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Introduction

In this paper, we classify the irreducible admissible representations of the
group G == GSp(4) over a p-adic field F of odd residual characteristic by
adapting the techniques used for the group U(2, 1) in [M1]. The classification
is thus based on two concepts: nondegenerate representations and Hecke
algebra isomorphisms.
We define a nondegenerate representation as a representation 6 of a

compact open subgroup L c G satisfying a certain cuspidality or semisim-
plicity condition (see Section 1). The importance of these representations for
p-adic groups is that they play a role analogous to the role of minimal or
lowest K-types in real Lie groups [V]. In particular, we prove every admissible
representation of G contains a nondegenerate representation. Furthermore,
we show how they provide a means for partitioning the set of equivalence
classes of irreducible admissible representations. Nondegenerate representa-
tions thus provide an anchor for investigating the representations of G. This
is analogous to the role played by minimal K-types in real groups.

In real groups, the representations of a reductive group G which contain
a given minimal K-type a can be classified by relating them to the representa-
tions of some smaller reductive group G’ which contain a minimal K-type
u derived from 6. In the p-adic case, a similar relation between representa-
tions of G containing a nondegenerate representation and representations of
some smaller group G’, is effected by Hecke algebra isomorphisms. As in
[HM 1, HM2] and [M1], the transfer of representations between G and G’,
arising from the Hecke algebra isomorphisms established here, preserve
certain important properties such as temperedness, square integrability and
supercuspidality. This is very much in the spirit of cohomological induction
results in the case of real groups [V].
As already mentioned, we define the nondegenerate representations in

Section 1. A general theory is beginning to emerge for defining these
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representations for reductive groups (see [M2], [HM3]), but it is still in a

state of flux. As such, we define nondegenerate representations via an

exhaustive list. We show, in Section 2, every representation of G contains a
nondegenerate representation after tensoring by a one dimensional character
of G. Section 3 is devoted to a description of the representations of G which
contain nondegenerate representations of level one. These representations
consist of a cuspidal representation of a parahoric subgroup of G. Part two
of this paper will give a similar description of the representations of G which
contain nondegenerate representations of higher level.

1. Nondegenerate representations

Let F be a p-adic field of odd residual characteristic and let R denote the ring
of integers in F, P the prime ideal in R, m a prime element in Iz and FN - R/p
the residue field with q elements. Let G be the algebraic group GSp(4). We
begin our study of the representations of G = G(F) by recalling a convenient
realization of G. Let F4 denote the four dimensional space of column
vectors. We define a symplectic form ,&#x3E; on F4. Given y E F4 (resp.
g E M4(F)), let y’ (resp. gt) be the transpose matrix. For x’ = (XI, x2, x3, x4)
and yt = (y1, y2, y3, y4) in F4, set

Then

Here, p(g) is a scalar. Let e, , e2 , e3 and e4 denote the standard basis vectors
of F4, and let El,1 be the 4 x 4 matrix whose (r, s) entry is 03B4r,l03B4s,l. Set

Then x, y&#x3E; = x‘Hy and

In this setup, the F-rational points of the Lie algebra of G is the set
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The Lie algebra g(F) is the direct sum of

and the set of scalar matrices.

We now briefly recall some of the structure theory of G with respect to its
parahoric subgroups. For a general discussion of such topics, we refer to
[BT]. Let A be the maximal torus in G consisting of diagonal elements. For
a, b, c ~ F  let

Then, A = A(F) is the set of matrices {d(a, b, c)}. Let a(F) be the F-rational
points of the Lie algebra of A. A basis for the Cartan subalgebra a(F) is
given by the three vectors

identity matrix.

Define two linear functionals a and b on a(F) by

The set of eight linear functionals

form a root system of type C2. The Borel subgroup B of upper triangular
matrices in G determines an ordering of the roots in which a and b are the
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simple roots. Set

These vectors are root vectors, i.e.

The one-dimensional root space a, (F) = FE, of g(F) can be exponentiated
into root groups Uc inside G. Denote by U, the corresponding algebraic
subgroup of G so that Uc = U, (F). The exponential map

is given by uc (xEc) = 1 + xE,. Abbreviate u( (xE,) to u( (x). The F-rational
points of B is equal to the subgroup of G generated by A and U (c &#x3E; 0).
We write this as

For i an integer, let
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The subgroup of G generated by A(R), Uc,0 (c &#x3E; 0) and Uc,1 (c  0), which
we write as

is an Iwahori subgroup of G. It consists of those elements of K = G(R)
which are upper triangular mod p.

Let

N = normalizer of A in G. (1.5)

The group N - N(F) is the normalizer of A in G. For c a root, set

The w( (t)’s and A generate N. The Weyl group is of course defined to be
W = NIA. It is generated by the images in W of the two elements

and

If I is a subset of {s0, s1}, the standard parabolic subgroup P(I ) is the

subgroup of G generated by B(F) and I. Denote by PI, the parabolic
subgroup of G such that PI(F) - P(I). The algebraic group P, has a Levi
decomposition

The group M, may be chosen so that M,(F) is the subgroup of G generated
by A, I and

{Uc|c a linear combination of elements in I}.

Here, we have of course identified so with b and s, with a. The group MI(F)
is invariant under the Cartan involution of inverse transpose.
The affine Weyl group is defined to be the group
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It is generated by the images in waff of so, SI and the two elements

and

Let

The element t normalizes the Iwahori subgroup B. We also have ts, - S, t
and so t = ts2. The Dynkin diagrams for W and Waff are

If I is a subset of S, the standard parahoric subgroup P, is the subgroup of
G generated by B and I. A parahoric subgroup is a G-conjugate of a standard
parahoric subgroup. The parahoric subgroup PI generated by B and I is
compact if and only if I is a proper subset of S. In particular, there are seven
standard compact parahoric subgroups. They are

The two groups K = P{s0,s1} = G(R) and J = P{s0,s2} are representatives for
the two conjugacy classes of maximal compact subgroups of G.
Given a parahoric subgroup P, let PI be the maximal normal pro-p-

subgroup of P. To describe Pl, and more generally a filtration of P which
we use in Sections 4 and 5, we review the litany of affine roots and heights.
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Let X be the Z-span of the simple roots a and b. An affine root is an

element fi = (c, n) in the additive group X x Z subject to the condition that
c E (03A6 ~ {0}) and n ~ Z. If n  0, set Uri = Uc,n. Each affine root 03B2 has a
unique decomposition

Thus, for example, we have (0, 1) = 1 (b, 0) + 2(a, 0) + 1 ( - 2a - b, 1).
For I c S, define a height function htl on the affine roots by the sum

over those i for which sl ~ I. Then,

Pi’, = subgroup of G generated by Ufi such that htI(t)  1. (1.12)

More generally, if t E N, set

PI,, = subgroup of G generated by Ujj such that ht,(t) t. (1.13)

The PI,t’s are a filtration of normal subgroups in P,. When I = {s0, s, 1, so
that P, = K = G(R), the group PI,, is the t-th principal congruence subgroup
of K. We defer a more general discussion of the groups PI,t until Sections 4
and 5.

The quotient group K/K, is of course isomorphic to G(Fq). For I c {s0, sj ) ,
the group PI/PI,1 is MI(Fq). To identify J/J1, let G(Sp(2) x Sp(2)) be the
algebraic subgroup of G consisting of those elements whose (1, 2), (1, 3),
(2, 1), (2, 4), (3, 1), (3, 4), (4, 2) and (4, 3) entries are zero. For a E R, let a
be the image of a in F q The group J/J, can be identified with the Fq-rational
points of G(Sp(2) x Sp(2)) via the map

The group G(Sp(2) x Sp(2»(lFq) is isomorphic to the group
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The isomorphism is given by the map

In all cases, the group PI/PI,1 can be identified with the Fq-rational points of
a reductive group with Dynkin diagram I.
A cuspidal representation of a standard compact parahoric subgroup P

is a cuspidal representation of PI Pl inflated to P. We have developed enough
notation to make the following definition.

DEFINITION 1.l. A nondegenerate representation of level one in standard
position is a pair (P, a) consisting of a standard compact parahoric sub-
group P and an irreducible cuspidal representation 6 of P.

Our next goal is to define the nondegenerate representations of unramified
and ramified type. To accomplish this we first establish more notation and
conventions. Let G denote the group GL4(F), K denote GL4(R) and k, the
ith principal congruence subgroup of K. If L is a subgroup of G, let L denote
the intersection of L with G. This is consistent with our previous use of K
as G(R). Let 9 == M4(F) (resp. (R) = M4(R)) be the F-rational (resp.
R-rational) points of the Lie algebra of GL,. Let g (resp. g(R)) be the
analogous sets for the Lie algebra of G. Define a form on g by

The restriction of ,&#x3E; to g is nondegenerate. A lattice 1 is an open compact
R-submodule in g or g. If 1 c g, define the dual lattice 1* in g by

If 1 c g, the dual lattice 1* in g is defined by the obvious modification of
(1.17), i.e.,  is replaced by g. The lattices (R) and g(R) are self-dual in 9
and g respectively. If 1) is a subalgebra of g let 1)-L (resp. b#) be the orthogonal
complement of h in g (resp. g). We have
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Let i  j be positive integers. The Cayley transform

maps l(R) and lg(R) bijectively to K, and K, respectively. Taking
quotients, the Cayley transform becomes an isomorphism

We use this isomorphism to identify the quotient groups. Let g" (R) =
g# n (R). We have

In this setting, the characters of K) Kl+1 can be viewed as the characters
of K) K’+1 trivial on lg# (R)/ml+1 g# (R). We need to describe a very important
realization of these characters. Let 03C8 be an additive character of F with
conductor R. We identify the character group {l/i+l}^ with -(i+j)(R)/
m-lg(R) via the map (a + -l(R)) ~ f2,,

If c(x) is written in the form 1 + y with y in l(R), then 03A903B1(c(x)) =
03C8(x, 03B1&#x3E;). The character group {Ki/Ki+j}^ is identified with the group

Assume j - 1. Take f2, of the form (1.21), with a E g. Multiplication by
(i+1) allows us to identify -(i+1)g(R)/-ig(R) with g(Fq), so we can view
(i+1)03B1 mod / as an element in g(Fq). Decompose this element into its

semisimple and nilpotent parts

When s is not a scalar matrix we shall soon define a group L and a

representation Os of L. The collection of the (L, S2S)’s and their G-conjugates
shall be the nondegenerate representations of unramified type.

In order to define the groups L, we recall the standard parabolic sub-
groups of G. Given a subset I c {a, bl, let PI - M,UI be the Levi decom-
position (1.7). Let mI(Fq), uj(F,) and pI(Fq) be the Fq-rational points of the
Lie algebra of M,, U, and PI respectively.
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Consider (1.22). Let a’ be a K-conjugate of m(I+I)a mod p so that,

but

for all proper subsets I’ of I. Let 03B1’ = s’ + n’ be the Jordan decomposition.
The semisimple part s’ lies in mI(Fq), while the nilpotent part n’ lies in uI(Fq).
Let UI be the unipotent subgroup opposite to UI, i.e., if 0 is the Cartan
involution of inverse transpose, then UI - 0(LJ/). For m ~ N, let MI,,,,,
UI,m and UI,m be the intersections of Km with MI(F), UI(F) and UI (F)
respectively.
We now define the nondegenerate representations of unramified type. Let

L be the group

The group L is in fact a filtration subgroup (1.15) of the parahoric subgroup
P,. The restrictions of °cx’ and Os’ to L are equal. Denote this character by
03A9s’.

DEFINITION 1.2. A nondegenerate representation of unramified type in standard
position is a pair (L, 03A9s’) as in (1.23, 24).

We proceed to define the nondegenerate representations of ramified type.
The basic scheme of things here parallel the unramified case. We construct
a subgroup L related to K, and a character 03A9 of L satisfying certain
properties. The kernel ofQ shall contain Ki+1 and the restriction of 03A9 to K,
will be represented by a nilpotent element of g(Fq).
Let i ~ N. Consider the five classes of sets  described in (1.25). Here, u,

v, 03B5 E RX, 03B5 a nonsquare, and a, b, c, d, e, f E R. In (1.25b), a2 - bc,
d2 - ef E R .
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We have written each of the five sets in (1.25a-e) in the form

where a E g, and Î is a matrix of ideals. The convention for this notation is
that Î is the set of elements in g(R) with the entries in the indicated ideals.
Thus, in (1.25a), elements of Î have their (1,1) entry in -i-1p, their (1,4)
entry in m-l-1R, their (4, 1) entry in m-l-ljt2 and so forth. We shall use
similar notation later to describe other sets of matrices.

Note that Î is an R-submodule of g. Let i* be the dual lattice (c.f. (1.17)).
For each (5 as in (1.25), let 1 be the group

Let a, 1 and 1* denote the intersection of ri, T and * respectively with g.
Note that 1* is also the dual lattice of 1 in g. Let L be the intersection of È
with G. It is easy to check that
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The group L is a filtration subgroup (1.15) of some parahoric subgroup PI,
Define a character Qcx on L, hence L, in analogy with (1.21) by the formula

The group L contains Ki+1 and the restriction of Qcx to Ki+1 is trivial. In cases
(1.25b, c, d, e), the group L contains K, and the restriction of Qcx to K; is
represented in g(Fq) by reducing elements in ml+let mod p. In case (1.25b)
(resp. (1.25c, d, e)), i+103B1 mod / is equal to aE1,3 + bE,,4 + CE2,3 + aE2,4
(resp. E1,4) mod p. In case (1.25a), the group L does not contain K,, but the
restriction of S2a to the intersection L n Kt can be extended to Ki. The
extensions of Qcx to K, will be represented in g(F,) by elements of the form

These elements are K-conjugate to i+103B1 mod p. In every case, the extension
of Qcx to K, is represented by a nilpotent element n.

