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1. Introduction

Given an abelian variety 4 of dimension d of CM-type defined over a
number field k, and a point ¢ of 4 of order N, let D be the number of
conjugates of ¢ over k. Write v(N) for the number of prime divisors of N,
¢ for Euler’s ¢-function, and C,(N) = ¢(N)/((12)*d12¢-D*™+1) In §5
(Corollaries 4 and 5) we show that for every ¢ > 0 there is a positive
constant C,,, so that

D> C,(N)k:Q]"" = Gy N'". (1.1)

The constant depends only on ¢, d, and &, not on the abelian variety 4, and
can be made explicit. Thus, for a given number field £ and dimension d, there
are only finitely many possibilities for A(k),.,,» Where 4 is an abelian
variety of CM-type and dimension d defined over k.

More specifically, suppose A is an abelian variety of dimension d, (4, 6)
is of type (M, (K,) x - -+ x M, (K,), V) (see §2 for definitions) where
K, ..., K, are CM-fields and 2"_, n,[K;: Q] = 2d, C is a polarization of
A compatible with the embedding 6 of M, (K,) x --- M, (K,) into
End(4) ® Q, and ¢ is a point of 4 of order N. Let k, and k, be the fields of
moduli of (4, C, 0) and (4, C, 0, 1) respectively, let u be the number of roots
of unity in K; x --- x K, and let r,(N) = #{me (Z/NZ)*:m =
1(mod N)} where b = [K:Q]/2 and K is the compositum of the reflex fields
of the Ki’s. In §4 (Theorems 1 and 2) we show:

[ki:kol = G(N)/r,(N ) = (N )/(247 7+ 167). (1.2)

We will show that (1.2) implies (1.1.).
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For comparison, results of Masser, Bertrand, and Serre give lower bounds
for the degree of a torsion point which hold for all abelian varieties, but have
constants which depend on the abelian variety. For example, transcendence
theory leads to the result:

THEOREM (Bertrand [1]). If A is a simple abelian variety of dimension d
defined over a number field k, and t is a point of A of degree D over k and order
N, then for every ¢ > 0 there is a positive constant C,,, so that
D > CAker/(d+2+£)'

Here, the constant C,,, is effectively computable in terms of ¢, [k: Q], and
the height of the equations defining 4. (See also [3]).

Using the theory of /-adic Galois representations, Serre can show (with
notation as above):

THEOREM (Serre [S]). If A contains no abelian subvariety of CM-type, then for
every e > 0 there is a positive constant C,, ,so that D > C,, ,N*°. If A does
contain an abelian subvariety of CM-type, one must replace 2 — ¢ by 1 — &.

Serre’s inequalities are stronger than Bertrand’s, but Serre’s constants are
ineffective.

The proof of (1.2) essentially appears in [9] (proof of Proposition 7.3),
where only a weaker result was explicitly stated, namely:

k,: k)] = C,N° with s = 2/3 — log;2

(with an explicit positive constant C, depending only on d). Also, in [9] we
hadn, = 1fori=1,...,m

2. Definitions

Suppose K|, . . ., K, are CM-fields, and d, n,, . . . , n, are positive integers
so that
2d = ) nlK;:Ql 2.1)
i=1

Let Z = Mnl(Kl) X oo X Mn,,,(Km), W = K:” X X K;'rlrm’ K =
K, x -+ x K,,and Wy = W ®¢q R. Then Wis a left Z-module. Suppose
¥ is a faithful complex representation of Z of dimension d, J is a Z-lattice
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in W,U: W x W — Qisan alternating form, and v,, . . . , v, are elements
of W. Also, suppose 4 is an abelian variety over C of dimension
d, 0 is an embedding of Z in End(4) ® Q, C is a polarization on 4, and
t,...,t are points of A of finite order. Let ¢ be the involution of
End(4) ® Q determined by C, and write a for the complex conjugate of
ac k.

DerFINITION 1. C is an admissible polarization for (4, 0) if 6(a)? = 6(a)
whenever a € K.

