This section q defines a subscheme C c P(E ) such
that C ~ T is a conic bundle as defined above. By [5] Remark 4.4 (iv), every
conic bundle C ~ T arises in the above manner, where a possible canonical
choice for the vector bundle E is the first direct image R’ (03C0)* w2 where 7r’:

C ~ T is the projection and cv is the relative dualizing sheaf on C over T.
In the subsequent discussion we assume that every conic bundle C is defined
as a subscheme of P(E ) where E = RI (03C0*)03C92. However, it can be shown
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that (though we do not need it) the type of the conic bundle (see below) is
independent of the choice of the vector bundle E.
Note that a global section of P(S2E*) is the same as a line subbundle

L c S2E* which defines a quadratic form q on E with values in L*. The
discriminant det q of q is a section of the line bundle (039B3E*)2 0 L-3. The
degeneration locus Y c T of the conic bundle C ~ T is defined by the
vanishing of det q. At a point t E Y, the fibre C, is a double line or a pair of
distinct lines depending respectively on whether rank q is 1 or 2.

DEFINITION 3.3: Let t be a smooth variety and C ~ T be a conic bundle for
which the degeneration locus Y is an irreducible divisor. Let C degenerate
into pairs of distinct lines at all points of Y. Then the type i(C) of the conic
bundle is by definition the multiphcity of vanishing of the discriminant det
q over the divisor Y.

Consider the morphism 0: Ho ---&#x3E; Hilb (Ux)’ defined in § 1 where Hilb (Ux)’
is the open subset of Hilb ( Ux ) for which the Hilbert polynomials is 2m + 1.

The correspondence variety over Hilb ( Ux )’ is a conic bundle 16 and hence
its pull-back ~*L to Ho is a conic bundle on Ho. The degeneration locus of
0 *L is the closed subset 03C0-1 (K) which is the inverse image of the singular
locus K c Uo of Uo under the map 03C0: Ho - Ho. Let Ko c K be the set of
nodal points of K. Let Z c Ho be the open subset Z = Ho - 03C0-1 (Ko). Let
the conic bundle C ~ Z be the restriction of ~*L ~ Ho to Z c Ho.
Then the degeneration locus for C is the irreducible divisor Y = n-’

(K - Ko ) c Z.

LEMMA 3.5: The degeneration locus Y is a non-singular variety.

Pro of. Let R - X x J’ be the Poincaré line bundle, where J’ c J equals
{j|j2 ~ 1}. Then the first direct images R1(p2)*R2 and R1(p2)*R-2
are locally free sheaves on J’, each of rank g - 1. Let  ~ J’ be the
pg-2 x Pg-2 bundle which is the fibred product of the corresponding
projective bundles. As described in [5] §7, each point of Y determines a limit
Hecke cycle 1 = Il U 12 ce U, in a canonical manner, and so Y parametrizes
an algebraic family of subschemes of U, each of which is a limit Hecke cycle
and hence has the same Hilbert polynomial. As f is an integral scheme, the
above family is flat and so we get a morphism f:  ~ Hilb (UX). It is easy
to see that Y is the image of this morphism. As f is non-singular, to prove
the non-singularity of Y it is enough to show that the tangent level map df
is injective. Let g: 1 - Hilb (Ux) be the composite map g = 0  f where ~:
Ho - Hilb ( Ux ) is as defined earlier. Then it is enough to prove that dg is
injective. since the one point union P(Dj,x) ~ P(Dj-I,x) imbeds in Ux , it is
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obvious that dg is injective along the fibres of  ~ J’. On the other hand,
let b e  be over j e J’, and let v e Tb  project to a non-zero vector
w e 1jJ’. Let the image g(b) of b in Hilb (Ux) be the restricted Hecke cycle
denoted by LI U L2 . Note that LI ~ L2 is the point s( j, x) - 03BC(j) defined
in §2. Then v e Tb Y corresponds to an infinitésimal deformation of LI U L2
such that the corresponding infinitesimal displacement of the intersection
point 03BC(j) in Ux is the tangent vector d03BC(w), which is non-zero by §2. Hence
the infinitesimal deformation of LI U L2 is non-zero. Hence dg is injective,
which proves the lemma.
Over Y, the conic bundle C ~ Z degenerates into pairs of distinct lines.

This defines a 2-sheeted covering of Y. The following lemma is obvious and
we omit its proof.