DEFINITION 1.3. A nondegenerate representation of ramified type in standard
position is a pair (L, f2,), with  of the form (1.25).

2. Nondegenerate représentations as lowest K-types

Consider an admissible irreducible representation (n, V) of G. In this section
we show some twist n Q /, ~a one-dimensional representation of G, must
contain a standard minimal nondegenerate representation (L, 03C3). The

approach taken here is the same as the one used in [M 1 for U(2, 1).
Given an irreducible admissible representation (n, V), define the level of

03C0 to be the minimum i such that VKt, the space of vectors in V fixed by K,,
is nonzero. The representation 03C0 is said to have minimal level under twisting
if the level of n is less than or equal to the level of all twists 03C0 Q ~. It is clear
we can assume 03C0 has minimal level under twisting. Let i + 1 be the minimal

level. Choose a nonzero vector v fixed by K;+ and let Klv be the span of Kl
transforms of v. This finite dimensional space can be decomposed into
irreducible Kt/Kt+1 subspaces. If we select a vector from an irreducible
component of Kiv and replace v by this vector, we can assume Ktv is an
irreducible Kl/Kl+1 space. If i = 0, then 03C0 restricted to K contains a repre-
sentation 6 of K/K1 = G(Fq). By Harish-Chandra’s philosophy of cusp
forms [HC], there is a parahoric subgroup P c K as well as a cuspidal
representation Q of P such that the restriction of 6 to P contains Q. In
particular, n must contain a nondegenerate representation.
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Suppose i  1. As in Section 1, we identify the characters of K,IK1+I with
g (F,). The group Kli K,+ acts on K, v by a character 03A903B1. For k E K, it is clear
that n(k)(K,v) is also an irreducible K1IKi+I subspace. Indeed, if we set

a’ - kak-’, then the group Ki/Ki+1 acts on 03C0(k)(K1v) by the character 03A903B1’.
By taking an appropriate k, we can assume a’ satisfies (1.23). Let L be the
group (1.24), and let f2,, be the restriction of Ocx to L. If s’ is not a scalar, the
pair (L, Qs’) is by definition a minimal nondegenerate representation of
unramified type. Assume s’ is a scalar. Then, it is easily seen that there is a
one-dimensional character X of G trivial on Ki+1, and represented by - s’on
Kl/Ki+1. The representation 03C0 Q x still have level i + 1. Furthermore, the
03C0 Q x action of Kl/Kl+1 on KI v is a character 03A9n, n an upper triangular
nilpotent element of g(Fq). Consider the three cases delineated by the rank
of n. In the following analysis, we define two groups L+ and L. The two
groups will change during the course of the analysis, but L+ will always be
normal in L and the quotient will always be abelian.

Case l: rank(n) = 3. We can take n of the form

In the notation of (1.11) and (1.13), it is easily verified that

is contained in the kernel of Ç2.. Let

The characters of L/L+ can be realized as in (1.21) by the cosets

a, b, c e R. Let v ~ 0 be a vector in V fixed by L+ . Write Lv for the span
of the L transforms of v. The decomposition of Lv into L subspaces yields
characters with a = b = 1. If c ~ 0 mod p, the representation Q of L on
Lv is nondegenerate of type (1.25a). On the other hand, ifc=0 mod the
vector w = n(t) v transforms under L as a character with b = 0. The
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decomposition of K, w into Kl/Kl+1 subspaces give vectors which transform
under Kl/Ki+1 by characters 03A9n, n E g(Fq) nilpotent of rank 2.

Case 2: rank(n) = 2. We can assume n has the form

The kernel of On contains the group

Take v ~ 0 fixed by L+. Set

Realize the character group {L/L+}^ as the cosets

x, y, z, d, e, f ~ R. Decompose Lv, as in the rank three case, into irreducible
L/L+ subspaces and choose a nonzero vector, again relabeled v, which
transforms by a character with x = A, y = B and z = C. If d2 - ef ~
0 mod p, the representation S2 of L on Lv is nondegenerate of type (1.25b).
The alternative is d2 - ef = 0 mod p. Both L and L+ are normalized by
the element t in (1.0). Consequently, L acts on the vector w = n(t) v
according to the character

In turn, Kl/Kl+1 acts on w as a character 03A9n’, with n’ ~ g(Fq) a nilpotent
element of rank 1 or 0. If n’ is of rank 0 then (n, V) possesses a nonzero
K,-fixed vector contradicting the hypothesis of minimal level i + 1. We

therefore can assume n’ has rank 1.



251

Case 3: rank(n) == 1. Here, we write n as

The kernel of 03A9n contains

Take v ~ 0 again to be fixed by L+ . Set

and represent the characters of L/L+ by the cosets

a, b E R. As in the previous two cases, Lv decomposes into irreducible L/L+
subspaces. Choose a nonzero vector, again called v, which transforms by a
character with a = 1. If b ~ 0 mod p, the representation S2 of L on Lv is
nondegenerate of type (1.25c). If b = 0 mod p, the group

fixes v. Redefine L to be
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The cosets

a, b, c E R, realize the characters of L/L+ . The decomposition of Lv into
irreducible L subspaces, produces characters with a = 1. We can in fact
assume c = 0 mod p. To see this, let â denote the set (2.8). The element
u(x) = ub(x), x ~ R, (c.f. (1.3)) normalizes L and L+ and u(x)u(x)-1 is
equal to

Hence, if v ~ 0 transforms under L/L+ by a character with c ~ 0 mod p,
then w = 03C0(u(-b/c))v transforms under LIL+ by a character with b = 0.
Since so normalizes both L and L+, the vector 03C0(s0) w transforms under
L/L+ by a character with a = 1 and c = 0. This proves our assertion that

we can assume c = 0. As an important consequence, we conclude the group

fixes a nonzero vector v. Set

The cosets
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a, b, c E R, realize {L/L+}^ . The characters of L which appear in Lv have
a = 1. Assume v transforms under L by such a character. If b,
c ~ 0 mod p, the representation of L on Lv is nondegenerate of type
(1.25d). If c = 0 mod then n(t) v is fixed by Ki in contradiction to the
hypothesis on minimality of level. If b = 0 mod p, the group

fixes v. If i = 1, this group is the radical J1 of the "nonstandard" maximal
compact subgroup J in (1.11). Let a be the representation of JIJI on Jv. By
Harish-Chandra’s philosophy of cusp forms [HC], there is a parahoric
subgroup P c J and a cuspidal representation Q of PIPI such that the
restriction of 6 to P contains Q. Hence again, the representation (n, V)
contains a nondegenerate representation. Consider the alternative i  2. Set

and realize {L/L+}^ by the cosets

a, b, c, d, e, f, g E R. We can assume L acts on v by a character with a == 1.