DEFINITION 2. (4, C, 0, ¢, ..., t)isof type (Z, ¥, 3, U, v,, ..., v,)if C
is an admissible polarization for (4, 6) and there is a commutative diagram
with exact rows:

0—=3— W — WR/J—0
! L l

0—>D—C' 4 —0

where D is a lattice in C?, ¢ gives an isomorphism of C?/D onto A4, u is an
R-linear isomorphism of W, onto C¢ which maps W onto QD, § = u~'(D),
and:

(@) 0(a)o& = £oW¥(a) foreveryae Z,

(b) u(ax) = Y(a)u(x) for every a € Z and x € Wy,

(©) U(x, y) = E(u(x), u( y)) for every x, y € W, where Eis a Riemann form
on C¢/D, induced by the polarization C, and

d) ¢(u(v)) = tiforj=1,...,s.

Note 1 : The reader accustomed to the case of abelian varieties 4 with
complex multiplication by a CM-field of degree 2(dim 4) may prefer to
assume throughout that m = 1 and n, = 1. Then Z = W = a CM-field.

DEFINITION 3. (4, 0) is of type (Z, W) if (a) and (b) of Definition 2 hold for
some u and £. We also say (4, 0) is of CM-type if (4, 6) is of type (Z, V)
for some (Z, V) as above (for some positive integers m and n,, . . ., n,).

Note 2: Every (4, 0) of type (Z, ¥) has an admissible polarization C
(§6 of [8]).

Note 3: Given (4, 0) of type (Z, V), points of finite order ¢,, . . ., 7, and
an admissible polarization C for (4, 0) there always exist J, U,v,, ..., v

> Vs

so that (4, C, 0,¢t,,...,1)is of type (Z,¥, 3, U, v,, ..., v,) (see [6]).



244 A. Silverberg

3. Main theorem of complex multiplication

If (4, 0)is of type (Z, W), then A is isogenous to a product A" x -+ - x A"
where A4,,..., 4, are abelian varieties. The map 6 induces maps
0;:K; = End(4;,) ® Q so that (4,, 6,) is of type (K; , @) where W[
is equivalent to n,®, + (a zero representation). Let (K,, (I)) be the reflex
of (K, ®), and let K be the compositum of K,,..,K,. Define
niK* = K* =K' x - x K¥ by n(@) = @, (detd)(Ngz(a) and
extend 7 to a map from Ky to KX x - - - x K where M, is the group of
ideles in a number field M. For ¢ € K} write N(c) for the absolute norm of
the ideal of K associated to c.

THEOREM (Shimura) ([6] §4.3). Suppose c € K, o € Aut(C), and o = [c, K]
on K,. If (4, C, 6, t,,... t,) is of type (Z, ‘P 3. U, v,...,v) then
Ad°,C,0,6,...,€) is of type (Z, ¥, n(c)'J, N(©)U, n(c) v, ...,
n(c)™"v,).

COROLLARY | (Shimura). If Q =(4,C,0,¢t,...,t) is of type
(Z,¥,3, U,v,, ...,v,) then the field of moduli of Q is the subfield of K,
corresponding under class field theory to the subgroup {c € K :3g e K* < Z
with ggN(c) = 1, gn(©)J = 3, (gn(c) — v, € I} of K.

The corollary follows directly from the theorem. The special case of full
complex multiplication is stated in [7].

4. Main theorems

Suppose (4, C, B)isof type (Z, ¥, J, U), d = dim(A4),and ¢ € A is a point
of order N. Let k, and k, be the fields of moduli of (4, C, 6)and (4, C, 6, t),
respectively. Take v € W so that &(u(v)) = t. By Corollary 1, k, and &,
correspond under class field theory to the groups S, = {ce K7 :3q € K*
with ggN(c) = 1 and gn(c)3 = 3} and S, = {ce K{:3ge K* with
qgN(c) = 1, qn(c)S 3, and (gn(c) — l)v € J}, respectively.

Let 0 = l(End(A) e O(K ) = {we K: w3 = 3}, an order in K. Let
@ be any order in K so that y(@ — 0) = ¢ — 0. If p is a rational prlme and
M is a Z-module, let M, = M ®z Z, LetF = Kr- l'[,,(Opx c K7 and let
L be the field correspondmg to K* F

If ¢ € F then (a) N(c) = 1 and (b) n(c)J = J. 4.1)
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Lemma 1. k, < L.
Proof. By (4.1), F<= S,. For ce K*, letting g = n(c)~' shows
K* c S c S,. Thus K*F < S,. m]

Letw = {{e€0:¢veJ}. ThenwnZ = NLandow, = {{€(,: ¢ve J,}.
Let E, = {ce 0;: (n(c) — 1),€ w,} and let E = KXILE, < F.

