Compositio Mathematica

M. A. Kenku
 Fumiyuki Momose
 Automorphism groups of the modular curves $X_{0}(N)$

Compositio Mathematica, tome 65, ${ }^{\circ} 1$ (1988), p. 51-80
http://www.numdam.org/item?id=CM_1988__65_1_51_0
© Foundation Compositio Mathematica, 1988, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Automorphism groups of the modular curves $X_{0}(N)$

M.A. KENKU ${ }^{1} \&$ FUMIYUKI MOMOSE ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Lagos, Lagos, Nigeria;
${ }^{2}$ Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, Japan (*author for correspondence)

Received 15 December 1986; accepted in revised form 31 July 1987

Let $N \geqslant 1$ be an integer and $X_{0}(N)$ be the modular curve /Q which corresponds to the modular group $\Gamma_{0}(N)$. We here discuss the group Aut $X_{0}(N)$ of automorphisms of $X_{0}(N) \otimes \mathbb{C}$ (for curves of genus $g_{0}(N) \geqslant 2$). Ogg [23] determined them for square free integers N. The determination of Aut $X_{0}(N)$ has applications to study on the rational points on some modular curves, e.g., $[10,19-21]$. Let $\Gamma_{0}^{*}(N)$ be the normalization of $\Gamma_{0}(N) / \pm 1$ in $\mathrm{PGL}_{2}^{+}(\mathbb{Q})$, and put $B_{0}(N)=\Gamma_{0}^{*}(N) / \Gamma_{0}(N)\left(\subset\right.$ Aut $\left.X_{0}(N)\right)$, which is determined in [1] §4. The known example such that Aut $X_{0}(N) \neq B_{0}(N)$ is $X_{0}(37)$ [16] §5 [22]. The modular curve $X_{0}(37)$ has the hyperelliptic involution which sends the cusps to non cuspidal \mathbb{Q}-rational points, and Aut $X_{0}(37) \simeq$ $(\mathbb{Z} / 2 \mathbb{Z})^{2}, B_{0}(37) \simeq \mathbb{Z} / 2 \mathbb{Z}$. Our result is the following.

Theorem 0.1. For $X_{0}(N)$ with $g_{0}(N) \geqslant 2$, Aut $X_{0}(N)=B_{0}(N)$, provided $N \neq 37,63$.

We have not determined Aut $X_{0}(63)$. The index of $B_{0}(63)$ in Aut $X_{0}(63)$ is one or two, see proposition 2.18. The automorphisms of $X_{0}(N)$ are not defined over \mathbb{Q}, in the general case, and it is not easy to get the minimal models of $X_{0}(N)$ over the base $\operatorname{Spec} \mathcal{O}_{K}$ for finite extensions K of \mathbb{Q}. By the facts as above, the proof of the above theorem becomes complicated. In the first place, using the description of the ring End $J_{0}(N)(\otimes \mathbb{Q})$ of endomorphisms of the jacobian variety $J_{0}(N)$ of $X_{0}(N)[18,29]$, we show that the automorphisms of $X_{0}(N)$ are defined over the composite $k(N)$ of quadratic fields with discriminant D such that $D^{2} \mid N$, except for $N=2^{8}, 2^{9}, 2^{2} 3^{3}, 2^{3} 3^{3}$, see corollary 1.11 , remark 1.12 . For the sake of the simplicity, we here treat the cases for $N \neq 2^{8}, 2^{9}, 2^{2} 3^{3}, 2^{3} 3^{3}, 37$. Using corollary 2.5 [20], we show that automorphisms of $X_{0}(N)$ are defined over a subfield $F(N)$ which contained in $k(N) \cap \mathbb{Q}\left(\zeta_{8}, \sqrt{-3}, \sqrt{5}, \sqrt{-7}\right)$. In the second place, for an automorphism u of $X_{0}(N)$, we show that if $u(0)$ or $u(\infty)$ is a cusp, then u belongs to $B_{0}(N)$, see corollary 2.4 , where 0 and ∞ are the \mathbb{Q}-rational cusps cf. $\S 1$. Further we show that if u is defined over \mathbb{Q}, then u belongs to $B_{0}(N)$,
see proposition 2.8. Now assume that $u(\mathbf{0})$ and $u(\infty)$ are not cusps and that $F(N) \neq \mathbb{Q}$. Let $l=l(N)$ be the least prime number not dividing N, and $D=D_{l}=(l+1)(u(\mathbf{0}))+\left(T_{l} u^{\sigma}(\infty)\right)-(l+1)(u(\infty))-\left(T_{l} u^{\sigma}(\mathbf{0})\right)$ be the divisor of $X_{0}(N)$, where $\sigma=\sigma_{l}$ is the Frobenius element of the rational prime l and T_{l} is the Hecke operator associating to l. Under the assumption on u as above, we show that $0 \neq D \sim 0$ (linearly equivalent), and that $w_{N}^{*}(D) \neq D$, where w_{N} is the fundamental involution of $X_{0}(N)$, see lemma 2.7, 2.10. Let S_{N} be the number of the fixed points of w_{N}, which can be easily described, see (1.16). Then we get the inequality that $S_{N} \leqslant 4(l+1)$, see corollary 2.11. Let p_{n} be the n-th prime number. Then using the estimate $p_{n}<1.4 \times n \log n$ for $n \geqslant 4$ [30] theorem 3, we get $l \geqslant 19$, see lemma 2.13. In the last place, applying an Ogg's idea in [22, 23], we get Aut $X_{0}(N)=B_{0}(N)$, except for some integers, see lemma 2.14, 2.15. For the remaining cases, because of the finiteness of the cuspidal subgroup of $J_{0}(N)$ [13], we can apply lemma 2.16. We apply the other methods to the cases for $N=50,75,125,175,108,117$ and 63.

