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1. Introduction

Given an abelian variety A of dimension d of CM-type defined over a
number field k, and a point t of A of order N, let D be the number of

conjugates of t over k. Write v(N) for the number of prime divisors of N,
~ for Euler’s ~-function, and Cd(N) = ~(N)/((12)dd!2(d-1)v(N)+1). In §5
(Corollaries 4 and 5) we show that for every e &#x3E; 0 there is a positive
constant Ck,d,E so that

The constant depends only on 8, d, and k, not on the abelian variety A, and
can be made explicit. Thus, for a given number field k and dimension d, there
are only finitely many possibilities for A(k)torsion, where A is an abelian

variety of CM-type and dimension d defined over k.
More specifically, suppose A is an abelian variety of dimension d, (A, 0)

is of type (Mn, (KI)  ··· x Mnm(Km), ’P) (see §2 for definitions) where
K, , ..., Km are CM-fields and 03A3ml=1 ni[Ki:Q] = 2d, C is a polarization of
A compatible with the embedding 0 of Mn1(K1) x ... Mnm (Km ) into

End(A) Q Q, and t is a point of A of order N. Let ko and kt be the fields of
moduli of (A, C, e) and (A, C, 0, t) respectively, let y be the number of roots
of unity in K1 x ... x Km , and let rb(N) = # {m E (Z/NZ)X : m ~
1 (mod N)} where b = [: Q]/2 and K is the compositum of the reflex fields
of the Ki’s. In §4 (Theorems 1 and 2) we show:

We will show that (1.2) implies (1.1.).

* NSF Postdoctoral Fellow.
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For comparison, results of Masser, Bertrand, and Serre give lower bounds
for the degree of a torsion point which hold for all abelian varieties, but have
constants which depend on the abelian variety. For example, transcendence
theory leads to the result:

THEOREM (Bertrand [1]). If A is a simple abelian variety of dimension d
defined over a number field k, and t is a point of A of degree D over k and order
N, then for every 8 &#x3E; 0 there is a positive constant CA,k,E so that

D  C A,k,E N1/(d+2+03B5).

Here, the constant CA,k,03B5 is effectively computable in terms of e, [k : Q], and
the height of the equations defining A. (See also [3]).

Using the theory of l -adic Galois representations, Serre can show (with
notation as above):

THEOREM (Serre [5]). If A contains no abelian subvariety of CM-type, then for
every 8 &#x3E; 0 there is a positive constant CA,k,, so that D  CA,k,03B5N2-03B5. If A does
contain an abelian subvariety of CM-type, one must replace 2 - 8 by 1 - E.

Serre’s inequalities are stronger than Bertrand’s, but Serre’s constants are
ineffective.

The proof of (1.2) essentially appears in [9] (proof of Proposition 7.3),
where only a weaker result was explicitly stated, namely:

(with an explicit positive constant Cd depending only on d). Also, in [9] we
had ni = 1 for i = 1,..., m.

2. Definitions

Suppose Kl , ... , Km are CM-fields, and d, n1, ... , nm are positive integers
so that

Let Z = Mnl (KI ) x ... x M (K) W = Kl’ x ... x Knm K =

KI x ... x Km, and WR = W QQ R. Then W is a left Z-module. Suppose
03A8 is a faithful complex representation of Z of dimension d,  is a Z-lattice
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in W, U : W x W - Q is an alternating form, and v1, ..., vs are elements
of W. Also, suppose A is an abelian variety over C of dimension

d, 0 is an embedding of Z in End(A) Q Q, C is a polarization on A, and
tl , ..., ts are points of A of finite order. Let Q be the involution of
End(A) Q Q determined by C, and write â for the complex conjugate of
a E K.

DEFINITION 1. C is an admissible polarization for (A, 0) if 03B8(a) = 0(à)
whenever a E K.

