
COMPOSITIO MATHEMATICA

HERWIG HAUSER
Comparing modules of differential operators by
their evaluation on polynomials
Compositio Mathematica, tome 69, no 3 (1989), p. 295-307
<http://www.numdam.org/item?id=CM_1989__69_3_295_0>

© Foundation Compositio Mathematica, 1989, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1989__69_3_295_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


295

Comparing modules of differential operators by their
evaluation on polynomials

HERWIG HAUSER
Institut für Mathematik, Universitiit Innsbruck, A-6020 Innsbruck, Austria

Received 23 June 1987; accepted in revised form 27 June 1988

Compositio Mathematica 69: 295-307, 1989
© 1989 Kluwer Academic Publishers. Printed in the Netherlands

Introduction

Any non constant power series can be written for d sufficiently large as a
linear combination of its derivatives of order less than d.

Conversely, given an integer d there always exists a power series which is
not a linear combination of its derivatives of order less than d.
The first statement is obvious. The second seems obvious, too: if d = 1

it just asserts the existence of a non-quasihomogeneous power series. This
is immediate. If d is arbitrary, one may expect that any generic polynomial
with sufficiently many summands should fulfil the assertion.

It turns out that even if d is small the search for a convenient polynomial
is very unpleasant: the size and the coefficients of the systems of linear
equations one has to solve increase rapidly with d. As a common

phenomenon, generic objects are despite their number hard to grasp.
This paper proposes a general algorithm for computing such generic

polynomials. Actually we shall construct a universal family Y of testing
polynomials valuable for all finitely generated modules of differential
operators: two modules will be equal if and only if their evaluations on a
suitable polynomial of Y are equal. To make this more precise let us fix some
notation.

Let A denote the ring of germs of analytic functions on Cn at 0 and let D
be the A-module of differential operators on Cn with coefficients in A.
Given coordinates x1, ... , xn on Cn we can write A = C{x} and D =
03A303B103B5c03B103B5x03B1+03B5~03B1 E D with Caf e C, a e Nn, B e ?Ln, OC + BENn. Set 1 B | =
03B51 + ··· + 03B5n ~ Z. For a differential operator D E D and a finitely
generated A-submodule F of D we introduce:

supp D = support of D = {03B1 ~ Nn, ~ e: CC££ =1= 0} c N nfinite,

carr D = carrier of D = {03B5 ~ Zn , 3 a: c03B103B5 ~ 01 c Zn 
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ord D = order of D = sup {|03B1|, 03B1 E supp D} E N,

lev D = level of D = inf {|03B5|, 03B5 E carr D} E Z,

ord 0 = 0, lev 0 = oo,

ord F = sup {ord D, D E F} E N,

lev F = sup {lev n, ; Dl , ... , Dm minimal standard base of F} ~ N

(cf. sec. 1).

For a power series z E A denote finally by Fz the ideal of evaluations,
Fz = {Dz, D e F}. We then have for all finitely generated A-submodules of D:

THEOREM: Assume n  2. For any d, e E 7L there exists an explicit construction
of a polynomial z = zde E A with the following universal property: Two
A-submodules F and 6 of D with ord F, ord G  d and lev (F + G)  e are
equal f and only if the ideals Fz and Gz are equal.

Remarks: 1. It is equivalent to say that any two A-submodules F ~ G of D
of order  d and level  e are equal if and only if Fz and Gz are equal.

2. The polynomial z of A is not unique: the construction algorithm we
describe provides a whole range of suitable polynomials. But no matter how
z is chosen, its degree and number of summands increase very quickly with
d and e.