LEMMA 3.6: The 2-sheeted cover of the degeneration locus Y defined by the
conic bundle C - Z is not split. In fact, it has the same topological structure
as the pull-back of the 2-sheeted cover J’ ~ K’ (where J’ = {j ~J|j2 ~ 1}
and K’ = K - K0) under the map 7r: Y - K’.
Next consider the restriction Cz- y of C ~ Z to the open set Z - Y, over

which it defines a P1-bundle. Under 7r: Ho - Uo the open subset Z - Y
maps isomorphically onto the open set Uo - K. Let Hx be the dual projective
Poincaré bundle on Ux where Ux = Ux  {x} ~ Ux  X and consider the
Hecke map h : Hx ~ Uo as defined in [5] §5.

LEMMA 3.7: There exists an isomorphism of varieties from Cz- y to HY - h-’
(K) which makes the following diagram commutative

Proof: Let CI be the correspondence variety over the Hilbert scheme

Hilb (un), which contains Ho as a closed subscheme Ho c Hilb (UX). Let
H be the dual projective Poincaré bundle on UX, with the Hecke map h:
H ~ Uo. Then it follows from the identification of Ho c Hilb (UX) with an
appropriate closed subset of the relative Hilbert scheme Hilb (H, Uo ) (see [5]
§5 onward) that the restriction of the correspondence variety CI over

Hilb (UX) to the subset Z - Y is canonically isomorphic to the fibration h :
H - h-1 (K) ~ Uo - K under the isomorphism n : Z - Y 5 Uo - K.
Now by definition of the morphism ~: Ho - Hilb (Ux), we just have to
intersect the family H - h-’ 1 (K) c U. x (Uo - K) with the subset
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Ux x ( Uo - K) to obtain a family of subvarieties of Ux parameterized
by Uo - K ~ Z - Y whose classifying map is ~|Z - Y. Now, (H -
h -’ (K)) n (Ux x ( Uo - K)) is Hx - h-1(K) which proves the lemma.
The remaining part of this section is devoted to providing the following

result about the conic bundle C on Z. For the proof of this, we need all the
lemmas proved in § 1 and 2.

THEOREM 3.8: The total space of the conic bundle C over Z is smooth.

Proof.- The theorem follows immediately from the following two lemmas
(Lemmas 3.9 and 3.10).

LEMMA 3.9: Let C be a conic bundle over a smooth variety Z for which
the degeneration locus is a smooth irreducible divisor Y over which C degen-
erates into pairs of distinct lines. Let LI u L2 be one of these degenerate
conics. Let LI n L2 - {s}. If C is non-singular at the point s E C, then C is
non-singular.

LEMMA 3.10: Let lx ~ Ux be the restricted special Hecke cycle for a general
j E J, which is represented by a point y E Y, where Y is the degeneration locus
of C - Z. Let lx = LI u L2 and let {s} = LI n L2. Then the variety C is
smooth as s.

Proof of Lemma 3.9 : Let Y ~ C be the canonical section of the conic bundle
over the degeneration locus Y, so that Y is exactly the set of all meeting
points of the pairs of lines. Then, as is true for any conic bundle over a
smooth variety such that the degeneration locus is also smooth over which
it degenerates into pairs of distinct lines, the singular locus of C is contained
in Y. Since C is smooth at s E Y, it now follows that the image 03C0(s) of s under
03C0: C - Z has an open neighbourhood V in Z such that the total space of
the restriction of C to V is smooth. Hence by Proposition 3 of [6] the
restriction of C to V is of type 1. Now it follows from the definition of type
that 03C4(C) = 1. Hence by Proposition 3 of [6], C is non-singular.
The remaining part of this section is devoted to the proof of Lemma 3.10.

LEMMA 3.11: Let U be a smooth projective variety and let W eUx S be a
flat family of closed subschemes of U parameterized by a variety S such that
each fibre Wt is a local complete intersection for t E S. Let t E S be a point and
let P be a point on Wt. Then the Zariski tangent space Tp W c Tp U x TtS
to the total space W at P is the fibred product Tp U  NP TtS where Np is the
fibre at P of the normal bundle NWr,u of W in U and the fibred product is taken
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with respect to the canonical map Tp U - Np and the composite map

Proof.- Lemma 3.11 follows from a standard argument which we sketch for
the sake of completeness. It is enough to prove a corresponding statement
in which the parameter variety S is replaced by Spec k[B]/B2. Let W be the
flat infinitesimal deformation of a local complete intersection Wo c U
parameterized by Spec k[03B5]/03B52 which corresponds to an element ç e H0
(W0, NW0,U). Then by looking at the defining equations for Wo c U in an
affine neighbourhood of P in U, it is easy to see that the sections of W over
Spec k[03B5]/03B52 which specialize (for 8 = 0) to P E Wo are in a linear bijection
with the elements of Tp U which map to çp E Np under the canonical map
Tp U ~ Np. It follows that the tangent space to W at P E fl is the inverse
image of ~03BEp~ under Tp U - Np. This is the desired result over Spec k[B]IB2.

