
COMPOSITIO MATHEMATICA

PETER MROZIK
Finite-dimensional categorial complement
theorems in shape theory
Compositio Mathematica, tome 68, no 2 (1988), p. 161-173
<http://www.numdam.org/item?id=CM_1988__68_2_161_0>

© Foundation Compositio Mathematica, 1988, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1988__68_2_161_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


161

Finite-dimensional categorial complement theorems in shape
theory

PETER MROZIK
Universitiit-Gesamthochschule Siegen, FB Mathematik, Hôlderlinstr. 3, 5900 Siegen,
Federal Republic of Germany

Received 3 March 1987; accepted in revised form 14 April 1988

Compositio Mathematica 68: 161-173 (1988)
© Kluwer Academic Publishers, Dordrecht - Printed in the Netherlands

Introduction

The aim of a categorial complement theorem in shape theory is to describe
a class C of compacta,
"admissible embeddings" of compacta X e 6 into "ambient spaces" M,
a "complementary category" K of spaces,

such that the following holds: When X, Y E 03B3 are admissibly embedded into
ambient spaces M, N, there is a "canonical 1-1 correspondence" between
shape morphisms X ~ Y and morphisms M - X ~ N - Y in the comple-
mentary category K.
We shall make this more precise. The admissible embeddings will be

specified by
a class 9t of spaces (occurring as ambient spaces),
a topological embedding condition (E) for compacta X c M E Ql.

The category K is required to have the property
M - X E ObK whenever M E U and X c M is a compactum.

Let Sh() denote the full subcategory of the shape category with

ObSh() = OE, and let K(, Ql, (E)) denote the category having as objects
the pairs (M, X) with M E U, X E  and X c M satisfying (E ), and having
as morphisms (M, X) - (N, Y) the morphisms M - X ~ N - Y in K.
We call (9Î, (E), K) data of a categorial complement theorem for Sh()
(briefly: data for ) if there is an equivalence of categories T:

K(, u, (E)) ~ Sh() such that T(M, X) = X.
Chapman’s category isomorphism theorem [2] says that ({Q}, (Z-set),

wHP), where Q is the Hilbert cube and wHP is the weak proper homotopy
category, are data for the class nm of all compacta. In [7] we obtained the
following
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EXTENDED CHAPMAN THEOREM. (UR, (Z-set), wHC), where UR is the class
of ARs with a complete uniform structure and wHC is the weak complete
homotopy category, are data for nm.

With these data for nm, however, there are no admissible embeddings of
nonempty compacta into Rn (or Sn). This seems to be a remarkable insuf-
ficiency, especially since the finite-dimensional complement theorems in
shape theory [3, 8, 10], guarantee the existence of embeddings of compacta
X into IRn (or sn) such that the shape type of X and the homeomorphism type
of the complement of X determine each other.
The purpose of this paper is to present finite-dimensional versions of the

Extended Chapman Theorem without the above mentioned insufficiency.
"Finite-dimensional" means that data are given no longer for the whole
class nm, but only for the classes nmm of compacta X with fundamental
dimension FdX  m. In the m-dimensional case, the complementary category
is the weak complete m-homotopy category wH.C (introduced in §1; we
point out that the concept of weak m-homotopy for complete maps resembles
the concept of m-homotopy for ordinary maps used e.g. in [6]). Examples for
admissible embeddings of a compactum X are Z-set embeddings into arbitrary
m-connected ANRs, or ILC embeddings into the interior of m-connected
piecewise-linear manifolds M provided FdX  dim M - 2 - m. For the
details see §3,4 (in particular, Main Theorem 4.2).

1. Weak homotopy in catégories of uniform spaces

We shall assume that the reader is familiar with weak proper homotopy
theory as developed in [4]. Let P be the category of a-compact spaces
( = locally compact Hausdorff spaces that can be written as the countable
union of compact subsets) and proper maps, and let P~ be the quotient
category PB (cofinal inclusions in P) as in [4] §6.2. Associated to P and P 00
are the weak proper homotopy category, wHP, and the weak proper homo-
topy category at oo, wHP 00’ respectively (see again [4]). We shall now
introduce "uniform" analogues of these categories. Let us call a uniform
space A a-complete if there exists a map h: A ~ [0, oo) satisfying the following
two conditions:

(C1) For each complete S c A, cl(h(S)) is compact (where "cl" denotes
closure).

(C2) For each n, h-’([0, n]) is complete.
For example, let M be a complete uniform space whose underlying topological
space is metrizable (N.B.: This does not imply that the uniform structure on
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M is induced by a metric). Then, for each compact X c M, the uniform
subspace M - X c M is a-complete: Choose a metric d on the topological
space M and define h : M - X - [0, ~) by h (a) = d(a, X)-1.

It is easy to verify

1.1. PROPOSITION. Let A be a a-complete uniform space.
a) Each closed A’ c A is a-complete.
b) For each compact K, A x K is a-complete.

1.2. REMARK. Recall that each compact topological space K admits a unique
uniform structure compatible with its topology, i.e., K can be regarded as a
uniform space in a natural way.

The symbol C will denote the category of a-complete uniform spaces and
complete maps (a map f: A ~ B between uniform spaces is complete if
preimages of complete subsets are complete; cf. [7]). The restriction to
a-complete uniform spaces is motivated by the nice behaviour of their
"ends" defined in the next section. In the present section, however, every-
thing could also be done with arbitrary uniform spaces.
A uniform subspace A’ of a uniform space A is called cofinal in A if

A’ c A is closed and cl(A - A’) is complete. In this case also the inclusion
1 : A’ - A is said to be cofinal. Let E denote the class of all cofinal inclusions
in C (observe that a cofinal inclusion i : A’ ~ A is in C iff A is a-complete).
The quotient category CBE will be denoted by C~. As in [4] one can show
that C~ admits a calculus of right fractions, i.e., each morphism f:A~B
in C~ can be regarded as an equivalence class of complete maps f ’ : A’~ B
defined on cofinal subspaces A’ of A, two such maps f’ : A’ ~ B and
f": A" ~ B being equivalent if they agree on some cofinal subspace of A.
The composition of morphisms in C~ is obvious since for each f E C~ (A, B)
and each cofinal B’ c B there exists a representative f’ : A’ ~ B of f with
f’(A’) c B’.

1.3. LEMMA. There exist full embeddings e: P - C and e~ : P~ ~ Coo such
that Uce = e~ Up, where Up : P ~ Poo and Uc : C - Coo are the canonical
functors into the quotient categories.

Proof. For each 03C3-compact X, let X* be the one-point compactification.
Let X denote the uniform subspace of X* (cf. 1.2) whose underlying set is
X; X is totally bounded. Hence, the complete subsets of X are precisely the
compact subsets of X, and therefore any proper map h : X ~ [0, oo ) (see [4]
6.3.5 for existence) satisfies (C1), (C2). Moreover, since a map f : A - B
between totally bounded uniform spaces is complete iff it is proper, we can
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define e: P ~ C by e(X ) =X and e(f) = f. Since i : X’ ~ X is a cofinal
inclusion in P iff e(i ) is a cofinal inclusion in C, we see that e induces the
desired e~ : P~ ~ C~.

1.4. REMARK. By 1.3 we can regard P and P~ as full subcategories P c C
and P 00 c C~.

We shall need the notion of weak homotopy in C, Coo.
Weak homotopy in C:fo,f. E C(A, B) are called weakly completely homo-

topic, f0 ~ fl, if for every complete S c B there exists a map H: A x I~B
such that H-1 (S) c A x I is complete and Hi = f , i = 0, 1 (Hi is given by
Hi(x) = H(x, i )). It is not hard to verify that fo - f, iff for every cofinal
B’ c B there exist a map H: A x I~ B and a cofinal A’ c A such that

H(A’ x I ) c B’ and Hl = f , i = 0, 1.

Weak homotopy in Coo: fo, f1 ~ C~ (A, B) are called weakly completely
homotopic at oo, fo ~ fI’ if for every cofinal B’ c B and for all representatives
fi: Ai ~ B of fi with, fi(Ai) c B’, i = 0, 1, there exists a cofinal A’ c A such
that A’ c Ao n A and f0|A’ ~ f, 1 A in B’.
We are now able to define, for each m = 0, 1, ... , oo, the concept of

weak m-homotopy in D = C, C~: ao, al E D(A, B) are called weakly
m-homotopic in D, ao --- m al, if ao qJ ~ 03B11~ for each a-compact polyhedron
P with dim P  m and each ç E D(P, A). Note that P E ObD via 1.4.