The authors thank L. Murata who informed us the estimate of prime numbers [30].

Notation. For a prime number $p, \mathbb{Q}_{\rho}^{u r}$ denotes the maximal unramified extension of \mathbb{Q}_{p}, and $\mathbf{W}\left(\overline{\mathbb{F}}_{p}\right)$ is the ring of Witt vectors with coefficients in $\overline{\mathbb{F}}_{p}$. For a finite extension K of $\mathbb{Q}, \mathbb{Q}_{p}$ of $\mathbb{Q}_{p}^{u r}, \mathcal{O}_{K}$ denotes the ring of integers of K. For an abelian variety A defined over $K, A_{l_{\ell_{K}}}$ denotes the Néron model of A over the base Spec \mathcal{O}_{K}. For a commutative ring $R, \mu_{n}(R)$ denotes the group of n-th roots of unity belonging to R.

§1. Preliminaries

Let $N \geqslant 1$ be an integer, and $X_{0}(N)$ be the modular curve $/ \mathbb{Q}$ which corresponds to the modular group $\Gamma_{0}(N)$. Let $\mathscr{X}_{0}(N)$ denote the normalization of the projective j-line $\mathscr{X}_{0}(1) \simeq \mathbb{P}_{\mathbb{Z}}^{1}$ in the function field of $X_{0}(N)$. For a positive divisor M of N prime to N / M, denotes the canonical involution of $\mathscr{X}_{0}(N)$ which is defined by $(E, A) \mapsto\left(E / A_{M},\left(E_{M}+A\right) / A_{M}\right)$ (at the generic fibre), where A is a cyclic subgroup of order N and A_{M} is the cyclic subgroup of A of order M. Let \mathfrak{G} be the complex upper half plane $\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$. Under the canonical identification of $X_{0}(N) \otimes \mathbb{C}$ with $\Gamma_{0}(N) \mid \mathfrak{S} \cup\{i \infty, \mathbb{Q}\}, w_{M}$ is represented by a matrix $\left(\begin{array}{cc}M a & b \\ N c & M d\end{array}\right)$ for integers a, b, c and d with $M^{2} a d-N b c=M$. For a fixed rational prime p, and a subscheme Y of $\mathscr{X}_{0}(N), Y^{h}$ denotes the open subscheme of Y obtained by excluding the supersingular points on $Y \otimes \mathbb{F}_{p}$. For a prime divisor p with
$p^{r} \| N$, the special fibre $\mathscr{X}_{0}(N) \otimes \mathbb{F}_{p}$ has $r+1$ irreducible components $E_{0}, E_{1}, \ldots, E_{r}$. We choose $Z^{\prime}=E_{0}$ (resp. $Z=E_{r}$) so that $Z^{\prime h}$ (resp. Z^{h}) is the coarse moduli space $/ \mathbb{F}_{p}$ of the isomorphism classes of the generalized elliptic curves E with a cyclic subgroup A isomorphic to $\mathbb{Z} / N \mathbb{Z}$ (resp. μ_{N}), locally for the étale topology [4]V, VI. then $Z^{\prime h}$ and Z^{h} are smooth over spec \mathbb{F}_{p}. For a prime number p with $p \| N, \mathscr{X}_{0}(N) \otimes \mathbb{F}_{p}$ is reduced, and Z and Z^{\prime} intersect transversally at the supersingular points on $\mathscr{X}_{0}(N) \otimes \mathbb{F}_{p}$. For a supersingular points x on $\mathscr{X}_{0}(N) \otimes \mathbb{F}_{p}$ with $p \| N$, let y be the image of x under the natural morphism of $\mathscr{X}_{0}(N) \mapsto \mathscr{X}_{0}(N / p):(E, A) \mapsto\left(E, A_{M / p}\right)$, and (F, B) be an object associating to y. Then the completion of the local ring $\mathcal{O}_{X_{0}(N), x} \otimes \mathbf{W}\left(\overline{\mathbb{F}}_{p}\right)$ along the section x is isomorphic to $\mathbf{W}\left(\overline{\mathbb{F}}_{p}\right)[[X, Y]] /\left(X Y-p^{m}\right)$ for $\left.m=\frac{1}{2} \right\rvert\,$ Aut $(F, B) \mid[4]$ VI (6.9). Let $\mathbf{0}=\binom{0}{1}$ and $\infty=\binom{1}{0}$ denote the \mathbb{Q}-rational cusps of $\mathscr{X}_{0}(N)$ which are represented by $\left(\mathbb{G}_{\mathrm{m}} \times \mathbb{Z} / N \mathbb{Z}, \mathbb{Z} / N \mathbb{Z}\right)$ and $\left(\mathbb{G}_{\mathrm{m}}, \mu_{N}\right)$, respectively.