LEMMA 3.12: Let Eo, El, E2 be vector spaces with linear maps fl : E1 ~ Eo and
f2 : E2 ~ Eo. Let E3 be another vector space with a linear map g: E3 ~ E2 such
that

(i) g is injective
(ii) There exists a vector ri E E2 such that 11 Í g (E3) and f2(~) = 0. Then we
have

Proof.- Because g: E3 E2 is injective, we have an inclusion El x Eo E3 ~
El x Eo E2. Now as f2 (q) = 0, the pair (0, ~) E El x Eo E2. But 1 e g (E3),
and hence El x Eo E3 is a proper subspace. This proves the inequality as all
spaces are assumed to be finite dimensional.
We can now prove Lemma 3.10 by assuming the following two lemma

which are proved later.

LEMMA 3.13: Let lx c Ux be the restricted special Hecke cycle for a general
j E J, and let s E lx be the intersection point L1 n L2 where lx = L, u L2. Let
Ns be the fibre of the normal bundle Nlx,Ux at s. Let f1: T, Ux ~ Ns and f2 :
H0(lx, Nlx,Ux) ~ Ns be the canonical maps. Then the fibred product
T, Ux x Ns H0 (lx, Nlx,Ux) is of dimension 3g - 1 where g = genus (X).

LEMMA 3.14 : Let 1 c U, be the special Hecke cycle for a general j. Consider
the restriction map
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where Nlx,Ux ~ Nl,UX|lx as proved before. Then there exists ~ e H° (lx, Nlx,Ux)
such that at s e lx, ~(s) = 0 e NS, and ~ does not lie in the image of g. 

Proof of Lemma 3.10: The dimension of Ho is 3g - 3 and so the dimension
of C is 3g - 2. Hence to prove the non-singularity of C at s, it is enough
to prove that dim TSC  3g - 1. Now, by lemma 3.11, TsC is the fibred
product TS Ux  Ns TyZ. Now, TyZ ~ lfÜ (l, Nl,UX) and the map TyZ ~ Ns is
the composite map

By Lemma 1.3 of § 1, the map

is injective. By lemma 3.12 and 3.14, we get the inequality

Hence by Lemma 3.13, dim 1: C  3g - 1. This proves the lemma.

Proof of Lemma 3.13 : Let fl: E1 ~ Eo and f2: E2 ~ Eo be vector space
homomorphisms. Then

dim (E, x Eo E2) = dim (im ( fl ) n im ( f2 )) + dim ker ( f, ) + dim ker ( f2 )

as follows from the short exact sequence

In the present situation, f, is the canonical map T, Ux ~ N, where N, is the
fibre of the normal bundle of lx = Lj w L2 at s. Hence the kernel of f; is of
dimension 2 as it is the subspace 7§Lj E9 TsL2, while with respect to the
decomposition

given by Lemma 2.11, it is easy to see that the image of TsUx ~ Ns is

B,, (B C.B, @ D,. Also, it follows immediately from Lemma 2.11 that the
kernel of the natural map f2: H° (lx, Nlx,Ux) ~ N, is of dimension 2g - 2,
while the image of f2 is A., @ D,. It follows that im ( f, ) n im (f2) = D,,
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which is of dimension g - 1. Hence dim TsUx  NsH0 (lx, Nlx,Ux) equals
g - 1 + 2 + 2g - 2 = 3g - 1. This proves the lemma.

To complete the proof of Theorem 3.8 only lemma 3.14 remains to be
proved. We prove it by explicitly constructing the required element q.

Construction of ~: By Lemma 2.11, Nlx,Ux ~ A EB B EB C ~ D where
A rr OL1 (1) v UL2 (1). Let ~ be a non-zero section of A such that q restricts
to zero on L2 (such an q is unique upto a non-zero constant multiple.)