Let (5 be the set (2.12). Both L and L+ are normalized by u(x) = u_2a-b(x),
x e R, and u(x)u(x)-1 is

where b’ = b - ax and f’ = f + 2bx - ax2. Observe that the discriminant
af + b2, is invariant, i.e., af + b2 - af’ + b2. In our situation a =
1 mod. If the discriminant is a square, say y2, then w = 03C0(u((b + y)/a)) v
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transforms under L by a character of type (2.12) with f = 0. This means
03C0(d(, 1, 1)) w is a K, fixed vector contradicting the minimal level hypothesis.
Hence, we can assume v transforms according to a character with a = 1,
b = 0 andf a nonsquare unit. We can take f to be 6. Consider the eigenvalues
of

We claim they do not belong to Fq. To see this note that the parahoric
subgroup P{s1} normalizes L and L+ . If the eigenvalues lie in Fq, then there
exists an element k E P{s1} so that w = 03C0(k)v transforms under L by a
character with e = 0 mod p. This means 03C0(t)v is a K, fixed vector, in
contradiction to the minimality of level hypothesis. So, up to a twist by a one
dimensional character of GSp(4), there exists a vector v ~ 0 which transforms
under L by the character

u =1= 0 mod p. This is of course a nondegenerate representation of type
(1.25e).

In conclusion, our analysis has shown

THEOREM 2.1. For any admissible representation n of GSp(4), there is a one
dimensional character X of GSp(4) so that n 0 X contains a nondegenerate
representation in standard position.

We turn now to the question of when two nondegenerate representations
can occur in the same irreducible representation of G. Define two non-
degenerate representations (L, 03A9), (L’, 03A9’) to be associate if

(i) L = P, L’ - P’ are parahoric subgroups, P/P1 ~ P’IP(
and 03A9 ~ 03A9’, or (2.13)

(ii) Q = 03A9s, 03A9 = Qs’ with s, s’ of the form (1.23, 24) or (1.25) and
some element of s is conjugate to some element of s’.
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THEOREM 2.2. Suppose (n, V) is an irreducible admissible representation of G.
If (L, Q), (L’, 03A9’) are two nondegenerate representations contained in n, then
they are associate.

Proof. We use the intertwining principle. Let WQ and WQ, respectively be
the Q and Q’ subspaces of V. Let EQ, denote the projection from V onto W,,.
Since n is irreducible, there is a g E G such that

is nonzero, and for h E L n gL"g-’, I03A9(h) = 03A9’(g-1hg) I. We consider three
cases according to whether none, one or both L, L’ are parahoric subgroups.
Case 1, Q = 03A9s, 03A9’ = 03A9s’. Write s - s + 1, s’ = s" + 1. Observe that

Therefore, if y ~ I * ~ gI’*g-1, then

This means tr (y(s - gs’g-1)) ~ R for all y E 1* n gI’ *g-1. We conclude
s - gs’g-1 ~ (1* m gI’ *g-1}* = 1 + gI’g-1, i.e., s and gs’g- intersect.
Case 2, 03A9 = Os and L’ - P’ a parahoric subgroup. We show Q and Q’
cannot both occur in 03C0 by showing that 03A9 and the trivial representation of
P" cannot occur simultaneously in n. The trivial character of P’1/P’2 can
realized as 03A9s’ with s’ = 1 and P’1 = c(I*). By the same reasoning as in case
1, some element of s must be conjugate to some element of s’. This is

impossible because the minimum valuation of the eigenvalues of each element
in s differ from those of s’ (see Theorem 6.1 [HM2]).
Case 3, L and L’ both parahoric subgroups. The reasoning again is based
on the intertwining principle. It has already been done by Harish Chandra
(see [HC]). D

3. Level one representations

In this and the next two sections, we shall give a fairly detailed description
of the irreducible representations of G. In light of Theorem 2.1, it sufHces to
describe the irreducible representations of G which contain a given non-
degenerate representation (L, Q). To accomplish this goal, we investigate
the Hecke algebra X(G//L, Q). In preparation for this analysis, we briefly
recall some relevant facts about Hecke algebras and their place in our
classification of the representations of G.
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Let Q be an arbitrary open compact subgroup of G and let (a, lg ) be an
irreducible representation of Q. The Hecke algebra Jf = £(GIIQ, a) con-
sists of the functions f : G ~ End VQ such that

(i) f is compactly supported
(ii) f(kgk’) = 03C3(k)f(g)03C3(k’), g E G and q, q’ E Q.

An element g in G is said to lie in the support of -i’ if there is a f E --Y which
is nonzero at g. The support set of Jf is denoted by supp Jf. The algebra
X is of course an algebra under convolution. If Haar measure is normalized
so that vol (Q) = 1, then the function

is the identity element of »’. If (n, V ) is any admissible representation of G,
consider the tensor product space W = V 0 V,. The Hecke algebra e acts
on W by the formula

and w E v6. Observe that if k E Q, then

In particular, the actions of Yf and Q on W commute; hence, e acts on the
finite dimensional space E = WQ. It is not difficult to see that the dimension
of E is equal to the multiplicity of the contragredient representation 03C3t in n

and additionally, if n is irreducible, then the representation of à on E is also
irreducible. The process of passing from V to E is a bijection between the
irreducible admissible representations of G which contain a’ with positive
multiplicity and the irreducible finite dimensional representations of E. As
an upshot of these considerations and Theorem 2.1, the problem of deter-
mining the representations of G is equivalent to determining the representa-
tions of the Hecke algebras :if(GIIL, Q), where (L, Q) is a nondegenerate
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representation. We show these Hecke algebras (actually very closely related
Hecke algebras /(GJJJ, 03C3)) are isomorphic to Hecke algebras of smaller
groups. This allows a transfer of representations between the groups.
We also remark that X possess a natural involutive *-operation. It is

defined for f ~ Jf by

The * on the right side is the adjoint operation on End V03C3. The inner product

on à provides a context in which the Plancherel Formula can be formulated
(see Appendix 1 [HM1]). The Hecke algebra isomorphisms established shall
preserve the L2 structure of the algebras and so the transfer of representations
will preserve the property of square integrability. The isomorphisms shall
also preserve the support of the Hecke algebras. This means the transfer of
representations will preserve supercuspidality (see [HM1]).
We now give a description of the Hecke algebras e = X(G//P, Q) when

P is a parahoric subgroup of the form (1.11) and Q is a cuspidal representation
of P/P1.
We need to review various properties of the Bruhat decomposition [BT].

