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Let C be a smooth complete curve of genus g  5 over an algebraically
closed field k of characteristic ~ 2. Let 0 be the theta divisor on the
Jacobian J. Let x be a double point of 0. Then we may expand a local
equation 0 = 0 of 0 near x as

where Oi is homogenous of degree i in the canonical flat structure [K3] on J.
It is well-known that the tangent cone R = {03B82 = 01 is a quadric of
rank  4 in the canonical space Pg-1 which contains the canonical curve.

If C is not hyperelliptic, trigonal or a plane quintic then for a general
double point x the quadric 02 has rank 4 and the two rulings of R cut out
on C a pair of residual base-point-free distinct g1g-1’s,| 1 D | and K - D|,
(apply Mumford’s refinement of Martens’ theorem [M]. In the bi-elliptic
case x should be a general point of the component of the singular locus of
0 which does not arise from g14’s by adding base points or its residual
component). Moreover the morphism ~|D| x ~|K-D|: C - Pl x Pl maps C

birationally onto its image C’. Taking the composition with the Segre
embedding P1 x P’ oe-* p3 we may regard 91DI x ~|K-D| as the projection
of C from the (g - 5)-dimensional vertex V 9 Pg-1 of R.

In this paper we study the geometry of the osculating cone S = {03B82 =
03B83 = 0}. It is well-known and easy to prove that C g S. Thus if - denote
the strict transform after blowing up V we have a diagram

* Supported by the DFG.
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where the vertical maps are induced by projecting from V. An important but
simple observation is that S contains V and hence that a is a quadric bundle
contained in the Pg-4 bundle 03C0. We will prove

THEOREM 1. Suppose that x E 0398 ~ J corresponds to a pair of base-point free
residual 991 - 1’s, IDI and K - D|, such that ~D X ~K-D: C ~ C" 9
P1 x Pl is birational onto its image. Then the fibers of a over P1 x Pl - C’
are smooth and for a smooth point c’ of C’ the corresponding point c of C is
the only singular point of the . fiber of a over c.

Thus we have a straightforward way to recover the canonical curve from
S ~ R ~ Pg-1. Explicitely C is the component of the singular locus of the
fibers which projects non-trivially into P1 x P1.

If char (k) ~ 2, 3 then {03B82 = 03 = 04 - 01 is defined. We note

PROPOSITION 2. C is not contained in {03B82 = 03 = A4 - 0

This work was done during a visit of UNAM in Mexico. We thank Sevin
Recillas for his hospitality and for bringing this question to our attention.

§1. Infinitésimal calculations on the Jacobian via cohomological
obstructions

Intrinsically x corresponds to a point of the g - 1st Picard variety
Picg-1(C) ~ J. The point is the isomorphism class of the invertible sheaf
if = OC(D). In our case r(C, 2) is two-dimensional. By the general
procedure of [K2] we may locally around x find a 2 x 2 matrix (fij) of
regular functions vanishing at x such that

The equation of the tangent cone R is

The equations of the vertex V are dfij|x = 0 for 1 x i,j  2.
Using the flat structure on J we may expand

higher order terms
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where xij = dfij|x and qij are thought of as linear and quadratic functions on
the tangent space J at x. Expanding 0 as a determinant we have

Thus we get:

PROPOSITION 3. The vertex V is contained in S = {03B82 = 03 = 01-

To get deeper results we will have to use the obstruction theory from [K3].
First we will give a cohomological interpretation of the previous material.
The tangent space to J is canonically isomorphic to H1 (C, (9c). The matrix

(xij) describes the cup product action

where H1 (C, L) ~ r(C, 03A9C Q L-1)* is also two dimensional. The cone
over V is the kernel of u and the cone over R corresponds to cohomology
classes a E H1(C, (De) such that ~03B1: r(C, L) ~ H1(C, 2) has rank  1.

