@article{CM_1988__67_1_89_0, author = {Wolak, Robert}, title = {Foliations admitting transverse systems of differential equations}, journal = {Compositio Mathematica}, pages = {89--101}, publisher = {Kluwer Academic Publishers}, volume = {67}, number = {1}, year = {1988}, mrnumber = {949272}, zbl = {0649.57027}, language = {en}, url = {http://www.numdam.org/item/CM_1988__67_1_89_0/} }
Wolak, Robert. Foliations admitting transverse systems of differential equations. Compositio Mathematica, Tome 67 (1988) no. 1, pp. 89-101. http://www.numdam.org/item/CM_1988__67_1_89_0/
1 De Rham decomposition theorem for foliated manifolds. Ann. Inst. Fourier 33 (1983) 183-198. | Numdam | MR | Zbl
and :2 Ehresmann connection for foliations. Indiana Un. Math. J. 33(4) (1984) 597-611. | MR | Zbl
and :3 Sur les structures transversalement affines des feuilletages de codimension un. Ann. Inst. Fourier 30(1) (1980) 1-29. | Numdam | MR | Zbl
4 Structures transverses affines trivialisables. Publ. IRMA, Strasbourg, Vol. 188, p. 109.
5 Geodesics of order 2. Prace Mat. 19 (1977) 121-136. | MR | Zbl
:6 A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle. Proc. A.M.S. 11 (1960) 232-242. | MR | Zbl
:7 Propriétés cohomologiques et propriétés topologiques de feuilletages a connexion transverse projectable. Topology 12 (1973) 317-325. | MR | Zbl
:8 Etude des feuilletages transversalement complets et applications. Ann. Scient. Ec. Norm. Sup. 10 (1977) 289-307. | Numdam | MR | Zbl
:9 Group Analysis of Differential Equations. Academic Press, New York (1982). | MR | Zbl
:10 On V-G-foliations. Suppl. Rend. Circolo Mat. Palermo 6 (1984), 329-341. | MR | Zbl
:11 Normal bundles of foliations of order k. Demons. Math. 18(4) (1985) 977-994. | MR | Zbl
:12 Transverse structures of foliations. Suppl. Rend. Cir. Mat. Palermo 9 (1985) 227-243. | MR | Zbl
:13 Some remarks on V-G-foliations. In: L.A. Cordero (ed.) Proceedings, V-th Colloquium on Differential Geometry, Santiago de Compostela, Spain (1984); Pitman (1985) pp. 276-289. | MR | Zbl
: