K-theory, λ-rings, and formal groups
Compositio Mathematica, Tome 65 (1988) no. 2, pp. 223-240.
@article{CM_1988__65_2_223_0,
     author = {Clauwens, F. J.-B. J.},
     title = {$K$-theory, $\lambda $-rings, and formal groups},
     journal = {Compositio Mathematica},
     pages = {223--240},
     publisher = {Kluwer Academic Publishers},
     volume = {65},
     number = {2},
     year = {1988},
     zbl = {0646.18004},
     language = {en},
     url = {http://www.numdam.org/item/CM_1988__65_2_223_0/}
}
TY  - JOUR
AU  - Clauwens, F. J.-B. J.
TI  - $K$-theory, $\lambda $-rings, and formal groups
JO  - Compositio Mathematica
PY  - 1988
SP  - 223
EP  - 240
VL  - 65
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1988__65_2_223_0/
LA  - en
ID  - CM_1988__65_2_223_0
ER  - 
%0 Journal Article
%A Clauwens, F. J.-B. J.
%T $K$-theory, $\lambda $-rings, and formal groups
%J Compositio Mathematica
%D 1988
%P 223-240
%V 65
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1988__65_2_223_0/
%G en
%F CM_1988__65_2_223_0
Clauwens, F. J.-B. J. $K$-theory, $\lambda $-rings, and formal groups. Compositio Mathematica, Tome 65 (1988) no. 2, pp. 223-240. http://www.numdam.org/item/CM_1988__65_2_223_0/

[C] F. Clauwens, The K-groups of λ-rings, Part I, Construction of the logarithmic invariant, Comp. Math. 61 (1987) 295-328. | Numdam | Zbl

[D] B. Ditters, Fonctions lexoides et produits euleriens, C.R. Acad. Sci. Paris 276 (1973) 531-534. | MR | Zbl

[H] M. Hazewinkel, Formal groups and Applications, Academic Press, New York (1978). | MR | Zbl

[K] F. Keune, The relativisation of K2, J. of Alg. 54 (1978) 159-177. | MR | Zbl

[LQ] J.-L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comm. Math. Helv. 59 (1984) 565-591. | MR | Zbl

[MS] H. Maazen and J. Stienstra, A presentation for K2 of split radical pairs, J. of Pure and Appl. Algebra 10 (1977) 271-294 | MR | Zbl

[S] J. Stienstra, Cartier-Dieudonné theory for Chow groups, J. Reine Angew. Math. 355 (1985) 1-66. | MR | Zbl