Proof of Lemma 3.14 : If possible, let q as constructed above be the restric-
tion to lx of some element ~’ E H° (1, Nl,UX). We show this leads to a
contradiction. Since by definition ~ vanishes on L2 = 12,Y, the restriction of
q’ to 12,x is zero. Hence by the proof of Lemma 1.4 of §1, ~’ vanishes all over
l2 . Hence is an element of ro c H° (1, Nl,UX), where ro denotes the set of
all global sections of Nl,UX which restrict to zero on l2 . Let 03930,x ~ H°
(lx, N¡B,uB) denote the set of all global sections of N¡B,uB which restrict to zero
on l2,x. Assume for the moment that there exist linear maps g and gx which
make the following diagram commute,

where the vertical maps are the restriction maps. Moreover, assume that
gx(~) ~ 0. Now, 11 n l2 ~ X, and Nl1~l2,l2 ~ j2. Hence H0(l1 n l2, Nl1~l2,l2) = o.
Hence g(~’) = 0. This is a contradiction as il’ - q and gx(~) ~ 0.

It now only remains to define the maps g and g., which make the above
diagram commute, such that gx(r¡) =1 0. For this consider the following
general situation. Let U be a non-singular variety and let V1, V2 be smooth
subvarieties whose scheme theoretic intersection V0 = V1 ~ V2 is a smooth
variety which is a divisor in both V1 and V2. Let V be the reduced scheme
v u V2. By [5] lemma 8.2, V is a local complete intersection. Lemma 1.5
goes through in this case also, and we get a short exact sequence

In particular, any section of NV,U |V1 which vanishes over V0 is the image of
a section of Nvl,u. Note however, that the image of a section of NV1,U in
NV,U|V1 does not necessarily vanish over Vo. We now describe a necessary
and sufficient condition on a section a E r (V1, NV1,U) for its image 6’ E r
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(V1, Nv,u V1) to vanish everywhere on the divisor Vo c V1. Consider the
geometric vector bundles NV1,U ~ V1, and NV0,V2 ~ Va. Then there is a
canonical imbedding of schemes i : NV0,V2 ~ NV1,U which makes the following
diagram commute

Note that i is deduced by the composite morphism

which factors through NV0,V2. Then following the proof of Lemma 1.5 we see
that a section a E H° (V1, NV1,U) maps to a section of H0(V1, NV,U|V1) which
vanishes over Vo if and only if 03C3|V0 lies inside i (Nvo, V2) c NV1,U. We thus get
a canonical linear map g: 03930 ~ H° (VO, NVO,V2) where ro c H° (V1, NV,U|V1)
is the subspace of all sections which vanish over Vo.
Now let the hypothesis of Lemma 1.1 of § 1 be satisfied (with U in place

of S). Then for any point t E T we have canonical isomorphisms
NVt,St ~ NV,S|Vt and NV0,t,V2,t NV0,V2|V0,t. These isomorphisms induce linear
maps

and H0(V0, NV0,V2) ~ H0(V0, NV0,t,V2,t). The first of these maps induces a map
03930 ~ 03930,t where ro" c H° (V;", NVt,St |V1,t) is the subspace of all sections
which vanish over V0,t. We also have canonical linear maps

as defined in the last paragraph. It is immediate from the definition of these
maps that the following diagram is commutative.

Finally, note that Fo is canonically isomorphic to the subspace of H°
(V, NV,S) consisting of all sections which vanish everywhere on v2 while
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similarly, ro,t is canonically isomorphic to the subspace of H0 (Vt, NVt,St)
consisting of all sections which vanish everywhere on V2,t.
We apply the above discussion to the case where S ~ T is the map det:

UX ~ X, t E T is the point x E X, and V c S is the special Hecke cycle 1.

This gives us the desired commutative diagram (3.15). From the definition
of the map gx it is clear that gx(r¡) =1 0 for the given q. This completes the
proof of Lemma 3.14, and hence that of Theorem 3.8.

§4. Normal bundles of some divisors in Ho

In §4-A, we determine the normal bundles NTk,Ho of the divisors Tk which are
contained in the fibres of Ho - Uo over nodal points k E K. (Prop 4.A.3).
From this we deduce, in particular, that Ho can be blown down along the
fibres of the P5-fibrations Tk ~ G to obtain another non-singular model for
Uo (Proposition 4.A.2).

In §4-B, we determine the restriction of the normal bundle Ny,z to a fibre
of Y over a non-nodal point of K (Prop. 4.B.5). We use it in §4.C to prove
a technical lemma (lemma 4. C.1 ) about the Chern class of NY,Z.

Section 4A

We first define the geometric normal bundle NU,V of a smooth subvariety U
of a scheme V. Let I be the ideal sheaf of U in V, and let S(/II2) be the
symmetric algebra of /1/2. Then Nu,v is by definition of the linear bundle
Spec S(I/I2) over U. The fibre of the scheme NU, V over a point P E U is
isomorphic to Tp V/Tp U. In case V is also smooth, NU,V is just the total space
of the usual normal bundle NU,V.