Let u be the number of roots of unity in K. 4.2)

LEMMA 2. [k,: ky] = [F: E]/u.
Proof. By Lemma 1, [k,:k)) > [kL:L] = [K*F:K*Fn S]] Also,
K*F/(K*F n S,) is isomorphic to F/(F n S,), since K* < S,. Therefore:

[k, k] = [F:F S (4.3)

By (4.1)(b), if ce F and g € K* then the following are equivalent:
g3 =3, (1) g3 =3, (i) ge 0O*. For ge 0*, g is a root of
unity exactly when ¢4 = 1. From (4.1)(a) we now conclude that
F n S, = {c e F:for some root of unity g € ©®* we have (gn(c) — 1), € o,
for every prime p}. Let R = {roots of unity in 0> }. The map (F n S,)/E —
R/(R n (1 + w)) which takes c to g is an injection. Therefore [F 1 S,: E] <
#(R) < p. By (4.3), [k,: ko] = [F: E]/p. 0

Let b = [K:Q]/2. (4.4)

If re Qthenn(r) = . Let R,(N) = {me (Z/NZ)*: m* = 1(mod N)}
and let r,(N) = #R,(N).

THEOREM 1. [k,: k)] = ¢(N)/r,(N)u.

Proof. If p is a rational prime then N0, = w, < O,. We can then define
a homomorphism (Z/NZ)* — I1,0) /E, = F/E. The kernel is R,(N ), since
o nNZ = NZ. Thus [F:E] = ¢(N)/r,(N), and the theorem follows from
Lemma 2. O

LEMMA 3. Suppose M is a CM-field, [M : Q) = 2r, and m is the number of
roots of unity in M. Then m < 6'.

Proof. Since M is a CM-field, ¢(m) < [M:Q] = 2r. But ¢(n) = 2 loggn
for all n,som < 6. m|
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From Lemma 3 and (2.1) we can conclude:
i< 6l (4.5)

We have u = 67if K = Q(/—3)".
Let 4,,(N) = ¢N)/r,(N)p. (4.6)

Note 4: 1If d = 1 then 4,,(N) = ¢(N)/u = ¢(N)/6 > N/log log (N).
Let D,(N) = ¢(N)/(2¢- "M 67).

Let Bv) = {0 HSAN @7)
T b2 if 8| N '

LEMMA 4. 4,,(N) = B,(N).

Proof. Writing (i, n) for the greatest common divisor of m and n, we have
r,(p') = (b, p(p")) if p is an odd prime, r,(2') = (b, 2)(b, 2'"%) if t > 2, and
r,(2) = 1. Thus r,(N) < ™ if8 ¥ N,and r,(N) < 20"V if 8| N. Lemma 4
follows from (4.5) and the inequality:

b <2471 ((1.9.1) of [6]). (4.8)
O
From Theorem 1 and Lemma 5 we have:
THEOREM 2. [k,: k,] = B,(N).
LEMMA 5. For N > 3 we have B,(N) = C,N'~oele®™) "yyith explicit posi-

tive constants C; and C.
Proof. Apply the estimates:

¢(n) > nflog log (n), and 4.9)
v(n) < log (n)/log log (n) 4.10)
(see [4] for the explicit constants). O

If N is a power of a prime p, we can use the definition of B,(N) to obtain:

By(p') = p'/2(12)"). (4.11)
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5. Applications to degrees of torsion points

If 4 is an abelian variety defined over a number field k, and ¢ € A(k), we let
D, = [k(1): k].

COROLLARY 2. Suppose (A, 0) is defined over a number field k and is of
CM-type, and t € A(K) is a point of order N. Then

D, > [k:QI"'4,,(N) > [k:Q]"'B,(N)

(with b and p as in (4.2) and (4.4)).