The punctured line over a point c in the canonical curve C consists of the
cohomology classes [nc] of the principal part ne of a rational function with
a simple pole at c and otherwise zero. For practice (because these ideas are
needed later in a more complicated situation) let us see cohomologically why
C is contained in R and let us compute C n V. Let Ic E r(C, 2) be a section
which vanishes at c. Then the principal part ~c03C0c is zero, so qc u M ] = 0
and ~[03C0c]: r(C, L) ~ H’ (C, 2) has rank  1. Thus C ~ R. Also if c is

a base-point of r(C, 2) then [03C0c] E ker (u) and so {base-points of L} ~
C n V. If c is not a base-point then there is a section 03B3c E r(C, 2) which
does not vanish at c. The principal part 03B3c03C0c of 2 has a pole of order 1 at

c and is otherwise zero. Its cohomology class is zero if and only if 2 has a
rational section 03C3 with a single simple pole at c. By duality a exists iff c is
a base-point of r(C, Qc Q L-1). Thus

The idea behind the above calculations is the relationship between the
matrix (fij) and the vanishing of cup product. The matrix (fij) controls
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the cohomology of all local deformations of Y. The above calculation
involves a deformation over the infinitesimal scheme Dl = Spec (k[03B5]/(03B52)).
Such a deformation is given by

where 22 is an invertible sheaf on C x D, . As it is well-known the iso-
morphism classes of such extensions correspond to cohomology classes
a E H’ (C, (9c) and a section of 2 lifts to a section of 22 if and only if
11 u a is zero. We will consider similar lifting problems to higher order
deformations of 2.

Let Di = Spec(A;) with Ai = k[03B5]/(ei+1). We want to describe the defor-
mation of 2 corresponding to a flat curve Di  J with support (D) = x
[K3]. Such a deformation of 2 is determined by its velocity which is a
tangent vector of J; i.e., an element in H’ (C, (9c). Let fi = (Pc) be a
k(C)-valued function on C such that fi, is regular at c except for finitely
many c’s. Then P determines a cohomology class [03B2] in H’ (C, OC). We want
to write the deformation of 2 in terms of fi. Let 2i + 1 (P) be the sheaf whose
stalk at c E C x Di (= C as sets) is given by rational sections f = fo +
J. e + ... + fie’ of 2 0 Ai such that f exp (epc) is regular at c. If

char (k) § i ! this expression makes sense as

Thus if i = 2 for f = fo + .f, E + f203B52 to be a global section of 23(P) we
need (0) fo is a regular section of 2, (1) f, + !OPe is regular at c for every
c E C and (2) f2 + f, Pc + f003B22c /2 is regular at c for every c E C.
Our main tool to study the osculating cone S = {03B82 = 63 = 01 is the

following:

LEMMA 4. A cohomology class [03B2] E Hl (C, (De) is contained in the cone cover
{03B82 = 03B83 = ··· = 03B8i+1 = 01 g pg - 1 if and only if

length Al (r(C x Di, 2i+l (03B2))  i + 2.

In particular if k[p] E pg-l is a point which does not lie in V then k[03B2] E
{03B82 = 03B83 = ... = 03B8i+1 = 01 if and only if there exists a section f of Li+1 1 (P)
such that f0 ~ 0.

Proof. The cohomology of 2i+ 1 (P) is controlled by the pullback 9 of the
matrix (fij) via Di ~ J - Picg-l (C), e ~ exp ([03B2]03B5). Since Di is just a fat
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point we have an exact sequence

of Ai-modules. The matrix ç is equivalent to a matrix

with 1  a  b  i + 1. So length r(C x D;, 2i+l (03B2)) = a + b. On
the other hand Di  J is a flat curve for a non-trivial class [03B2]. Hence k[03B2]
is contained in {03B82 = 03 =... = 03B8i+1 = 01 if and only if a + b  i + 2.

If k[03B2] ~ V then a = 1 and hence k[fi] E {03B82 = 03 = ... = 03B8i+1 = 0} if

and only if b = i + 1. But 03B5i+1 = 0 and so there exists a section f of
Li+1(03B2) withy f0 ~ 0. D

Thus k[03B2] is contained in R if and only if there is a section f0 + fl e of L2(03B2)
with =1= 0. Moreover if k[03B2] E R - V then f0 is uniquely determined up to
a scalar factor. Also k[03B2] E S - V if and only if fo + (f, + ~)03B5 lifts to

Y3 (fi) for a suitable choice of ~ ~ r(C, 2). One works out that [f003B2] is zero
in H’ (C, 2) if and only if f0 lifts to the first order. A second order lifting is
possible if and only if [f103B2 + f003B22/2] is zero in H’ (C, 2)/r( c, 2) u [03B2].
(The last division is required because we have to consider ~).