Let waff == NIA(R) be the affine Weyl group defined in (1.8). For w E N, let
w denote the image of w in Waff. Each double coset of B in G can be written
in the form BwB, w E N. Two double cosets BwB and Bw’B are equal
precisely when w = w’ in waff. This decomposition is written symbolically
as

The length of an element w in N is the integer e (w) such that

The length can also be interpreted as the number of reflections, i.e., elements
of S, in a reduced expression for w. The elements in S all have length 1. Also
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We remark that it is possible to choose a set of representatives {w} for Waff
in a fashion so that if w and w’ are the representatives for w and w’, then

ww’ is the representative for ww’ when t(w) + ~(w’) = ~(ww"). (3.6)

Similar results hold for parahoric subgroups. In the parahoric case, if P is
generated by B and the set of reflections I c S, let W c waff be the

subgroup generated by the reflections in I. Then, the double cosets of P in
G are in one-one correspondence with the double cosets of W in waff.
For a parahoric subgroup P = PI, let

M = subgroup of P generated by A(R) and the subgroups (3.7)
Uc,i c P such that U c P. 

(3.7)

If I c {s0, s1}, then M = M,(R) and P/P1 = MI(Fq). In all cases

PI - MPIL. The next result gives a condition w must satisfy in order to lie
in the support of e.

THEOREM 3.1. (Harish-Chandra). A necessary condition for PwP to lie in the
support of X(G//P, Q), f2 a cuspidal representation of P/P1 is that w normalizes
M, i.e.

Proof. For w E waff, let H = {wPw-1 n Pl P1/P1. The group H is a
parabolic subgroup of P/P1. Suppose w E supp and H ~ P/P1. Let U be
the unipotent radical of H. The representation S2w of {wPw-1 n P} is trivial
on wPw-1 n Pl and so can be viewed as a representation of H. This
representation is trivial on U and when induced to P/Pl will intertwine with
Q. This of course contradicts cuspidality of Q. Therefore, H = P/P1. This
is equivalent to wMw-1 = M. ri

We turn to the individual cases in (1.11).

P = P{s0,s1}. Here, the group M in (3.7) is G(R) and P/P1 = G(Fq). Let
Z c G be the group of scalar matrices. It is an immediate consequence of
Theorem 3.1 that supp X(G//P, 03A9) = ZK. Set G’ = Z and P’ = G’ n P.
For z E Z, let ez (resp. fz) denote the function in X’ = X(G’//P’) (resp.
àV = X(G//P, Q)) whose support is P’zP’ (resp. PzP) and whose value at
z is 1 (resp. the identity operator). Then,
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PROPOSITION 3.2. The map ~: 1’ - Je given by

is a *-isomorphism of algebras.

REMARKS. (a) The center Z of G is of course not compact. In order to speak
of square-integrable and supercuspidal representations of G mod Z, let I be
the identity matrix in G, and let T denote the subgroup of G generated by
the scalar mI, i.e.,

The group G/ T has a compact center and given an irreducible representation
(n, V) of G, there is a unique unramified one dimensional character of G
such that n Q x factors to a representation of G/T. The representation 03C0 is

square integrable (resp. supercuspidal) mod Z precisely when n Q x is as a
representation of GIT. The formal degree of 03C0 is then the formal degree of
03C0 ~ ~.

(b) A result such as Proposition 3.2 yields a similar result for the group
G/T. This is done by extending Q trivially to T and integrating functions in
Yf(G’IIP’) (resp. X(G//P, S2)) over T to obtain functions in e ’
(resp. Yf (GIITP, 03A9)). The map ’1 will integrate over T to yield a *-isomorphism
from X(G’//TP’) to Yf(GIITP, Q). In our specific situation, since

G’ = TP’, the algebra X(G’//TP’) is the complex numbers C. This means
that any irreducible admissible representation (03C0, V ) of G which contains Q
on restriction to TP is in fact equivalent to ind TPIG ÇI. In particular, as a
representation of G/ T, 03C0 is supercuspidal and has formal degree

The formal degree is of course related to the normalization of Haar measure
via vol (TP/T).

P = P{s0,s2}. Recall that

The element t of ( 1.9) determines an automorphism of PJPI ; it interchanges
g, and 92. Let Z’ be the group generated by Z and t. The support of
X = X(G//P, Q) is easily seen to be either ZP or Z’P depending on
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whether Q is fixed under the automorphism induced by t. Set G’ - Z or Z’
accordingly. Let P’ - G’ n P. For z E Z, let ez (resp. fz) be the function in
:if 1 == Yf(GIIIP’) (resp. Yf) with value 1 (resp. identity operator) at z and
support zJ’ (resp. zJ). In case G’ - Z’, let J be an element in End V. such
that i) J03A9(g) = 03A9(tgt-1) J and ii) j2 == I, the identity operator. Let ezt

(resp. fzt) be the function in 1’ (resp. Yf) with value 1 (resp. operator J) at
zt and support P"ztP" (resp. PztP).

PROPOSITION 3.3. The map ~: 1’ - jf defined by

~(ez) = £ and ~(ezt) = fzt

is a *-isomorphism of algebras.

The remarks after Proposition 3.2 apply here also. Extend Q to TP by letting
Q act trivially on T. If G’ = Z, then any irreducible admissible representation
(n, V) of G which contains Q on restriction to TP is equivalent to ind
As a representation of G/T, 03C0 is supercuspidal and its formal degree is given
by (3.9). If G’ - Z’, then indTP~G03A9 decomposes into two supercuspidal
representations, corresponding to the two extensions of Q to Z’P. The
formal degree of these two representations is

Case P = B = P0’ The group M in (3.7) is A(R). For convenience, we
identify P/P1 and A(Fq). Under this identification, a cuspidal representation
of PIPI is a linear character S2 of the group A(Fq). The character Q can be
factored into the product of three characters X, 0 and cp. In the notation of
(1.1), X, 0 and cp are characters which depend only on the components a, b
and c respectively. The normalizer of A(R) is the group N of monomial
matrices. Up to conjugacy, the stabilizer Stab (03A9) of 03A9 in N is one of five
groups:

Let sgn denote the order 2 character of IF; . The relation among the characters
x, 0 and 9 in the various cases are:
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We give a description of the Hecke algebra à = £(GIIB, Q) based on
these five cases.

Observe that since Q is one dimensional, for g E supp X, there is a unique
function eg G / with support BgB and eg(g) = 1. By the Bruhat decom-
position any double coset BgB is of the form BwB for some w E Waff.
Therefore, if W’ = Stab (Q), then

REMARK. We shall see that only cases i) and v) contain discrete series

representations of G/T. In each case, GIT has four such representations.
These are described in (3.14), (3.16), and (3.58).

Case (i ). Up to twisting by a one dimensional character of G, we can assume
Q is the trivial character. The following result of Iwahori and Matsumoto
[1] gives a description of Yf in terms of generators and relations.

THEOREM 3.4. The algebra X(G//B) is generated by

The elements eH’ satisfy the relations

There are four square integrable representations of G/ T which contain the
trivial representation of B. We describe the representation of / correspond-
ing to these representations. In the first two cases, the so-called special
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representations, the representation n of X is one dimensional. In terms of
the generators given in (1.6) and (1.9)

The formal degree of the two special representations are both

The remaining two square integrable representations were first constructed
by Borel [B]. The representation of Yf is two dimensional in each case. Here,

These two representations have the same formal degree. It is

Upon restriction to Sp(4) c G, these representations decompose into two
irreducible components.