Proof. Let C be an admissible polarization for (4, ) which is defined over
k (such a C exists by an argument analogous to that on pp. 128-9 of [2]).
Then (4, C, 6, t) is defined over k(¢), and so k(¢) contains the field of moduli
of (4, C, 0, t). Thus [k(£):Q] = 4,,(N) = ByN). a

COROLLARY 3. Suppose A is a simple abelian variety of dimension d defined
over a number field k, with complex multiplication by a CM-field K of degree
2d. Suppose t is a point of order N. Then

D, > ([k:QIK: QD' 4,,(N) > (2'[k:QI)"'B,(N)

(where K is the reflex field of K, 2b = [K:Q), and p is the number of roots of
unity in K).

Proof. For some 6 and ¥, (4, 0) is of type (K, ¥). Since A4 is simple,
(4, ) is defined over Kk (Prop. 30, §8.5 of [8]). By Corollary 2,
[Kk(1): Q] > A,,(N). Corollary 3 now follows from (4.8). O

LEMMA 6. Suppose (A4, 0) is of type (K, x - -+ x K, ¥) for CM-fields K, (not
necessarily distinct). Let L be the compositum of the Galois closures of the fields
K. If A is defined over a field k then (A, 0) is defined over kL.

Proof. The map 6 induces a representation of K; x - -+ x K, on the
space of holomorphic differential forms of A. This representation can be
diagonalized over kL, showing that the actions of 6 and 6° are the same for
o € Aut(C/kL). m]

COROLLARY 4. Suppose A is an abelian variety defined over a number field k,
(4, 0) is of CM-type for some 0, and t € A(k) is a point of order N. Then

D, > (k:QIL:QN)'4,,(N) > (k:Q]2'd!)~'B,(N)

(with L the field generated by the Galois closures of the CM-fields in the type
of (4, 9)).
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Proof. If (4, 0) is of type (Z, V), let 6" be 0 restricted to K" x - - - K'".

By Lemma 6, (4 ') is defined over kL. Let L; be the Galois closure of K;,
and let 2d, = [K;:Q]. Since K, is a CM-field we have [L,: Q] < 2%(d,)! and
[L:Q) < 29d! by (2.1). From Corollary 2 we know [kL(¢): Q] > A,,(N),
and Corollary 4 follows.

O

For comparison with the results of Bertrand and Serre, we state:

COROLLARY 5. Under the assumptions of Corollary 4, for every ¢ > 0 there
is a positive, effectively computable constant C,,, so that D, > C,, N'™".

&,

Proof. Follows from Lemma 5 and Corollary 4. a

Using Lemma 5 we can obtain the same results under the hypotheses of
Corollaries 2 or 3. If N is a power of a prime we obtain better inequalities
from (4.11).

We now rephrase Corollary 4 in the case ¢ € A(k) to give bounds on orders
of torsion points of abelian varieties of CM-type.

COROLLARY 6. If A is an abelian variety of CM-type and dimension d defined
over a number field k, and N is the order of a torsion point of A(k), then

" [k:QJ(12)/d12¢- M+ if 8 | N
<
[k:QJ(12)%d!12¢ - if 8 y N.

As examples of applications of Corollary 6, we state two immediate conse-
quences:

CoOROLLARY 7. If E is a CM elliptic curve defined over a number field k, and
N is the order of a torsion point of E(k), then ¢(N) < 12[k:Q].

COROLLARY 8. If A is a two-dimensional abelian variety of CM-type defined
over Q, and N is the order of a torsion point of A(Q), then

(@) P(N) < 20032

b) ¢(N) < 257™M.32if 8 ¥ N.

() w(N) <6,

(d) N<2°+3-5-7-13-17 = 185640,

(e) if N is prime then N < 577,

(f) 14(Q)orsion] < (185640)*.

Proof. Parts (c), (d), and (e) are elementary computations following from
(a) and (b), while (f) follows from the fact that whenever 4 is an abelian
variety of dimension d defined over a number field k, and M is the maximum
order of a torsion point of A(k), then |A(k)orsion] < M.
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Note added: Using transcendence theory, Masser has recently obtained the
improvement on Bertrand’s theorem (see §1): D > C, N (log N)~'.

I would like to thank D. Bertrand and J.-P. Serre for helpful discussions.
I would also like to thank I.LH.E.S. for its hospitality, and N.S.F. for a
postdoctoral fellowship.
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