Let k E K c Uo be a nodal point of K. The fibre of Ho - Uo over k is the
union Sk u Tk where Sk is a Pg-2 bundle over the Grassmannian of lines
in Pg-1 while Tk is canonically isomorphic to the space of all conics in PH1
(X, Wx ) (which is a P5 bundle ovefthe Grassmannian of planes in a Pg-1). Let
W = H’ (X, OX), and let G = Grass (3, W ) be the space of 3 dimensional
linear subspaces of W. Consider the tautological rank 3 subbundle E of the
vector bundle W x G on G. Then for each nodal point k E K, Tk is isomor-
phic to the total space of the projective bundle P(S2EV) on G, where S2 E’
is the rank 6 vector bundle of quadratic forms on E.

PROPOSITION 4.A.1: The restriction of the normal bundle NTk,Ho to a fibre of
Tk ~ G is isomorphic to OP5 ( - 1).
The above proposition immediately implies the following.
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PROPOSITION 4.A.2: The variety Ho can be blown down along the fibrations
Tk ~ G (one for each node k) to obtain another smooth variety.

Proposition 4.A.1 follows from the next proposition by restricting the line
bundle NTbHo to a fibre of Tk ~ G.

PROPOSITION 4.A.3: Let 03C0: P(S2E~) ~ G be the projection. Then under the
canonical isomorphism of Tk with P(S2E~), NTbHo is isomorphic to the line
bundle n*A 3E ~ (!) p(S2E V) ( - 1).

Proof. Let C - P(S2E~) be the bundle of all conics in PH1(X, OX).
Note that the total space C of this conic bundle is a subvariety of the
fibre product P(E) x G P(S2E~). On P(E), we have the tautological exact
sequence

where Q is the quotient bundle (rank Q = 2). This gives an isomorphism

Let nj and n2 be the projections of the fibred product P(E )  G P(S2E~) on
to the two factors. Then we have a natural morphism

When restricted to C c P(E )  G P(S2 EV), it induces a morphism

Let the restrictions of 03C0*1OP(E) (-1) and 03C0*2 OP(S2E~) ( - 1) to C be denoted
respectively by (!Je (-1, 0) and OC (0, -1), so that the above morphism can
be written as

where Qc denotes the pullback of Q under C ~ P(E). This induces a
morphism.
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Composing this morphism with the earlier isomorphism (1), we get a
morphism

where Ec is the pullback of E under C ~ G. This induces a morphism

Now, taking direct image under

we get a morphism

of sheaves on P(S2 EV). Now, it is easy to check that for any conic Cu c
PH1(X, (9x) (which is the fibre of C ~ P(S2EV) over a point u), dim H’
(Cu, QCu) = 4. Hence (03C02)* Qc is locally free of rank 4. For any conic Cu,
(2) gives a linear map

whose domain is a 1-dimensional vector space. By using explicit equations
for Cu in terms of coordinates on PH1(X, OX), it can be checked that the map
~u is injective, and further, its image is contained in the kernel of the map

(where P(E)u c PH’ (X, (9,) is the 2-plane containing Cu ) which is induced
by the composite map

Now, let Nc be the normal bundle to C in P(E )  G P(S2EV), and let T03C0P(E)
be the tangent bundle to P(E ) along the fibres of P(E) ~ G. Let the pullback
of T03C0P(E) to C again be denoted by T03C0P(E). Note that (9c( - 1, 0) 0 T03C0P(E) ~ Qc. 
The morphism T03C0P(E) ~ Nc induces a morphism Qc - (9c(- 1, 0) 0 Nc.
Taking direct image under 03C02: C ~ P(S2E~), we get a morphism
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Now, for any u E P(S2E~), the restriction of Nc to Cu is isomorphic to
NCu,P(E)u, and it is easy to check that for all u,

Hence, (03C02)*(OC(- 1, 0) 0 Ne) is a vector bundle of rank 3.
We thus have the morphisms

of vector bundles on P(S2E~) such that the first morphism is everywhere
injective, while the composite is identically zero. Now, it follows from the
proof of Proposition 8.5 of [5] that the geometric normal bundle NTbH2 to
Tk(~P(S2E~)) in the scheme H2 (which contains Ho ) is canonically isomor-
phic to the inverse image of the zero section of the vector bundle morphism

Hence, the line bundle 03C0*039B3E 0 OP(S2E~) (-1) is a subbundle of N Tk, H2 On
the other hand, the normal bundle NTbHo is also a subbundle of NTk,H2. By
lemma 8.9 of [5], NTk,H2 is of rank 1 over the open subset of Tk corresponding
to non-degenerate conics. Hence the line subbundles n*A3 0 (!)P(S2EV) (-1)
and NTk,Ho coincide over an open subset, and hence coincide everywhere.
This completes the proof of proposition 4.A.3.