Case (ii) 03A9 regular. To describe the structure of Ye, which will turn out to
be a group algebra, we need a preliminary result. Let

Note that B = A(R) U+ U_.
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PROPOSITION 3.5. For h E A, and a E A+ or A - ,

BhBaB n BAB - BhaB.

Proof. We recall a sharp form of the Bruhat decomposition (3.3). For
w E N and c E 03A6, let w(c) be the root so that wU,.w-’ = Uw(c). Let

Each element g in BwB can be written uniquely in the form

where d, d’ E A(R) and u_, u+ , u0 and u’0 respectively are a product of
éléments in {Uc|c E C_}, {Uc|c E C+}, {Uc|c E C0} and {Uc|c E Qj. Similar
décompositions hold for parahoric subgroups PS’ and w’s in the normalizer
of the group MS’. We now prove the proposition when a ~ A+ . Each
g E BaB can be written uniquely as

with u, E U_ , uv E U+ and d e A(R). This means BhBaB is a union

Suppose x E hBa n BAB, say x - bh’b’. Write this as

where u_, u’_ E U_ ; u+ , u’+ E U+ ; and d, d’ E A(R). Thus

It is obvious from (3.21) that BhBaB n BAB = BhaB.



264

Every element of A is the product of an element in A+ and an element in A-;
therefore,

is an immediate consequence of Proposition 3.5. Our next goal is to establish
a quantitative version of (3.22) to obtain the precise multiplicative structure
of e. To do this, let

PROPOSITION 3.6. For h E A

Proof. We know that fd+ * fh is equal to a multiple of fd+h. To determine
the multiple, we evaluate fd+ * fh at d+ h. We find

The integrand is nonzero if and only if g ~ Bd+ B and g’ E BhB. Thus, we
need to determine those g (resp. g’) in Bd+ B (resp. BhB) such that

gg’ = d+ h. We use (3.20). In our particular case of Bd+ B, each element g
can be written uniquely as

where d E A(R), v e U+ U_a,, and u E U-b,l U-a-b,1 V -2a-b,I’ Similarly, for h,
let C_, Co’ and C+ be the sets in (3.19). Each element g’ of BhB is uniquely
of the form
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where u’ (resp. v’ ) is a product of elements in Uc, c E C- u Co’ (resp. U,,
c E C+) and d’ E A(R). The product gg’ = d+ h is thus equivalent to

udd+ vu’hd’v’ = d+ h, i.e.,

With the obvious notation, write u = u-bu-a-bu-2a-b. Then, (3.24) implies
uc C- U,,2 when c ~ C+ . This is the only condition placed on u. Therefore,
fd+ *fh(d+h) = q3-03B2, where fi = #{{-b, -a - b, - 2a - b} n C+},
i.e.,

The other relations are proved by the same type of reasoning.

Since d+ and h+ generate A mod A(R), we conclude

PROPOSITION 3.7. For w, w’ E A,

Let G’ - A and B’ - A n B. In this setup, the support of e is BG’B and
the Hecke algebra X’ = X(G’//B’) is the group algebra. Let ew, w E A,
denote the characteristic function of wB’. The next result exhibits an isomor-

phism between X and à’ similar to the isomorphisms found in [HM 1 ] and
[M1].

COROLLARY 3.8. The map q: 1’ - à defined by

is a *-isomorphism of algebras.

REMARK. The map q of course effects a transfer between the irreducible

representations of G containing 03A9t and the irreducible representations, i.e.,
characters of G’/B’. Furthermore, since q is a *-isomorphism, the transfer
of representations will preserve Plancherel Measure (see [M1]). An important
consequence of the transfer is the following: since G’/T has no discrete series,
there are none of G/ T containing 03A9t.
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Case (iii) X :0 03B8/~ = 1. Let

The elements ro and r, generate an infinite dihedral subgroup W, c W’. Let
W’s be the subgroup of W’ generated by h+ and mI. The group 10g ’ is in the
center of W’ and

In particular, any element w’ of W’ can be written uniquely in the form

and

Let be the length function on W’r, i.e., for w E W’r, e(w) is equal to the
number of ro’s and rl’s in a reduced word expression for w. It is easy to verify
that ~’(ww’) = £’(w) + ~’(w’), w, w’ e Wh’, iff £(ww’) = £(w) + ~(w’).
Consequently

when and

We prove an analogue of Proposition 3.7.

PROPOSITION 3.9. For d E W’s, w E W’r, fd andfw commute. For g ~ {1, t’}

Proof. We first establish some special cases of the Proposition. We can
assume the element d is a power of h+ or h_ . If h is either h + or h _ , we have
BhmB = {BhB}m; hence
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Consider fh+ * fr0r1. Since

we have Bh+ BrorlB n supp à = Bh+ ro r, B, so .f,,+ * fr0r1 is a multiple of

Similarly, for h e {h+, h_},

and

We are now ready to prove the proposition in general. Consider the case
when g - 1. Write d as h"’, with m  0 and h E {h+, h_}. Write w in the
form

and

and

Thus, under these conditions,
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That fd and fw commute and the formula for the convolution now follows by
repeated applications of (3.28, 32, 33, 36). The proof in the case g = t’ is

more tedious but follows the same method. We omit the details. 

The elements ft’, fI, ho and hl therefore generate Yt. In order to determine
the exact structure of B, we need to compute the relations among ft’, fI,
fr0 and fr1. We merely state the relations and omit the cumbersome but
straightforward computations.

Using the notation of (1.7), let G’ be the group

The group W’ is the Weyl group of G’. The group B’ = G’ n B is an
Iwahori subgroup of G’. Let ew, w E W’, be the characteristic function of
B’ WB’. Combining (3.28, 29, 37, 38), and Proposition 3.9 together, we get

PROPOSITION 3.10. The map q: X’(G’//B’) ~ X(G//B, Q) defined by

is a *-isomorphism of algebras.

The remark after Corollary 3.8 applies here: G’/ T has no discrete series;
hence, there are none of G/ T containing 03A9t.

Case (iv) ~ = 03B8/~ ~ sgn or 1. The results in this case are parallel to those
of case (iii). The proofs of the results in case (iv) follow the same pattern as
in case (iii). As such, we merely state the results and omit the proofs. Let
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The group W’ is the Weyl group ofG’ = M{s1} (F), and B’ - G’ n B is an
Iwahori subgroup of G’. Let ew again denote the characteristic function of
B’WB’.

PROPOSITION 3.11. The map q: X’(G’//B’) ~ X(G//B, 03A9) defined by

is a *-isomorphism of algebras.

Again, G’J T has no discrete series and therefore, none of G/T containing QI.

Set

W - subgroup of W’ generated by ro and rl ,

We - subgroup of W’ generated by W and t

Wr’ = subgroup of W’ generated by r’0 and r’1,

Wer’ = subgroup of W’ generated by Wr’ and t’.