3. In practical computations the situation is generally more specific and
allows the choice of simpler testing polynomials. Typically are given a
differential operator D and a sub-module F of D; knowing that D ~ F one
wants to find a z E A with Dz e Fz. For instance, consider the case n = 2,
D = 1 and F the module generated by all ~ix ~iy with 0  i + j  2. A
possible polynomial z satisfying z e Fz is

This polynomial has two characteristic properties: its exponents have com-
ponentwise distance in Nn strictly bigger than 2 (they are sufficiently spare),
and the 6 x 6 matrix ((03B3)03B1) has rank 6, where y (resp. 03B1) runs over the
exponents of z (resp. D and F), and (y),,, E N is defined by ~03B1(x, y)Y =

(y)q . (x, y)’-’ (the y’s are generic w.r.t. the a’s). These two features will form
the basis of the construction of the testing polynomial z in general.
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1. Division Theorem for differential operators

One ingredient for proofing the result stated in the Introduction is the
Division Theorem for finitely generated modules of differential operators
(cf. [B-M], [C]). We shall need a slightly différent version of it and thus
provide an independent presentation of the theorem.

Consider Zn equipped with the following total order: e  é if either

1 E |  || or |03B5| = 1 il and E  lex é, where  lex denotes lexicographical order.
For a differential operator D E D, D = 1 c03B103B5x03B1+03B5~03B1 and a finitely generated
A-submodule F of D we define:

Both tcf and inf are A-submodules of D, whereasAF is only a C-subspace.
All three depend on the chosen coordinates xl , ... , xn on Cn (however,
[G, Th.2] suggests that inf and 0394F are constant for generic coordinates).
One clearly has the direct sum decomposition D = inf ~ AF ; the Division
Theorem asserts that actually D = F 3 AF. This provides a very effective
description of the vector space D/F. We start with some elementary properties
of "in" and "tc".

LEMMA 1: (a) If D and E E D with tcD + tcE ~ 0 then tc(D + E) equals
either tc D, tc E or tcD + tcE. The same holds for initial terms.
(b) If D E D and y E A with (tcD) (iny) ~ 0 then in(Dy) = (tcD) (iny).
(c) One has for D E B: lev D = lev (inD) = lev (tcD).
(d) If D and E E D satisfy tcD + teE =1 0 then lev (tc(D + E))  lev D.

Proof.- (a) Follows from the definitions.
(b) Write D = tcD + D and y = iny + . Then Dy = (tcD)(iny) +
(tcd)f + D(iny) + if and comparison of exponents gives (b).
(c) The two equalities follow from the definition and the choice of the total
order on Zn.

(d) Follows from (a) and (c).
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DIVISION THEOREM: Let F be a finitely generated A-submodule of D.
(1) F ~ A F = D.
(2) There exist generators Dl, ... , Dm of F with in F = (inD1, ... , inDm) · A
and tcF = (tcDl , ... , tcDm) A.
(3) For such generators Dl, ..., Dm of F there exist for any D E D unique
y1, ..., ym E A and a unique E E 0394F such that

and l · inDi ~ (inD1, ... , inDi-1) · A for all monomials fi of the expansion
of yi.
(4) For any finitely generated A-submodule G of D with G c F:

Remark: Elements D1, ..., Dm of F are called a (minimal) standard
base of F (w.r.t. the given coordinates and the total order on Zn) if
inF = (inD,, ... , indn) - A (and m ~ N is minimal for this property). A
standard base is automatically a generator system and satisfies tcF =

(tcD1, ... , tcDm) · A: indeed, by (4) of the Theorem, the inclusions of
A-modules (D, , ... , Dm) · A ce F and (tcD, , ... , tcDm) · A c tcF are

actually equalities. Note moreover that the definition of the level of F does
not depend on the choice of the minimal standard base.

Proof: Clearly (3) ~ (1) ~ (4) and (2) is immediate since inf is finitely
generated. In order to prove (3) let us first show uniqueness. If D =

03A3 yi Di + E = 03A3 yi Di + É then E - E ~ 0394F ~ F = 0, thus E = Ë and
X (yi 2013 l)Da - 0. We may assume in yi ~ inyi for all i. From in(03A3(yi -
yi)Di) = 0 follows similarly as in Lemma 1 (a) that there is a set

I ~ {1, ... , m] such that 03A3i~I in((yi - yi)Di) = 0 and thus 03A3i~I in(yi -
yi)inDi = 0. Let j = sup 1. Then in(yj - yj)inDj E (inD1, ... , inDj-1) · A
and contradiction. Therefore yi = yi for all i.