DEFINITION 2. (A, C, 03B8, t1 , ..., ts) is of type (Z, IF, -3, U, vl , ... , vs) if C
is an admissible polarization for (A, 0) and there is a commutative diagram
with exact rows:

where D is a lattice in Cd, 03BE gives an isomorphism of Cd/D onto A, u is an
R-linear isomorphism of WR onto Cd which maps W onto QD, -3 = u-’ (D),
and:

(a) 03B8(a) 03BF 03BE = 03BE 03BF 03A8(a) for every a E Z,
(b) u(ax) = 03A8(a)u(x) for every a E Z and x E WR ,
(c) U(x, y) = E(u(x), u(y)) for every x, y E W, where E is a Riemann form

on Cd/D, induced by the polarization C, and
(d) 03BE(u(vj)) = tj for j = 1, ... , s.

Note 1 : The reader accustomed to the case of abelian varieties A with

complex multiplication by a CM-field of degree 2(dim A) may prefer to
assume throughout that m = 1 and ni = 1. Then Z = W = a CM-field.

DEFINITION 3. (A, 0) is of type (Z, W) if (a) and (b) of Definition 2 hold for
some u and 03BE. We also say (A, 0) is of CM-type if (A, 0) is of type (Z, y)
for some (Z, ’Y) as above (for some positive integers m and ni, ... , nm).

Note 2: Every (A, 0) of type (Z, ’P) has an admissible polarization C
(§6 of [8]).

Note 3: Given (A, 0) of type (Z, IF), points of finite order tl, ... , ts, and
an admissible polarization C for (A, 0) there always exist -3, U, VI’ ..., vs
so that (A, C, 03B8, t1, ... , ts ) is of type (Z, 03A8, , U, v1, ..., vs ) (see [6]).
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3. Main theorem of complex multiplication

If (A, 0) is of type (Z, 03A8), then A is isogenous to a product A71 x ... x Am
where A1,..., Am are abelian varieties. The map 0 induces maps
03B8i:Ki  End(Ai) ~ Q so that (Ai, ei) is of type (Ki, 03A6i) where ’PIK
is equivalent to ni4)i + (a zero representation). Let (i, l) be the reflex
of (Kl, 03A6l), and let K be the compositum of 1,.., m. Define

~:  ~ K  = K 1  ··· x Kyn by ~(a) = ~mi=1(det l)(N/l(a)) and

extend q to a map from KÂ to KI Â  ··· x KmA where MÂ is the group of
ideles in a number field M. For c E Kx write N(c) for the absolute norm of
the ideal of K associated to c.

THEOREM (Shimura) ([6] §4.3). Suppose c E A, 03C3 E Aut(C), and a = [c, K]
on Kab. If (A, C, 03B8, t1, ..., ts ) is of type (Z, ’Y, , U, vl , ... , vs ) then

(A,7, C,7, 0,7, tf, ..., t03C3S) is of type (Z, W, ~(c)-1, N(c) U, ~(c)-1v1, ... ,
~(c)-1vs).

COROLLARY 1 (Shimura). If Q = (A, C, 0, tl , ... , ts ) is of type
(Z, Y, 3. U, v1,..., Vs) then the field of moduli of Q is the subfield of Kab
corresponding under class field theory to the subgroup (c E KÂ : 3q E K  c Z

with qqN(c) - 1, qq(c) = 3, (qu(c) - 1)T, E } of A.

The corollary follows directly from the theorem. The special case of full
complex multiplication is stated in [7].

4. Main theorems

Suppose (A, C, 0) is of type (Z, W, , U ), d = dim (A), and t E A is a point
of order N. Let ko and kt be the fields of moduli of (A, C, 0) and (A, C, 0, t),
respectively. Take v E W so that ç(u(v)) = t. By Corollary 1, ko and k,
correspond under class field theory to the groups So = {c E KÂ : ~q E Kx
with qqN(c) = 1 and q~(c) = } and St - {c E KÂ : 3q E KX with

qqN(c) - 1, qq(c) = 3, and (qq(c) - 1)v E 31, respectively.
Let (Ç = o-’ (End(A) n 0(K )) = {w E K: w c }, an order in K. Let

 be any order in K so that ~( - 0) ~ O - 0. If p is a rational prime and
M is a Z-module, let M, = M ~z Zp . Let F = ~· 03A0p p ~ KÂ and let
L be the field corresponding to K" F.