270

Both W and W,, are infinite dihedral groups generated by two generators.
The two groups Wer and Wer’ centralize one another and

In particular, any element of W’ can be written in the form ww’, with w E W
(resp. w’ E W’) and w, w’ are unique modulo T. Let tr (resp. ~’r) be the length
function in W (resp. Wr’). An easy verification shows

Hence, if both w, w’ E W (resp. Wr’), then

provided their t, (resp. ~r’) lengths add.
Both t, and ~’r can be extended to Wer and We. Indeed, set ~r(wt) = t,(w),

w E Wr, and set ~’r (w’t’) = ~’r(w’), w’ E W,". It is clear that

and

Since

the convolution hl * hl is linear combination of fl, hl and hl’Í’ We have

To evaluate fl, * fr1 (r, r’1), we evaluate

where
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The integrand is nonzero precisely when g, g’ both belong to Br1B. Write g
as

and g’ as

Let p dénote the prime ideal in R. Then, gg’ - r1r’1 is equivalent to E,
E’ E p, CC’ = DD’ = 1 mod p. Thus,

In a similar fashion

Set 03BA = ~(-1)03B8(-1), so x is + 1. Combining (3.47, 48, 49) we obtain

In particular, it follows that the vector space of functions

is a subalgebra of X(G//B, Q). In order to identify A, consider G" =
GL2(F). Let B" be the Iwahori group of matrices in GL2(R) which are upper
triangular mod p. Let A" be the diagonal matrices in G" and let

Let N" - A"" u t"A" be the monomial matrices, and Waff" = N/{N n B}
the affine Weyl group of G". Let ew be the characteristic function of B"wB".
Combining (3.45, 46, 50) yields
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PROPOSITION 3.12. The map ~: X(G"//B") ~ A defined by

is a *-isomorphism of algebras.

In a likewise manner, the vector space of functions

is a subalgebra of X(G//B, 03A9), and

PROPOSITION 3.13. Let K = 03B8(-1). The map 1: X(G"//B") ~ PÀ defined by

is a *-isomorphism of algebras.

The vector space

W = {f ~ X|support of f c BTA(R)B}. (3.54)

is contained in the center of X and also in A and B. The next result

identifies Yf as the tensor product X = A ~Y B.

PROPOSITION 3.14. For w E We, w’ E Wer’; fw and fw’ commute and

Proof. The method of proof is basically the same as the one used in

Proposition 3.9. Let

Modulo T, an element w E We is one of two forms:
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Similarly, an element w’ E ll§1 is of the form

Consider w of type (3.56i) and w’ of type (3.57(i)). If either m or n is zero
the result is trivial. If m  1 and n  1, then

so

Hence, the proposition will follow for w of type (3.56i) and w’ of type (3.57i)
provided

This last relation is proved by the same method used to show (3.50). The
proof of the proposition for the other three cases of w and w’ is similar. We
omit the details. D

There are four square integrable representations of G/T which contain 03A9t.

They correspond to the one dimensional representations n of e given by

These representations have formal degree

Case P = P{s0}. Here, in the notation of (1.7), we have
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A cuspidal representation of P/P1 is a tensor product Q = 03BE Q u, where j
is a character of F q, i.e., the a component, and 6 is a cuspidal representation
of GL2(Fq), the A component. Representatives w for the double cosets PwP
which can be in the support of X = X(G//P, Q) have the form

with m, r E Z. We have selected a slightly complicated form for (3.61 b) in
order that the representatives (3.61 a, b) satisfy (3.6). The elements (3.61a)
always belong to supp X for any pair (03BE, cr). On the other hand, elements
(3.61b) lie in supp X precisely when

(i) 03BE is the trivial character and a is any cuspidal representation
(ii) 03BE is the character of order 2 and a is a cuspidal representation (3.62)

such that a is equivalent to a (D (ç 0 det).

Up to scalar multiple, each w E supp e determines a function fw whose
support is precisely PwP. The set of fw’s is a basis for Yf. If w, w’ E supp e,
and PwPw’P = Pww’P, then by Proposition 2.2 in [HM1],

fw * fw’ = multiple of fww’. (3.63)

It shall be convenient to pick the fw’s so that (3.63) holds with the scalar
equal to 1. For w an element of the form (3.61 a), let fw be the function in Jf,
with support PwP and

fw(w) = identity operator. (3.64a)

To describe the function fw, when w is of the form (3.61 b), we treat separately
the cases (3.62i) and (3.62ii).

Case (3.62(i)). Here, let f,, be the function with support PwP and

f,, (w) = identity operator. (3.64b)

Case (3.62(ii)). In order to describe fw, we need to introduce some preliminary
notation. Let V03C3 be the representation space of 6. The restriction of a to

SL2(Fq) decomposes into two irreducible components of degree (q - 1)/2
each. The two representations are distinguished by their character values on
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the two non-identity unipotent conjugacy classes in SL2(F,). Let

and let

Then

where

Define 3 to be the element in End V03C3 which is the identity on V+ and minus
the identity on V_. Then

We have now developed enough notation to describe fw. For w of the form
(3.61b), let fw be the function in Je with support PwP and

Thefw’s in (3.64a, b, c) have been defined so that

whenever

We now describe the structure of Jf according to whether the elements of
waff in supp X have the form (3.61a) or (3.61a, b).
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Case 1. supp e = {PwP|w of the form (3.61a)}. Let h+ and h_ be as in
(3.23). Every element w of the form (3.61 a) is uniquely a nonnegative power
of h+ or h- times a scalar matrix mml. Let W’ be the subgroup of N
generated by h+, and mL Then,

Write w as mhs with m an integer, h E {h+, h_} and s a nonnegative integer.
Then, since

we have, fw = (fI)m* ( fh)S. If w" mm’h’s’ and h’ = h, then PsPw’P =
Pww’P - Pw’PwP and so fw * fw’ = fww, = fw’ * fw . Suppose now h ~ h’.
The next result determines the product between h+ and h_ and hence
between fw and fw’.

PROPOSITION 3.5. fh+ *fh_ = q4fI = fh_ *fh+ .
Proof. The support of fh+ * fh- is shown to be P by the same reasoning

as in Proposition 3.5. We conclude that fh+ * fh_ is a multiple of fl. The
multiple is easily seen to be q4 = [Pd+ P: P]. 

Let G’ denote the group

G’ = {g E A(F)|(2, 2) and (3, 3) entries are equal}, (3.67)

and let P’ - G’ n P. In this setup, supp Yf == PG’P, and the Hecke

algebra Yf(GIIIP’) is the group algebra of G’/P’. Each double coset of P’
in G’ is represented by an element w of the form (3.61a). Let ew be the
characteristic function of wP’, and let r be as in (3.61a). Then,

COROLLARY 3.16. The map 1: X(G’//P’) ~ X(G//P, Q) defined by

is a *-isomorphism of algebras.