Section 4B

Let C ~ Z be the conic bundle of §3, with degeneration locus Y. The fibre
Fk of Y ~ K over a non-nodal point k E K is isomorphic to Pg-2 x Pg-2.

PROPOSITION 4.B.1: The restriction of NY,Z to Fk is isomorphic to the line
bundle O(- 1, - 1) on Pg-2 X Pg-2 ~ Fk .
The proof of the proposition depends on the following lemmas.

LEMMA 4.B.2: Let y E Y, and let  E Y lie over y, where Y c C is the
canonical section of C over Y. Then the image of the differential map d7r:
Ty C ~ TyZ is equal to Ty Y.

Proof.- As C is smooth (§3) one has dim TC = dim C. As  ~ Y is an
isomorphism Ty Y is contained in the image of dn. As  is the intersection
point of the pair of lines LI u L2 which is the fibre of C over y, the kernel
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of dn is at least 2 dimensional. Now, dim TI, C = dim TI, Y + 2. Hence the
lemma follows.

LEMMA 4.B.3: Let C, denote the fibre of C over y E Y, which is a pair of lines
in .Ux meeting at a point s. Then the subspace TyY c TyZ is precisely the
kernel of the composite map 

Further, the induced map

is an isomorphism

Proof.- Consider C c vY x Z. Then  = ( y, s), and TC is the fibred
product of Ts UY and TyZ over (NCy,Uy)s. Hence a vector v e T, Z has a lift to
r? C if and only if its image in (NCy,Uy)s is contained in the image of T, Ux. But
by lemma 4B2, v E TyZ has a lift to T, C if and only if v E T,. Y. This proves
the first assertion of the lemma and the induced map

is injective. As both these spaces are 1-dimensional, the above map is an
isomorphism, which proves the lemma.

Remark 4.B.4: It is easy to see that there is a line bundle L on Y whose fibre

at y is (NCy,Uy)s/im TsUx. The above lemma infact shows that there is a
canonical isomorphism NY,Z ~ L.
Now, let L, , L2 be smooth curves in a smooth variety U, which meet

transversally at a point P E U. Then (NL1~L2)P/im TPU is canonically dual
to the kernel Kp of the linear map N*L1~L2,U ~ T) U. An element of Kp is
represented by an element f ~ OP,U which vanishes over L, u L2 and which
satisfies df(P) = 0. As df = 0, for any u, v E Tp U we can define the Hessian
u(v(f)) E k of f with respect to u, v. This gives a well-defined linear map

which induces a linear map
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which we call the Hessian 111ap. The following lemma is easy to check using
local coordinates.

LEMMA 4.B.5: The Hessian map TPLI Q TpL2 ~ (NL1~L2,U)P/im TPV is an
isomorphism. 

Proof of Proposition 4.B.1: Let k = ~j ~+ j-1~, be a non-nodal point of K.
Then the points of F,- represent the degenerate conics of the form LI u
L2 c U,, where Lj and L, are lines in the subspaces Pl = P(Dj,x) and
P2 - P(Dj-1,x) of U,. Both L, and L, pass through the points = Pl n P2.
Hence, FA- is canonically isomorphic to P(TS P, ) x P(TsP2). Note that the
fibre of the line bundle (! ( - 1, - 1) on the above product over the point of
F corresponding to LI U L, is TsL1 ~ TsL2. Hence the proposition follows
from lemmas 4.B.3 and 4.B.5.

Section 4C

In this subsection we prove the following.

PROPOSITION 4.C.1: Let C E H2 ( Y, Q) denote the rational Chern class of the
line bundle NLz. Then the map H2 ( Y, Q) - H4(Y, Q) which sends ~ to C u 1
is iyjective.