If c E F then (a) N(c) = 1 and (b) j(c)3 = -3. (4.1)
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Let p be the number of roots of unity in K.

By (4.1 )(b), if ce F and q E K" then the following are equivalent:
(i) q~(c) = , (ii) q = , (iii) q E O . For q E (9 x , q is a root of

unity exactly when qq - 1. From (4.1)(a) we now conclude that
F n S( = {c E F : for some root of unity q E O  we have (qq(c) - 1)p E cvp
for every prime pl. Let R = {roots of unity in O }. The map (F n St)/E ~
R/(R n (1 + 03C9)) which takes c to q is an injection. Therefore [F n St : E] 
#(R)  y. By (4.3), [kt:k0]  [F: E]/03BC. ~

If r E Q then 17(r) = ,P. Let Rb(N) = {m e (ZjNZ)x: mb = 1(mod N)}
and let rb(N) = #Rb(N).

THEOREM 1. [kt:k0]  ~(N)/rb(N)03BC.
Proof. If p is a rational prime then NOp ~ 03C9p ~ Op. We can then define

a homomorphism (Z/NZ)  ~ 03A0p p /Ep = F/E. The kernel is Rb(N), since
co n Z = NZ. Thus [F:E]  ~(N)/rb(N), and the theorem follows from
Lemma 2. 0

LEMMA 3. Suppose M is a CM-field, [M : Q] = 2r, and m is the number of
roots of unity in M. Then m  6’.

Proof. Since M is a CM-field, ~(m)  [M : Q] = 2r. But ~(n)  2 log6 n
for all n, so m  6’. 0
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From Lemma 3 and (2.1) we can conclude:

We have

Note 4: If d = 1 then Ab,jl(N) = ~(N)/03BC  ~(N)/6 ~ N/log log (N).
Let Dd(N) = ~(N)/(2(d-1)v(N)6d).

LEMMA 4. Ab,03BC(N)  Bd(N).
Proof : Writing (In, n) for the greatest common divisor of m and n, we have

rb(pt) = (b, 0(p» if p is an odd prime, rb (2‘ ) = (b, 2)(b, 2t-2) if t  2, and
rb(2) = 1. Thus rb(N)  bv(N) if 8  N, and rb(N)  2b v(N) if 8|N. Lemma 4
follows from (4.5) and the inequality:

From Theorem 1 and Lemma 5 we have:

THEOREM 2. [kt:k0]  Bd(N).

LEMMA 5. For N  3 we have Bd(N)  C’dN1-dC/log log(N), with explicit posi-
tive constants C’d and C.

Proof. Apply the estimates:

0(n) » n/log log (n), and (4.9)

v(n) « log (n)/log log (n) (4.10)

(see [4] for the explicit constants). 0

If N is a power of a prime p, we can use the definition of Bd(N) to obtain:



247

5. Applications to degrees of torsion points

If A is an abelian variety defined over a number field k, and t E A(k), we let
Dk = [k(t) : k].

COROLLARY 2. Suppose (A, 0) is defined over a number field k and is of
CM-type, and t E A(k) is a point of order N. Then

(with b and y as in (4.2) and (4.4)).
Proof. Let C be an admissible polarization for (A, 0) which is defined over

k (such a C exists by an argument analogous to that on pp. 128-9 of [2]).
Then (A, C, 0, t) is defined over k(t), and so k(t) contains the field of moduli
of (A, C, 0, t). Thus [k(t) : Q]  Ab,03BC(N)  Bd(N). ~

COROLLARY 3. Suppose A is a simple abelian variety of dimension d defined
over a number field k, with complex multiplication by a CM field K of degree
2d. Suppose t is a point of order N. Then

(where K is the reflex field of K, 2b = [K: Q], and y is the number of roots of
unity in K).