Similarly one can compute tangent vectors to a point k[03B2] E S by com-
puting the sections of a deformation obtained via exp (([03B2] + t[03B3])03B5) over
k[03B5 t]/(03B53, t2).

Using this machinery we will prove:

PROPOSITION 5. (a) The canonical curve C is contained in S. (b) If the rational
maps ~L arzd ~03A9C~L-1: C ~ Pl are distinct, then S is smooth of dimension
g - 3 at a general point of C.

Proof. For (a) if c is not a base-point of 2 then with the previous
notation, 03C0c the principal part of a rational function with a simple pole at
c and l1e a section of 2 which vanishes at c, we have that ilc + Oe is a section
of 22(ne) and [l1en:12] E F(C, 2) u [ne]. Thus the second obstruction
vanishes. So C - C ~ V ~ S. Hence C ~ S.
For (b) we will find a tangent vector to R at a general point c which is not

tangent to S. Let T = k[t]/(t2) and d another point of C - C n V, so

c and d are not base-points of 2 or 03A9C ~ 2-1. (1)
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[03C0c + ndt] represents a tangent vector to k[03C0c] = c E Pg-1. For it to be
tangent to R we need [(~c + rt)(ne + 03C0dt)] = 0 in H1(C, 2) Ok T for
some regular section r of 2; i.e., [r03C0c + ~c03C0d] = 0 in H’ (C, 2). If we
assume that

then ~c(d) = 0 and we can take r to be an arbitrary multiple of 11c. Thus we
have found a tangent vector to R.
To see that this vector is not tangent to S we consider the obstruction

to the second order lifting [(~c + rt) (nc + nd t)2 /2] in HI (C, L) 0 TI
(T(C, L) Q T ) u [03C0c + nd t]). The question is whether there are sections
f2 + g2 t ~ r(C, L(c + d)) 0 T and s + s’t E 0393(C,L) Q T such that

(~c + rt)03C02c/2 - (s + s’t)(03C0c + 03C0dt) - ( f2 + g2 t) is regular at c and d. If
we assume that

then r(c, 2) = r(c, 2(c + d)) by duality and the last term is regular in
any case. If we assume further that

c is not a ramification point of qJy (4)

then ~c03C02c/2 has a simple pole at c and one needs s(c) ~ 0 to make the
expression regular at c. But then s(d) ~ 0 by (2) and consequently the term
(r03C02c/2 - S03C0d - s’ne)t has a simple pole at d. So a second lifting is imposs-
ible. For a general point c E C the conditions (1), ... , (4) are satisfied for
every point d E ~-1L(~L(c)) - {c}. D

Next we need to check a simpler fact. Let c + V denotes the linear span of
c and V in Pg-’.

PROPOSITION 6. If c E C - C n V then c is a singular point of S n (c + V).

Proof As c + V ~ R we need to compute the derivative of 03B83 along
c + V at c. We want to show that any tangent vector in c + V at c is

contained in S. Let [03B21], ... , [03B2g-4 be a basis of ker(~) where the 03B2i,c are
regular at c. This is possible because each cohomology class is equivalent to
one supported oifany given point as C-{point} is affine. Let fi = ne + E ti03B2i
where the ti are indeterminates, T = k[t, , ... , tg-4]/(t1, ... , tg-4)2.
Clearly 11e lifts to the first order as 11e u [03B2] = 0 in H1(C, L)~ T. Let
~c + ye with y = 0 + 03A3 yiti be a lifting to a section of 22 (03B2). So the y, are
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regular at c. The obstruction to the second order lifting is [~c03B22/2 + 03B303B2]
in H1(C, 2) Q T/(r(C, 2) Q T) ~ [03B2]. This has the form [~c03C02c/2 +
L t1(~x03C0c03B2l + 03B3l03C0c)]. We already saw that ~c03C02c/2 = gnc for some
g E T(C, 2). 03C0c03B2i = 0 as they have different support. 03B3i03C0c has at most a

simple pole at c, so it does not give an obstruction since there is a section
which does not vanish at c. Consequently

in H’ (C, 2) Q T/(r(C, 2) ~ T) ~ [j8]. Since E ker(~) we have

(l u [03B2i] = 0 in Hl (C, 5f?) and the obstruction vanishes for all tangent
directions in c + V. D