The proof of existence goes in several steps. Let d = ord F. It suffices to
show (3) with D replaced by Dd = {D E D, ord D  d}. By abuse of
notation we shall write D for Dd throughout this proof. We have to show
that the C-linear map

is surjective. This will be done by choosing suitable filtrations of Am x 0394·F

and D by Banach spaces and proving surjectivity of the corresponding
restrictions of w.
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(a) Let o, ô: Zn ~ R be injective linear forms. For D E D, D = 03A3c03B103B5x03B1+03B5~03B1
and 0  r E R define

and B r =- {D ~ D *, ~D~r  ~}. The B r are Banach spaces and D =

r&#x3E;0Dr. Consider Amr x 0394Fr as the Banach space with norm

where Ar = A n Dr and A’ Fr = DF n Dr. Then the

are well defined C-linear maps between Banach spaces for all r &#x3E; 0 for
which Dl E Dr. If we show that wr is surjective for all sufficiently small r &#x3E; 0

then w itself will be surjective.
(b) Setting ii = D, - indi the maps wr decompose into wr = ur + vr

where

By definition of 0394 Fr, ur is already surjective and it suffices to show that vr
is small enough not to destroy the surjectivity. By the criterion of [H,
Lemma 1, p. 47] one has to prove that the norm of vr is strictly smaller than
the conorm of ur: ~vr~ I  con ur .

(c) con ur  1 for all r &#x3E; 0: For D E Dr there exist unique y, , ... , y,, E Ar
and a unique E E 0394Fr with

and such that Yi. indi e (inD1, ..., inDi-1) · A for all monomials fi of yl .
From this and the definition of the norms one obtains:

This proves con ur  1.

(d) Il Vr ~  1 for suitable o, 6: Zn ~ R and sufficiently small r &#x3E; 0: Let
D E D and set D = D - inD. The choice of the total order on Zn used to
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define tcD and inD allows to choose o: Zn ~ R such that o(E) - O(Eo) &#x3E; 2c

for some constant c &#x3E; 0 and ëo = carr inD and all E E carr D. Setting
ô = t. 0 with 0  t E R small enough one can then achieve

for ao - supp inD and all a E supp D. Consider now

From the above inequality follows that the term in the brackets remains
bounded as r ~ 0. Thus there exists a 0  a  1 such that for r &#x3E; 0

sufhciently small one has

It is then clear that by suitable choices of o and ô such an inequality can be
achieved simultanously for finitely many D’s, in particular for the generators
D1, ... , Dm of F. We thus get

This establishes ~vr~  1 and concludes the proof of the Theorem.

2. Combinatorics

A subset 0393 of Zn will be called spare w.r.t. a couple (S, T) of subsets of Zn
if for all 03B3 ~  ~ 0393 one has 03B3 -  ~ S - T + Nn ~ Zn:
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PROPOSITION 1: Let 17 c Nn be spare w.r.t. a couple (S, T) of subsets of zn.
Let D, E E D be differential operators satisfying carr (tcD) c T and
carr E c S. If for some y E r:

then

Proof.- Let carr tcD = {03B5} and assume (tcD)x03B3 ~ 0. By Lemma 1(b),
in(Dx03B3) = (tcD)xY =1 0 and therefore

This implies y E ~03B3 U, ( + é - 03B5 + Nn) and contradiction.
We next prove that there exist sufficiently many spare sets.

LEMMA 2: Assume n  2. Let T c Zn be finite, b E Zn, S c b + Nn and
t E N. For 03B6 ~ ?Lnt = (Zn)t set r, = {03B3 E Zn, y is a component of CI. The set of
, E Nnt such that r, c Nn is spare w. r. t. (S, T), contains balls of Nnt of
arbitrary radius.