It is easy to verify that "weak homotopy" and "weak m-homotopy" are
equivalence relations for morphisms in C, C~ which are compatible with
composition. This yields weak homotopy categories wHC, wHCoo and weak
m-homotopy categories wHm C, wHm Coo. One readily sees that Uc: C - C~
induces a functor ÛC: wHmC ~ wHmCoo.

1.5. REMARK. The inclusions P c C and P~ c C~ induce inclusions

wHP c wHC and wHP 00 c wHC~ . Moreover, the notion of weak

m-homotopy in C, C~ restricts to an intrinsic notion of weak m-homotopy
in P, P,,,. This gives weak m-homotopy categories wHm P c wHm C and
wHmP 00 c wHmCoo.

2. The end of a 03C3-complete uniform space

We introduce the end of a uniform space A following the lines of [4]. Let Top
denote the category of topological spaces and continuous maps, HTop its
homotopy category, and pro-Top resp. pro-HTop their pro-categories. The
end of A is the inverse system in pro-Top



165

indexed by c(A) = {V c A completel and bonded by inclusion maps. Of
course, c(A) is ordered by set inclusion.

2.1. REMARK. Let M be a locally compact non-compact space equipped with
a complete uniform structure, and let X c M be compact. Then, for each
compact neighbourhood Mo of X, we can identify the topological end
E(Mo - X) defined in [4] with a cofinal subsystem of our uniform end
£(M - X). Thus, the uniform end e(M - X) may be interpreted as the
"end of M - X around X" which obviously cannot be defined in terms of
the topological structure of M - X.

We can extend the above end-construction to a functor e: C~ ~ pro-Top:
For each f E C~ (A, B) we have a canonical B(f): 03B5(A)~ e(B) in pro-Top (let
f : A’ ~ B represent f; an index function x : c(B) ~ c(A) is defined by
x(V) = f-I(V) u cl(A - A’); for each V E c(B), fv: Ax(V) - Bv is the
restriction of f). Note that the restriction ofs to Poo c C~ is the topological
end-functor as defined in [4]. The same arguments as in §6.3 of [4] yield

2.2. THEOREM. e induces a full embedding

2.3. REMARK. What is needed to copy the arguments in [4] are the following
facts. Let us call a filtered topological space A = (A0 ~ A1 ~ ...) a filtered
model of a a-complete uniform space A if An - h-1([n, ~)) for some
h: A ~ [0, ~) satisfying (C 1 ), (C2).

(1) If Â is a filtered model of A, then 03B5’() = {An} is a cofinal subtower
of E(A). Moreover, the projection Tet(03B5())~ is a filtered homotopy
equivalence (cf. [4] 6.3.5).

(2 ) If Ã and B are filtered models of a-complete uniform spaces A and B,
then a map f : A ~ B is complete iff f :  ~  is filtered.

We now explore the behaviour of È: C~ ~ pro-HTop with respect to weak
m-homotopy in C~. For this purpose we need some general nonsense from
category theory.

Let K be a category and Ko c K a full subcategory. Morphisms fo,
f1: X ~ Y in K are called Ko -equal if for each Xo E ObKo and each
g E K(Xo, X), fog = flg. This yields a category K/Ko having the same
objects as K and having as morphisms Ko-equality classes of morphisms of
K. There is canonical functor Q: K ~ K/Ko.
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2.4. PROPOSITION. For each Xo e ObKo and each Y e ObK, g: K(Xo, Y) -
K/Ko(Xo, Y) is a bijection. In particular, the restriction O|K0: K0 ~ K/Ko is
a full embedding.

The saturation of Ko is the full subcategory Sat(Ko) c K defined as follows:
X’ e ObSat(Ko) iff for any Ko-equal morphisms f0, f1 e K(X, Y) and any
g ~ K(X’, X), f0g = f1g.

2.5. PROPOSITION. Let Kô c K be a full subcategory with Ko c Ké c Sat(Ko).
Then morphisms, f0, f1 e K(X, Y) are Ko-equal iff they are K’0-equal; i.e.,
K/Ko = K/K’0.

Now, let L be another category and F: K ~ L be a full embedding. By
F(K0) c L we mean the full subcategory of all F(X0), Xo e ObKo.