Pi-oof- All cohomology groups considered here are with coefficients Q.
Consider the 2-sheeted cover  ~ Y; the map H2(Y) ~ H2() is injective.
Note that  is the fibre product El  J’ E2 where E, and E2 are the pg-2
bundles whose fibres over.i are PH’ (X, j2) and PH’ (X, j - 2 ) respectively. Let
03B81, 02 c- H2() denote the rational chern classes of the pullbacks to  of the

line bundles OE1(1) and OE2(1). The natural Z/2-action on f interchanges 01
and e2. By the Leray-Hirsch theorem, H*() is freely generated as a
module over H*(J’) by the elements 03B8m1103B8m22 ~ H2m1+2m2 () for 0  ml ,
m2  g - 2. Hence the elements of H2() which are Z/2-invariant have the
form a + À(0j + 03B82), where a E H2(J’) and /Û ~ Q.
Now, it follows from Prop. 4.B.1 that the pullback to  of the chern class

C = CI (Ny.z) E H2(Y) has the form

C - a - (01 + 03B82)

where a E H’(J’). We shall show that for any q E H2(y), if C ~ ~ = 0 then
q = 0. Let j E H2() be the pullback of q. As  is invariant  = b +
03BB(03B81 + (2) for some b E H2(J’) and 03BB ~ Q. Then  ~  = a ~ b +
(Àa - b)(03B81 + 03B82) - 03BB(03B81 + 03B82)2. If  ~ Û = 0, then by successively
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equating to zero the coefficient of 03B8103B82 and 03B81 + 02 , we see that  = 0.
Hence ~ = 0.

Remark 4.C.2. From the description of the normal bundle NT k, R given
by Proposition 4.A.1, it is easy to check that cup product with the

integral Chern class of NTk,Ho defines an injective map from H2(Tk, Z) to
H4(Tk, Z).

§5. Détermination of H3(H0)

In this section we complete the proof of our main theorem that

H3(H0) ~ Z29. All homology and cohomology groups are with coefficients
Z unless otherwise indicated.

LEMMA 5.1 : Let P - B be a topological Pl bundle over a path connected
base space B with H1(B) = 0. Then the homomorphism H3(B) ~ H3(P)
is surjective, and its kernel is generated by the toplogical Brauer class of the
Pl bundle.

Proof.- Applying the Leray spectral sequence and using that H0(B) = Z,
H1(B) = 0, it is easy to check that the homomorphism H3(B) ~ H3(P) is
surjective, and its kernel is generated by a single element y which is the image
of the generator of H0(B, H2(P1)) under the transgression map Ef,2 - E3,03.
Since twice the generator of H° (B, H2(P1)) comes from the Chern class of
the tangent bundle along fibres of P, we see that 2y = 0. Hence, {0, 03B3} is the
kernel of H3(B) ~ H3 (P). Let fi E H3 (B) be the topological Brauer class of
P ~ B. The P1-bundle on P which is the pull back of P - B has a canonical
global section, hence is topologically banal. By the functoriality of fl, it

follows that f31ies in the kernel of H3(B) ~ H3(P), i.e., f3 E {0, yl. Finally,
when 03B2 = 0, the P1-bundle P - B is topologically banal, and hence the
map H3(B) ~ H3(P) is an inclusion. Hence when fi = 0, we must have
y = 0. It follows that 03B2 = y, which proves the lemma.

Next, as in §3, let Hx be the dual projective Poincaré bundle on
Ux(=Ux x {x} c U(2, 1) x X), and let h: Hx ~ U0 be the Hecke map.

LEMMA 5.2: We have H3(Hx - h-1(K)) ~ Z 2g. 

Proof: By Alexander duality, Hi(Hx, Hx - h-1 (K)) ~ Hn-i (h-1(K)) where
n = dimRHx = 6g - 4. Substituting this in the long exact homology
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sequence of the pair (Hx, HY - h-1(K» we get the exact sequence

Now, h-1(K) is an irreducible variety of dimension 2g - 1, so dim,
h-1(K) = 4g - 2. Hence Hn - 1 (h -’(K» = 0 for g a 3 and Hn-4 (h-1
(K)) = 0 for g &#x3E; 3. When g = 3, dimRh-1(K) = n - 4. Observe that
if V is an irreducible subvariety of dim r of a smooth projective variety
W, then the map H2r(V) ~ H2r(W) is injective, and hence the map
H2r(W) ~ H2r(V) has a torsion cokernel. Hence when g = 3, the map
H4(Hx) ~ Hn-4 (h-1(K)) (which is just the natural map Hn-4(Hx) ~
Hn-4(h-1 (K» by Poincaré duality) has a torsion cokernel.