Proof: The set T being finite we may assume that S - T + Nn c b + N n

replacing possibly b. Moreover we can choose ô E (-N)n. Let

03B4 ~ Nn-1 x ( - N) be defined by

The set ~ = 03B4 + Nn-1 x (- N) is closed under addition and does not

intersect ±(03B4 + Nn): the first assertion is clear since 3 E Nn-l x (-N).
Furthermore, if a would belong to V and ±(03B4 + Nn) then either

or
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The linear isomorphism L: /Lm ~ Zn, (03B61, ..., 03B6t) ~ (03B61, 03B61 1 + 03B62, ..., 03B61 1 +
... + 03B6t), sends the t-fold cartesian product V’ of ~ to some nt-dimensional
cone L(~t). Let A denote the n-dimensional diagonal in Nnt = (Nn)t,
~ = {(03C91, ... , Wt) E N n, coi = 03C9j}. For any t-tuple ( = (03B31, ... , Yt) of
A + L(~t) ~ Zn, the differences Yl -- yj for i &#x3E; j are sums of elements of V
by definition of L. As Visclosedunder addition and V n + (ô + Nn) = ~,
the yi - Yi do not belong to + (b + Nn) =D S - T + fBJn. This shows that

1-( = {03B31, ... , 03B3t} is spare w.r.t. (S, T). Moreover L(V’) - Znt contains
balls of Zn, of arbitrary radius. For any such ball B there exists an W e A such
that É = W + B c Nnt proving the Lemma.

For y and a in Nn define (y), E N by the formula aaxy = (03B3)03B1x03B3-03B1, say

A set r c Nn is called generic w.r.t. some finite set R c Nn if the matrix

((03B3)03B1)03B3~0393,03B1~R

has rank equal to the cardinality of R.

PROPOSITION 2: Let r c N n be generic w.r.t. to some finite R c N n. Let

D E D be a differential operator with supp (tcD) c R. If DxY = 0 for all
y E r then D = 0.

Proof: Assume D =1 0. Then tcD = L03B1~Rc03B103B50 x03B1+03B50 ~03B1 ~ 0. From DxY = 0

follows by Lemma 1(b) that (tcD)xY = 03A303B1~R c03B103B50 (03B3)03B1x03B50+03B3 y = 0 for all y. In
matrices:
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LEMMA 3: Let R c Nn be finite, t = card R and let r, be defined as in
Lemma 2. The set Z of’ E Nnl for which r, is generic w.r.t. R is a non-empty
Zariski-open subset of Nnt.

Proof.- We only have to show that Z is non-empty. This signifies that the
polynomial

det ((xi)03B1)1it,03B1~R

is not identically zero, where xi = (x1i, ... , xni) denote variables on Nn for
all i. But a   w.r.t. the total order on Zn implies that cé  j for some

components al, j of a and â. Thus ((03B1))03B1,~R is a triangular matrix with
non-zero entries on the diagonal. It follows that det((xi)03B1) ~ 0.

PROPOSITION 3: For any finite R c fBjn, T c Zn and any S ce à + Nn(03B4 E Zn)
there exists a subset r of Nn which is spare w.r.t. (S, T) and generic w.r.t. R.

Proof.- This is an immediate consequence of Prop. 1 and 2.

3. Proof of the Theorem

For d, e e N define the following sets:

R = supp {D ~ D, ord D  d} = {a ~ Nn, |03B1|  a},

S = carr {D ~ D, ord D  d} - {03B5 ~ Zn, ~ 03B1 ~ R with 03B1 + 03B5 ~ Nn},

T = carr {tcD, D E D, ord D  d, lev D  el

= {03B5 ~ Zn, |03B5| 1  e, ~ 03B1 ~ R with 03B1 + 03B5 ~ Nn}.
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Both R and T are finite and S c c5 + Nn for some c5 E Zn . By Prop. 3 there
exists a finite subset r of Nn which is spare w.r.t. (S, T ) and generic w.r.t.
R. We define the polynomial z = zde E A as:

Let now F and G be submodules of D as in the assertion of the Theorem.
Assume Fz = Gz. We shail deduce that tc(F + G) c tcf. Part (4) of the
Division Theorem will then imply that F + G = F and by symmetry we will
obtain F = G.
Choose a minimal standard base D1, ... , D. of F + G. We have

lev Di  lev (F + G)  e. As (tcD,, ... , tcD.) - A = tc(1F + G) the

inclusion tc(F + G) c tcf will follow if we show that tcdi E tcf for all i.
Actually we shall prove more generally that for any D E D of order  d and
level  e the inclusion Dz E Fz already implies tcD E tcf.

Let us write Dz = Ez with E E F and assume that tcD ~ tcE. By
Lemma 1(d) we have lev(tc(D - E))  lev D  e and therefore

carr(tc(D - E)) c T. Let y E F and write Dz = Ez as

As carr(E - D) ce S and F is spare w.r.t. (S, T) Prop. 1 implies that for all
03B3 ~ 0393

But supp(tc(D - E)) c R. As r is generic w.r.t. R, Prop. 2 implies that
tc(D - E) = 0, i.e. D = E. This proves the Theorem.

4. Examples

In this section we compute the polynomial z of the Theorem in more specific
situations and show possible simplifications. Namely we assume given a
differential operator D E D and a finitely generated submodule F of D such
that D ~ F. Adding to D a convenient element of F we may assume by the
Division Theorem that tcD e tcf. Our aim is to find explicitly a polynomial
z = 03A303B3~0393x03B3 ~ A such that Dz e Fz.
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In this situation one can proceed as follows. Set:

Choose a (finite) subset r of Nn which is spare w.r.t. (S, T) and generic w.r.t.
R, and set

The three sets R, S, T are generally smaller than the one defined in the proof
of the Theorem. Nevertheless, the proof applies as well, for if we would have
Dz = Ez for some E E F then

And this will yield by the same arguments tcD = tcE and contradiction.
Let us carry out the above procedure in three examples of modules of

differential operators on e2:

EXAMPLE 1: Let D = 1 and F c D be generated by ~ix~jy with 0  i +
j  2. Then

Note that S - r c= [(-2, -2) + N2] u [(2, 2) - N2] and hence

(3, - 3) + N x (- N) does not intersect ± (S - T). It follows that

is spare w.r.t. (S, T). One then checks by computation that the matrix
((03B3)03B1)03B3~0393,03B1~R has rank 6, i.e., that r is generic w.r.t. R. Thus z = ~15 +
x12 y3 + x9y6 + x6y10 + x3y13 + y16 does not belong to Fz.
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EXAMPLE 2: Let again D = 1 and F be now generated by ~ix~jv with 0  i +

j  3. Analogous considerations as before yield for instance

In both examples the polynomial z is relatively complicated and not the
simplest one satisfying z e Fz. But aside of the computation of thP rank of
the matrix ((03B3)03B1)03B3~0393 ,03B1~R its construction is very easy.

EXAMPLE 3: We conclude with an example where inspite of the complicated
structure of D and F the polynomial z is simple. Let

and F c D be generated by E, , ... , E6, where:

Then tcD = D and E2, E3, ES , E6, E7, E8 form a minimal standard base of
F, where:

Note that tcD e tcF = (xoxx, ybxy xy~y, 1 XYDX y3~yy, x2~xy) · C{x, YI. Com-
putation gives

One observes that S - T c [(- 1, - 2) + N2] ~ [(1, 2) - N2] and that
(2, - 3) + N x (- N) does not intersect ± (S - T). Thus
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is spare w.r.t. to (S, T ) and one checks immediately that r is also generic
w.r.t. R. Therefore, z = x4 + ry3 + y6 satisfies Dz e Fz as desired.
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