2.6. PROPOSITION. F: K ~ L induces a full embedding F/Ko : K/K0 ~ L/F(Ko).

Finally, a morphism f: X ~ Y in K is called a Ko-equivalence if for each
Xo e ObK0, f#: K(Xo, X) ~ K(Xo, Y) is a bijection (where f# (g) = fg).

2.7. PROPOSITION. Let f: X ~ Y be a morphism of K. If g(f) is an isomorphism
in K/Ko, then f is a Ko-equivalence. The converse holds provided Y E ObKo.

2.8. REMARK. In general K/Ko is not the quotient category obtained from K
by inverting the Ko-equivalences.

2.9. EXAMPLE. Let TIm and 03A0m,~ be the full subcategories of wHC and wHC~
whose objects are the 03C3-compact polyhedra of dimension ~ m. Then
wHm C = wHC/03A0m and wHm C~ = wHC~/03A0m,~.

Let S2m be the full subcategory of pro-HTop whose objects are all inverse
systems which are isomorphic in pro-HTop to some inverse system
P = {P03BB} such that the P03BB are polyhedra with dimension ~ m. We now
define

Clearly, 6*(n,,J c 03A9m c Sat(03B5*(03A0m,~)). From 2.5, 2.6, 2.9 we obtain

2.10. PROPOSITION. e*: wHC~ ~ pro-HTop induces a full embedding
Em : wHm C~ ~ pro-HTop/03A9m.
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An important property of S2m is

2.11. LEMMA. Let P = {Pn, 03BBn} be an inverse sequence in pro-HTop, where
each Pn is a compact polyhedron with dim Pn ~ m. Then P E Ob03A9m.

2.12. REMARK. Elementary examples show that P need not be isomorphic to
an object of 03B5*(03A0m,~). One can only say that P is isomorphic to an object
of 03B5*(03A0m+1,~), e.g., to 03B5*(Tel({Pn, Pn 1» with PL representatives Pn of yn .

Proof of 2.11. Let ~0, ~1: X~ Y be e*(I1m,oo )-equal morphisms and
03C8: P ~ X. Letting Mi = ~i03C8, we have to show po = pi. Set P* =

~rpr x {r} . This is a a-compact polyhedron with dimension ~ m. Letting
I’n* -  {r}, we see that the inclusion-bonded inverse sequence
P* = {Pn*} is cofinal in 03B5*(P*). A level morphism 03BB*: P* ~ P in pro-HTopis defined by yn : Pn* ~ Pn, 03BBn*|Pr x {r} = yn = Yn ... Yr-1. The morphisms
03BCi: P ~ Y = {Y03B1}03B1~A can be represented by maps of inverse systems
{03BCi,03B1: Px(03B1) ~ Y03B1} with a common index function x : A - N. Hence the

morphisms Mi y* can be represented by {03BCi,03B103B3~*(03B1): P*~(03B1) ~ Y,,, By assumption,
03BC003B3* = ~003C803B3* = ~103C803B3* =  thus, each a E A admits n  ~(03B1) such
that  = . But this implies 03BC0,03B103B3n~(03B1) = 03BC1,03B103B3n~(03B1), which
completes the proof.

2.13. COROLLARY. Let X be a compactum with FdX  m and p: X ~ X be
an HPol-expansion (cf. [5]). Then X E ObOm.

Proof. X is isomorphic in pro-HTop to an inverse sequence P as in 2.11;
cf. [5] Ch. II §1.

2.14. THEOREM. Let A, B be a-complete and assume
(1) A is metrizable, and there exist A E Obflm and an 03A9m-equivalence

~: 03B5(A) ~ A.
(2) B is an m-connected ANR.