Hence, from (1) we see that

while there is a short exact séquence

where T is a torsion group. As Hx is the projective bundle given by a
vector bundle on Ux the homology of Hx is the K unneth product of the
homologies of Ux and P1. Now, Ux is simply connected, rank H3(Ux) = 2g,
and H2 (Ux) is torsion free since as is easily seen, Ux is rational (see
also Atiyah &#x26; Bott [2]). Hence by the exact sequences (2) and (3),
H2(Hx - h-1(K)) is torsion free and rank H3(Hx - h ’ (K)) = 2g. Now an
application of the universal coefficient theorem completes the proof of the
lemma.

LEMMA 5.3: The cohomology group H3 (Z - Y) is of rank 2g, and ils torsion
subgroup is generated by the topological Brauer class Il of’the restriction 0.1’ the
conic hundle.

Proof: By lemma 3.7, Hx - h-’ (K) is isomorphic to the total space of the
restriction of C to Z - Y. As Ux is simply connected, as Hx is a P1-bundle
on Ux, and as h- 1 (K) is of real codimension at least 4 in Hx, it follows that
Hx - h-I(K) and hence Z - Y are simply connected. Now the lemma
follows immediately from lemmas 5.1 and 5.2.
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LEMMA 5.4: The Chern class a E H2(Y) of the line bundle associated to the
2-sheeted covering of the degeneration locus Y of the conic bundle C is

non-zero. Moreover, H1(Y) = 0.

Proof.- By lemma 3.6, the 2-sheeted covering of Y is not split, hence it

determines a non-zero element a* E H1(Y, Z/2). The element a E H2(Y) is
the image of a* under the connecting morphism for the cohomology
sequence for the short exact coefficients sequence 0 ~ Z - Z - Z/2 -+ 0.
Hence to prove that a =1- 0, it suffices to prove that H1 (Y, Z) = Û. N ote that
topologically Y is a Pg-2 x Pg-2 bundle over the space K - Ko where K is
homeomorphic to the Kummer variety and Ko is the set of its nodal points.
Moreover, H1(K - Ko) = 0 (see [7]). Hence it follows immediately by the
Leray spectral sequence for the fibration Y - K - Ko that H1(Y) = 0.
The proof of the next lemma makes crucial use of the main result proved

in [6].

LEMMA 5.5: We have H3(Z) ~ 7L.2g.

Proof.- Consider the Gysin sequence

H1(Y) ~ H3(Z) ~ H3(Z - Y) ~ H2(Y) ~ H4(Z)

Since by lemma 5.4, H1 (Y) = 0, H3(Z) ~ H3 (Z - Y) is injective. By
Theorem 3.8, the total space of the conic bundle C - Z is smooth. Hence
by Corollary 1 of [6], the topological Brauer class 03B2 E H3 (Z - Y ) maps to
the Chern class a E H2(Y) of the line bundle associated to the 2-sheeted
covering of Y. Since by lemma 5.4, 03B1 ~ 0, 03B2 does not lie in the subgroup
H3(Z) of H3 (Z - Y). Since by lemma 5.3, {0, 03B2} is the torsion subgroup
of H3(Z - Y) it follows H3(Z) is torsion free. Now, we have a com-
mutative triangle

where the map H2(y, Q) - H4(Y, Q) is given by cup product with
CI (Ny,z). Since this map is injective by Proposition 4.C.1 the map H2(Y, Q) ~
H4(Z, Q) is injective, so that H3(Z, 0) L-- H3(Z - Y, Q). The lemma now
follows from lemma 5.3.
Now consider the projection n : Ho - Uo. By theorem 8.14 of [5], the fibre

over a nodal point k E K c Uo is the union Sk u Tk where Sk is a Pg-2-bundle
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over Grass (2, g) while Tk is a P5-bundle over Grass (3, g). Note that
dim Sk = 3g - 6, and dim Tk = 3g - 4. Let T be the union of all Tk as k
varies over the nodal points of K (22g copies in all).
Note that Z is open in Ho - T, and (Ho - T) - Z = Uk (Sk - Tk)

which is of complex dimension 3g - 6, hence of real codimension 6 in

Ho - T. Hence H3(H0 - T) ~ H3(Z) ~ Z2g.
Next, consider the Gysin sequence

H1(T) ~ H3(H0) ~ H3(H0 - T) H2 (T) H4(Ho)

Note that H1(T) = 0. By a combination of remark 4.C.2 and an argument
used in the proof of lemma 5.5, the map H2(T) ~ H4(H0) is injective.
Hence, H3(H0) ~ H3(H0 - T) ~ Z29, which proves theorem 1.
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