Proof. For some 0 and 03A8, (A, 0) is of type (K, ’11). Since A is simple,
(A, 0) is defined over Kk (Prop. 30, §8.5 of [8]). By Corollary 2,
[Kk(t) : Q]  Ab,03BC(N). Corollary 3 now follows from (4.8). 0

LEMMA 6. Suppose (A, 0) is of type (KI x... x Km, 03A8) for CM-fields Ki (not
necessarily distinct). Let L be the compositum of the Galois closures of the fields
Ki. If A is defined over a field k then (A, 0) is defined over kL.
Proof The map 0 induces a representation of KI x ... x K," on the

space of holomorphic differential forms of A. This representation can be
diagonalized over kL, showing that the actions of 0 and 03B803C3 are the same for
03C3 ~ Aut(C/kL). 1:1

COROLLARY 4. Suppose A is an abelian variety defined over a number field k,
(A, 0) is of CM-type for some 0, and t E A(k) is a point of order N. Then

Dk  ([k:Q][L:Q])-1Ab,03BC(N)  ([k:Q]2dd!)-1Bd(N)

(with L the field generated by the Galois closures of the CM-fields in the type
of (A, 03B8)).
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Proof. If (A, 0) is of type (Z, 03A8), let 0’ be 0 restricted to Kl’ x ... Knmm.
By Lemma 6, (A 0’) is defined over kL. Let Li be the Galois closure of Ki,
and let 2di = [Kl : Q]. Since Ki is a CM-field we have [Li:Q]  2di(di)! and
[L : Q)  2dd! by (2.1 ). From Corollary 2 we know [kL(t):Q]  Ab,03BC(N),
and Corollary 4 follows.

~

For comparison with the results of Bertrand and Serre, we state:

COROLLARY 5. Under the assumptions of Corollary 4, for every e &#x3E; 0 there

is a positive, e, ff’ectively computable constant CE,d,k so that Dk  CE,d,kNl-E.
Proof. Follows from Lemma 5 and Corollary 4. 0

Using Lemma 5 we can obtain the same results under the hypotheses of
Corollaries 2 or 3. If N is a power of a prime we obtain better inequalities
from (4.11).
We now rephrase Corollary 4 in the case t E A(k) to give bounds on orders

of torsion points of abelian varieties of CM-type.

COROLLARY 6. I, f A is an abelian variety of CM-type and dimension d defined
over a number field k, and N is the order of a torsion point of A(k), then

As examples of applications of Corollary 6, we state two immediate conse-
quences :

COROLLARY 7. If E is a CM elliptic curve defined over a number field k, and
N is the order of a torsion point of E(k), then ~(N)  12[k : Q].

COROLLARY 8. If A is a two-dimensional abelian variety of CM-type defined
over Q, and N is the order of a torsion point of A(Q), then

(a) ~(N)  2 6+v(N). 3 2
(b) ~(N)  25+v(N). 32 if 8 ,f’ N.
(c) v(N )  6,
(d) N  23 · 3 · 5 · 7 · 13 · 17 = 185640,
(e) if N is prime then N  577,
(f) |A(Q)torsion|  (185 640)4.
Proo, f : Parts (c), (d), and (e) are elementary computations following from

(a) and (b), while (f ) follows from the fact that whenever A is an abelian
variety of dimension d defined over a number field k, and M is the maximum
order of a torsion point of A(k), then lA (k)torsion |  m2d.
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Note added: Using transcendence theory, Masser has recently obtained the
improvement on Bertrand’s theorem (see §1): D  CA,kN1/d(log N)-1.

1 would like to thank D. Bertrand and J.-P. Serre for helpful discussions.
1 would also like to thank I.H.E.S. for its hospitality, and N.S.F. for a
postdoctoral fellowship.
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