Then Ùc : wHm C(A, B) ~ wHm C~ (A, B) is a bijection.
Proof. 1) Surjectivity. We may assume that A = {P03BB}, where the P, are

polyhedra with dimension  m. By 2.7, om (~) is an isomorphism (where
om : pro-HTop - pro-HTop/03A9m). Hence, there is 03C8: A ~ 03B5(A) with Qm(03C8) =
om (~)-1. Consider an equivalence class [f] E wH:Coo(A, B). By (2.2), there
exists g E C~ (A, B) with È(g) = 03B5(f)03C8~. We have 03B5m([g]) = l!me(g) =
om03B5(f)= 03B5m ([f]), i . e. , [g] = [f] by 2.10. Let g be represented by g : A’ ~ B
with a cofinal A’ c A. Since i(g) factors through ç, there is cofinal Ao c A’
such that g 1 Ao factors up to homotopy through a map into a polyhedron P
with dim P  m. Since B is in-connected, g 1 Ao must be inessential. Borsuk’s
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homotopy extension theorem [1] ] yields an extension G : A ~ B of g 1 Ao. It
is clear that G is a complete map with Uc(G) = g. Thus we found
[G] E wHmC(A, B) with Uc([G]) - [Uc(G)] = [g] = [f]’

2) Injectivity. Consider Fo, FI E C(A, B) such that Uc (F0) ==m Uc(F1).
Let P be a a-compact polyhedron with dim P  m and G : P ~ A be a
complete map. Then Uc(F0G) ~ Uc(F1G). Let B’ c B be cofinal. There
exist cofinal A’ c A and P’ c P such that £(A’) c B’ and G(P’) c A’;
Uc (F G ) is represented by fi = FiG|p’. There exist a cofinal P" c P’ and a
homotopy h: P" x I ~ B such that hi = !ïlp" and h(P" x I ) c B’. Because
cl(P - P") is compact, there is a compact subpolyhedron R of P with
P - P" c R. Note that Po = cl(P - R) c P" is cofinal in P, and that the
topological boundary Bd(R x I) = R x {0, 1} u (Bd R) x I of R x I in
P x I is a compact polyhedron of dimension  m. The maps F G and the
homotopy h determine a map h’ : Bd(R x I) ~ B which must be inessen-
tial. Thus there is an extension h" : R x I ~ B of h’. We can put h and h"

together to obtain a homotopy H: P x I ~ B satisfying Hi = F G and
H(Po x I ) c B’. This implies Fo = m FI.

3. Admissible embeddings

Throughout this section, let M denote an ANR and X c M a compactum.
We shall need the following conditions (where k  0):
(A-1) X is not open in M.
(Ak) Each neighbourhood U of X in M admits a neighbourhood c U

of X in M such that the inclusion-induced 03C0k(V, V - X, *) ~
03C0k(U, U - X, *) is trivial for each * ~ V - X.

3.1. REMARK. In (Ao ) we adopted the convention 03C00(Y, B, *) = 7ro (Y, *)/IM(I#)
with i# : 03C00(B, *) ~ 03C00(Y, *). Also observe that (A2) clearly implies the
inessential loops condition ILC (cf. [10]).

For each m  -1, we say that X c M is m-admissible, or satisfies the
embedding condition (Adm ), if the m + 3 conditions (A-1), (An + 1 ) are
fulfilled.

3.2. EXAMPLE. Let X c M be a compact Z-set. Then X c M is m-admissible

for each m  -1. This is so because the inclusion U - X ~ U is a homotopy
equivalence for each neighbourhood U of X in M.

3.3. LEMMA. X c M is (-1)-admissible iff no component of X is open in M.
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Proof (1 ) Let X c M be (-1)-admissible. Assume that there is a compo-
nent K of X which is open in M. Then K must be a component of M. Since
M is an ANR, K is also a path-component of M. By (A0) there is a

neighbourhood V of X in M such that 03C00(V, V - X, *) ~ 03C00(M, M - X, *)
is trivial for each * E V - X (N.B.: By (A-1) there exists * E V - X).
Clearly, K is a path-component of V, i.e., K E 03C00(V, *). From above we infer
the existence of a path in M from K to M - X, whence K cannot be a
path-component of M; a contradiction.

(2) Let X c M have no open component. Then X satisfies (A-1): Other-
wise X would be an ANR, and each component of X would be open in X
and therefore open in M. To prove (Ao ) it suffices to show that for any open
neighbourhood U of X in M and each * E U - X, no(U, U - X, *) = 0,
i.e., that i# : no(U - X, *) ~ no(U, *) is onto. Assume that i# is not onto.
This means that there exists a path-component P of U such that P c X. Let
K be the component of X with P c K. Since U is an ANR, P is a component
of U; hence P = K. We infer that P is not open in M and therefore not open
in U. This is a contradiction because path-components of ANRs are always
open.