As in the previous cases, 1 determines a transfer between the characters of
G’/P’ (resp. {G’/T}/{TP’/T}) and the irreducible representations of G (resp.
G/T) which contain 03A9t. There are no square integrabl representations of
GIT containing n.
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Case 2. supp X = {PwP|w of the form (3.61a, b)}. Let

The subgroup of Waff generated by ro and r1 is an infinite dihedral group. Let

be the subgroup of waff generated by r0, r, and mI. The support of -Ye’ is

equal to PW’P. We need to determine the multiplication between the fw’s.
Let ~’ be the length function in W’.

LEMMA 3.17. For w, w’ as in (3.61a, b), the follôwing are equivalent

Proof The element (3.61a) is equal to m’h r if r  0 and mh-r if r  0,
while the element (3.61 b) is equal to mhr-1+r1 if r  1 and m-h-rr, if r  0.
Lable these four cases type I, II, III and IV respectively. If w is type 1 or type
IV, then each of the three relations (i), (ii) and (iii) holds precisely when w’
is type 1 or type III respectively. When w is type II or type III, each of the
three relations holds exactly when w’ is respectively type II or type IV. D

Let x be the scalar 03C3(- 1). The next result determines the structure of e.

THEOREM 3.18. The elements fw satisfy

Proof Relation (a) is a consequence of Lemma 3.17 and Proposition 2.2
in [HM1]. To show relation (b) we begin by determining the support of
/’1 * fr1 and /’0 *fr0. The support of fr1 *fr1 is contained in the set Pr, Pr, P.
Observe, as in the proof of Proposition 3.4, that
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This means fr1* fr1 is a linear combination of f1 and fr1. Similarly, the support
of fr0 * .ira is contained in the set Pro Pro P and

But Ps, P is not in the support of 03A9. The convolution fr0 * fr0 is therefore, a
linear combination of £ and fr0. So, fr * f , r E {r0, r, 1, is a linear combination
of f1 and fr . To determine the precise linear combination, we evaluate fr * fr
at 1 and r. The value of fr * , fr at 1 is

For f * fr(r), we have

In order to evaluate f *fr(r) we use the sharp form of the Bruhat decom-
position (3.20). We treat separately the two cases r = r, and r = ro. The

double coset Pr, P has the product decomposition

where H, is the set

For ro, we set

Then we have

We use (3.71) and (3.72) to evaluate (3.70).
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Case rI, In (3.70), we write g and g’ as

The product gg’ is equal to rl precisely when z is a unit, say D, x = D -’ and

Hence,

Case ro. Here, we write g and g’ as

The product gg’ is equal to ro precisely when z is a unit D, Z = D-’,
x = XD, y = YD, and
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Let

(a unipotent element).

Then,

The sum is over X, Y E R mod / and D a unit mod fi. Let ~03C3 denote the

character of a. IfQ is of the form (3.62(i)), then taking the trace of both sides
of (3.73) gives

trace

The character value ~03C3(u) is (q - 1) 03BA when X and Y are zero and - K
otherwise. Hence, trace (fr0 * fr0(r0)) = -03BA(q - 1)2q, and so

If 03A9 is of the form (3.62(ii)), we can trace the two sides of (3.73) and use the
explicit character values (3.65) to obtain

A consequence of Theorem 3.18 is that for Q of type (3.62i), there is a Hecke
algebra isomorphism of X = X(G//P, Q) in analogy with Propositions
3.2, 3.3, 3.10, 3.11 and Corollary 3.8. Let G’ denote the group

B’ = G’ n P = an Iwahori subgroup of G’.

The group W’ of (3.69) is the affine Weyl group of G’. Let ew, W F W’, be
the characteristic function of B’wB’.
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defined on generators by

is a *-isomorphism of algebras.

It is now easy to describe the square integrable representations of GI T which
contain f2’. There is one such representation i. It corresponds to the special
representation TSI of G’. The Hecke algebra representation is one dimensional
and given by

and

The formal degree d03C4 of T is

If Q is type (3.62(ii)), there are two discrete series representations of GIT
containing 03A9t. The corresponding representations of / are

The two representations have formal degree

Case P - P{s1}. This case is very similar to the previous case P = p(BoJ. We
merely state the results and outline the proofs. Let

For A E GL2(Fq), let A’ be the transpose of A. In the notation of (1.7), we
have
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A cuspidal representation of PIP, is a tensor product Q = 03BE Q 6 where 03BE
is a character F§ and 6 is a cuspidal representation of GL2(lFq). The elements
of Wal which can belong to the support of X = X(G//P, Q) have the form

m, r E Z. Let 0 denote the automorphism of GL2(lFq) of inverse transpose.
Elements of type (3.81 a) are always in supp Je, while those of type (3 .81 b)
belong to supp X precisely when

6 is a cuspidal representation of GL2(Fq) equivalent to 03C3 03BF 03B8. (3.82)

Let V03C3 be the representation space of 6 and let

be the sum over those 2 x 2 invertible matrices X whose (1, 1) and (2, 2)
entries are equal. We have

and

We now describe the structure of e according to whether the elements of
waff in supp Yf have the form (3.81a) or (3.81 a, b).

Case 1. supp e = {PwP|w of the form (3.81a)}. Set

d+, d- as in (3.23) (3.83)

Let W’ be the subgroup of Wal generated by d+ and mI, and let G’ denote
the group

G’ = {g E A(F)|(1, 1) and (2, 2) entries are equal. (3.84)

Then,

supp e = PW’P = PG’P.
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Let P’ = G’ n P. The Hecke algebra X’ = X(G’//P’) is the group algebra
of G’/P’. Each double coset of P’ in G’ is represented by an element w of
the form (3.81a). Let fw (resp. eu) be the element in X (resp. X’) with
support PwP (resp. wP’) and value the identity operator (resp. one) at w. Let
r be as in (3.81a). Then, in complete analogy with Proposition 3.15 and
Corollary 3.16, we have

PROPOSITION and

COROLLARY 3.21. The map defined by

is a *-isomorphism of algebras.

There are no discrete series representations of G containing 03A9t.

Case 2. supp X = {PwP|w of the form (3.81a, b)}. Take

ro, r, and t as in (3.41). (3.85)

Let W’ be the subgroup of waff generated by ro, r, and t. The element t

conjugates ro to rj . The subgroup Wd of W’ generated by ro and rj is again
an infinite dihedral group. The support of »’ is equal to PW’P. As in case
1, we exhibit a basis for Yt. Let hr, w E W’, be the function in X with
support PwP and

The fw’s are a basis for X. To determine the multiplication between the £, ’s,
let t’ be the length function in W’. Lemma 3.17 is valid in our present
context. In analogy with Theorem 3.18, we have

THEOREM 3.22. The elements fw satisfy
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There are two discrete series representations of GIT containing a’. The
corresponding representations n of are both one dimensional. They are
given by

The formal degree of these two representations are

This completes our analysis of the representations of G which contain a
level one nondegenerate representation. In Part II we give a classification of
those representations of G which contain a nondegenerate representation of
higher level.
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