We will now prove Proposition 2. We have to consider a third order lifting
problem in L4(03C0c) for a point c of C. Assume that c is not a base-point of
2 and 03A9c Q 2-1 and that c is not a ramification point of 9, and ~03A9C~L-1.
A first order lifting has the form q, + éc where (J is a regular section of 2.
A second order lifting has the form q,, + éc + 03C303B52 where is regular and
~c03C02c/2 + (Jnc is regular at c. The obstruction to lift to the third order is

[~c03C03c/6 + Qn’12 + 03C303C0c] ~ H’ (C, 2)/r(C, 2) u [nc]. But this is cohom-

ologous to [ - ~c03C03c/12] which has a double pole at c. Thus the obstruction
does not vanish. This proves Proposition 2 and shows that

C ~ {03B82 = 03 = 01 = 01 g base-points (2) u base-points (03A9c ~L-1)

u ramification points (2) u ramification points (03A9C Q L-1)

The reversed inclusion is easily seen as the obstruction clearly vanishes. This
means that for a (C, 2) general the divisor C n {03B84 = 0} is the sum of the
ramification divisors of 2 and 03A9C (D 2-1 which is in |4K| as it should be.
We leave the determination of the multiplicities in special cases open.

§2. Global description of the quadric bundle defined by a cubic
hypersurface containing a linear subspace

Let Ph-d ~ Ph be a linear subspace of codimension d. Let be Ph blown up
along Ph-d. Then we have the projection 03C0: IP ~ Pd-1 and an exceptional
divisor E in P. Let H be the inverse image of the hyperplane class in Ph to
IP and let L be the inverse image of a hyperplane in Pd-1 under n. Then by
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examining a hyperplane in Ph which contains the center Ph-d we deduce that

The next well-known fact describes the Ph-d+1-bundle n.

where

Proof Clearly E gives a hyperplane in each fiber of n. It remains to

compute a basis for 03B5. To get a generator eo of the first summand we may
take 03C0* of the section 1 of OP(E ). For the other direct summands we may
take ei = 7*(xi) E 0393(Pd-1, 03B5(1)) where xl, ..., xh-d+1 ~ 0393(P, O(E + L)) ~
r(fPB O(1)) are linear forms which induce homogeneous coordinates on
Pd-h. Looking at the fibers of 03C0 we see that these sections generate 6
everywhere. 0

Let A be a cubic hypersurface in ph which contains Ph-d. We can write
inverse image in P as E + A where A is an effective divisors. Then

since Ã ~ 3H - E = 2E + 3L. The equation of Ã is very simple. Under
the identification 0393(Ph, (9(1» -= r(iP, O(H)) ~ 0393(Pd-1, 03B5(1))

are homogeneous coordinates on Ph, if yo, ... , Yd-1 E 0393(Pd-1, (9(1)) are
homogeneous coordinates in pd-1. Substituting these expressions into the
cubic equation f = f’x1, ... , xh ) of A we find

so lis a quadratic form in eo,..., eh-d+1 1 with coefficients
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Of course the (h-d+2)x(h-d+ 2) matrix a = (ai)) is just what we
obtain from the equation of A under the isomorphism 0393(P, O(2E + 3L»
0393(Pd-1, Sym2(03B5)(3)) ~ r(pd- 1 H om(03B5*(- 3), 03B5)) using the splitting of
6. The fact we will use is

For any point p E pd- the codimension of the singular locus of (D)
Â n 03C0-1(p) in 03C0-1(p) is the rank of the matrix (aij) at p.

Thus for a general cubic A containing ph-d we expect the image of all
singular fibers is a divisor of degree h - d + 4 = deg det (a).