3.4. COROLLARY. Let M be connected. Then X c M is (-1)-admissible iff
X # M.

3.5. EXAMPLE. Let M be a piecewise-linear manifold and X a compactum in
the interior M of M.
a) If FdX  dim M - 1, then X c M is (-1)-admissible (apply 3.3).
b) If FdX  dim M - 2, then X c M is 0-admissible (apply a) and [11] ]
Lemma 1.11).
c) If FdX  dim M - 3 and X satisfies ILC, then X c M is (dim M -
2 - FdX)-admissible (apply b) and [11] Lemma 1.12).

In particular, if FdX  d(M) = max {k|2k + 2  dim M} and X
satisfies ILC, then X c M is d(M)-admissible; but if FdX a d(M) + 1,
then X c M is (in general) not d(M)-admissible. Note that the ILC require-
ment can be dropped if dim M x 3.

We shall now give some conditions equivalent to (Adm). By U(X) =
U(M,X) = {U03BB,j03BB03BC}03BB~ we denote the inverse system of all neigh-
bourhoods of X in M, bonded by inclusions j03BB03BC: U, - U03BB. Letting
U*(X) = U*(M, X) = {U03BB - X, j*03BB03BC}03BB~, bonded by inclusions j*03BB03BC: U03BC -
X ~ U03BB 2013 X, we obtain the inclusion level morphism iX =i(M,X) -
{i03BB:U03BB - X ~ U03BB}: U*(X) ~ U(X) in pro-Top.
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3.6. LEMMA. The following are equivalent.
(i) X c M is m-admissible.
(ii) Each À admits a 03BC  À such that for each polyhedral pair (P, R)

with dim (P - R)  m + 1, any map 03B1: (P, R) ~ (U03BC, Uu - X) is
homotopic in U03BB rel R to a map into Uz - X.

(iii) ix: U*(X) ~ U(X) is an unpointed (m + 1)-equivalence in pro-Top,
i.e., U*(X) is not isomorphic to the trivial rudimentary system (QS), and
each Â admits a 03BC  À such that for each * E U, - X

and

(iv) X is not open in M, and for each base ray co: [0, ~) ~ M - X the
induced (ix)#: pro - nk(U*(X, 03C9)) ~ pro - 03C0k(U(X, m)) is an iso-

morphism for k = 0,..., m and an epimorphism for k = m + 1 (cf. [4]
6.4.1).

The proof follows the classical pattern (see e.g., [9] p. 404) and is left to the
reader.

3.7. REMARK. Our definition of an "unpointed (m + 1)-equivalence" in (iii)
is somewhat complicated because U*(X) has no "basepoints" to form an
inverse system of pointed spaces; but in contrast to the formulation in (iv)
it applies - mutatis mutandis - to more general cases.

3.8. COROLLARY. If X c M is m-admissible, then [ix]: U*(X) ~ U(X) is an
03A9*m-equivalence in pro-HTop (here, [ix] denotes the image of ix in pro-HTop).

The proof is based on 3.6(ii) and follows again the classical pattern (cf. [9]
p. 405).

3.9. COROLLARY. If X c M is m-admissible and M is m-connected, then
M - X is m-connected.

Proof. Let f : Sk ~ M - X be any map, k = 0, ... , m. There is an
extension F: Dk+’ 1 ~ M of f. Choose a neighbourhood V = Uu of X in M
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as in 3.6(ii) (for U03BB = M). There is a compact PL manifold neighbourhood
N of F-1 (X) in D k-1 1 such that N c F-1 (V). The topological boundary
BdN of N is a polyhedron which does not intersect F-1 (X). Then F restricts
to a map F’ : (N, BdN ) - (V, V - X). By assumption, F’ is homotopic in
M rel BdN to a map g : N - M - X. Extend this homotopy by the identity
off N to obtain a homotopy of F rel Sk to a map G into M - X. This proves
that f is inessential.

4. Data of a categorial complément theorem for Sh(nmm)

Let A, B be a-complete, A, B E ObS2m and 9: 03B5(A) ~ A, 03C8: 03B5(B) ~ B be
Qm -equivalences. The following commutative diagram describes the basic
situation (cf. 2.2, 2.4, 2.7, 2.10).

Note that if ~, 03C8 are isomorphisms in pro-HTop, then each arrow is a
bijection.

4.1. THEOREM. Let unr be the class of ANRs with a complete uniform
structure. Then (RR, (Adm), wHmCoo) are data of a categorial complement
theorem for Sh(mm).

Proof. We have to construct an equivalence of categories T~:
wHmC~(mm, RR, (Adm)) ~ Sh(mm) (cf. Introduction). Let (M, X)
be a pair, where M E RR, FdX  m, and X c M is m-admissible. There
is a canonical isomorphism qJ(M,X): £(M - X) - U*(M, X) in pro-

HTop(03B5(M - X) can be identified with a cofinal subsystem of U*(M, X)).
By 3.8, I/1(M, X) = [i(m,x)]~(m,x):03B5(M - X) ~ U(M, X) is an 03A9m-equivalence
in pro-HTop. Moreover, U(M, X ) E Ob03A9m by 2.13 (note that U(M, X) is
isomorphic in pro-HTop to the cofinal subsystem of open neighbourhoods
of X in M). We are now in the basic situation considered above: Given
a E wHmC~(M - X, N - Y), we can define T~(03B1) = -1m(m(03C8(N,Y))03B5m(03B1)
m(03C8(M,X))-1) ~ pro-HTop(U(M, X), U(N, Y)) = Sh(X, Y).

4.2. MAIN THEOREM. Let RRm be the class of m-connected ANRs with a
complete uniform structure. Then (RRm, (Adm), wHm C) are data of a
categorial complement theorem for Sh(mm).
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Proof. Let T = TooUc: wHmC(mm, RRm, (Adm)) ~ Sh(mm). It

follows from 2.14, 3.9 and 4.1 that T is an equivalence of categories.

4.3. COROLLARY. Let X, Y be Z-sets in compact ARs M, N such that FdX,
Fd Y  00. Then M - X and N - Y have the same weak proper homotopy
type iff they have the same weak proper m-homotopy type for some/any
m  FdX, Fd Y.

For each fixed m-connected ambient ANR M, we obtain the following
finite-dimensional version of Chapman’s category isomorphism [2].

4.4. COROLLARY. The shape category of m-admissible compacta X c M with
FdX  m is isomorphic to the weak complete m-homotopy category of their
complements M - X. If M is compact, one can replace the weak complete
m-homotopy category by the weak proper m-homotopy category.

4.5. COROLLARY. Let M be a d(M)-connected piecewise-linear manifold. Then
the shape category of ILC compacta X c M with FdX  d(M) is isomorphic
to the weak complete d(M)-homotopy category of their complements M - X
(the ILC requirement can be dropped if dim M  3).

The next corollary is well-known for n  5, but seems to be new for n = 4
(note that d(S4) = 1).

4.6. COROLLARY. Let X, Y be ILC compacta in Sn such that FdX,
Fd Y  d(Sn). If Sn - X and Sn - Y are homeomorphic, then X and Y have
the same shape.

4.7. COROLLARY. Let X, Y be compacta in Sn, n  2, such that

FdX = Fd Y = 0. If Sn - X and Sn _ Y are homeomorphic, then X and Y
have the same shape.

4.8. REMARK. In 4.6 and 4.7 one can also replace Sn by Rn (identify Rn with
Sn - {*}).

We close with the following property of the equivalence of categories T
constructed in 4.2.

4.9. PROPOSITION. Let (M, X), (N, Y) be objects of wHmC(mm, RRm,
(Adm)) and F: M - N be a map such that F(X) c Y and F(M - X) ~
N - Y. If F’ : X ~ Y and F" : M - X - N - Y are defined as restrictions
of F, then



173

(a) F" is a complete map.
(b) T([F"]) = 8([F’]).
Here 8: HTop - Sh denotes the shape functor, [F"] the weak complete
m-homotopy class of F" and [F’] the homotopy class of F’.

Proof. a) is obvious, since a subset of M - X (resp. N - Y) is complete
iff it is closed in M (resp. N).

b) Finduces a morphism F: U(M, X) ~ U(N, Y) in pro-Top. Obviously,
[F]03C8(M,X) = 03C8(N,Y)03B5*([UC(F")]). But then it is clear from the construction of
T 00 in 4.1 that T([F"]) = 0160([F’]).
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