Let B be a smooth projective variety together with a morphism i:

B - Pd-1. By base change we obtain a quadric bundle

The next result gives what we need abstractly about this quadric bundle.

PROPOSITION 7. Let X be a closed subvariety of A, such that
(a) A, n n’-l (03C0’(p)) is singular at p for all points p E X,
(b) A, is smooth at a general point of X and
(c) 03C0’(X) is a divisor on B with deg(’(X))  (h - d - 4) deg

(03C4-1(hyperplane))
Then (d) Â, n n" -’(q) is smooth for all q E B - n’eX) and

(e) p is the only singular point of Â, n 03C4’-1(03C0’(p)) for a point p of X
such that n’(p) is smooth on 03C0’(X).

Proof Let q E B be a point. The codimension of the singular locus of
Ât n 03C0’-1(q) is equal to the rank of 03C4*(aij) 0 k(q). The singular locus
simply is

if we regard a = (aij) as an homomorphism 03B5*(- 3) ~ 9. For the generic
point of B, this singular locus has a dense subset of k(B)-rational points. In
each of them A2 is singular. Hence the closure of the singular locus of the
generic fiber is contained in the singular locus of Ã!. Therefore by (b) the
closure does not contain X.
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Next we prove that the singular locus of the generic fiber is empty.
Otherwise r*(aij) would have some rank r  h - d + 1. Let x be the

generic point of X. Since x is not contained in the closure of the singular
locus of the generic fiber and on the other hand the singular locus of
Ã03C4 n 03C0’-1(03C0’(x)) is a linear space which contains x by (a) we have rank
(03C4*(aij) Q k(03C0’(x)))  r. Hence all r x r minors of i*a vanish at 03C0’(x).
Since not all of them vanish identically on B and all of them are pullbacks
of polynomials of degree  h - d + 4 on P’-1 this is impossible by (c).
Thus the singular locus of a general fiber is empty and moreover we get

that 03C0’(X) is scheme-theoretically the zeros of det(03C4*(aij)). This proves (d).
For (e) just note that

if n’(p) is smooth in 03C0’(X) since otherwise 03C0’(p) would be multiple point of
det(03C4*(aij)) = 0. This proves (e). 0

Proof of Theorem 1.
Let P’ be the canonical space Pg-1 and Ph-d = V the vertex of R =

{03B82 = 01. Let A = {03B83 = 0}. Thus A contains Ph-d by Lemma 3. Next let
B = P’ x P’ and s the embedding into p3 . Then we have that 03C4 is R
blown up along V and A, is the strict transform S of S = {03B82 = 03 = 0}.
Then take X = C the canonical curve. Proposition 6 gives (a) and Prop-
osition 5 gives (b). For (c) we note that 03C0’(C) = C’ has class (g - 1,
g - 1). Hence Theorem 1 follows now from Proposition 7. D

REMARKS. (1) For singular points c’ E C’ the singular locus of the fiber is
higher dimensional. As C’ is the zero divisor of the determinant

So if c’ E C’ is an ordinary double point then Sing a’(c’) is the line spanned
by the two preimage points in C and equality holds in the formula above.
One might guess that equality always holds. We leave this to the reader.

(2) The canonical curve C ~ Pg-1 1 lies in the birational model Y of
P1 x Pl obtained by the rational map defined by the linear series of adjoint
curves to C’. Without proving it we mention that Y is a component of the
variety defined by the partial derivatives
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in R. It is the component which dominates P’ x P’ and the birational map
is just the projection.

(3) In case g = 5 Theorem 1 might be slightly misleading. S is a K3
surface birational to the double cover of P’ x P’ branched along C’. C’ is
a divisor of type (4, 4) with 4 (possibly infinitesimally near) double points
which lie on a divisor A of class (1,1). The last property holds because the
two g"s are residual. The double cover has rational double point singu-
larities over the double points of C’. Resolve those. The preimage of 0394 has
two disjoint components. Both are ( - 2) curves. In case there are 4 distinct
double points S is obtained by contracting one of them, the singular point
will give the vertex V. If two or more of the double points of C’ are
infinitesimally near then S has a more complicated singularity.
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