(1.1) Let $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$ be the \mathbb{C}-vector space of holomorphic cusp forms of weight 2 belonging to $\Gamma_{0}(N)$. Then $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$ is spanned by the eigen forms of the Hecke ring $\mathbb{Q}\left[T_{m}\right]_{(m, N)=1}$ e.g., [1] [33] Chap. 3 (3.5). Let $f=\Sigma a_{n} q^{n}$, $a_{1}=1$, be a normalized new form belonging to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right) \mathrm{cf}$. [1]. Put $K_{f}=\mathbb{Q}\left(\left\{a_{n}\right\}_{n \geqslant 1}\right)$, which is a totally real algebraic number field of finite degree, see loc.cit. . For each isomorphism σ of K_{f} into \mathbb{C}, put $\sigma f=\Sigma a_{n}^{\sigma} q^{n}$, which is also a normalized new form belonging to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$ [33] Chap. 7 (7.9). For a positive divisor d of $N /\left(\right.$ level of f), put $f \mid e_{d}=\Sigma a_{n} q^{d n}$, which belongs to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$ and has the eigen values a_{n} of T_{n} for integers n prime to $N[1]$. The set $\left\{f \mid e_{d}\right\}_{f, d}$ becomes a basis of $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$, where f runs over the set of all the normalized new forms belonging to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right.$), and d are the positive divisors of $N /($ level of $f)$. To the set $\{\sigma f\}, \sigma \in \operatorname{Isom}\left(K_{f}, \mathbb{C}\right)$, of the normalized new forms, there corresponds a factor $J_{\{f f\}}(/ \mathbb{Q})$ of the jacobian variety $J_{0}(N)$ of $X_{0}(N)$ [35] §4. Let $m(f)(=m(\sigma f))$ be the number of the positive divisors of $N /\left(\right.$ level of f). Then $J_{0}(N)$ is isogenous over \mathbb{Q} to the product of the abelian varieties

$$
\prod_{\{\sigma f\}} J_{\{\sigma f\}}^{m(f)}
$$

where σf runs over the set of the normalized new forms belonging to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$. For each normalized new form f belonging to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$, let $V(f)$ be the \mathbb{C}-vector space spanned by $\left\{f \mid e_{d}\right\}, d \mid N /($ level of $f)$. Then $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$ is decomposed into the direct sum $\oplus_{f} V(f)$ of the eigen spaces $V(f)$ of the Hecke ring $\mathbb{Q}\left[T_{m}\right]_{(\mathrm{m}, N)=1}$, where f runs over the set of the normalized new forms belonging to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$.

Let $\mathbb{Q}(\sqrt{-D})$ be an imaginary quadratic field with discriminant D. Let λ be a Hecke character of $\mathbb{Q}(\sqrt{-D})$ with conductor r which satisfies the following conditions:

$$
\begin{cases}\lambda((\alpha))=\alpha & \text { for } \quad \alpha \in \mathbb{Q}(\sqrt{-D})^{\times} \quad \text { with } \alpha \equiv 1 \bmod ^{\times} \mathfrak{r} \\ \lambda((a))=\left(\frac{-D}{a}\right) a & \text { for } \quad a \in \mathbb{Z} \quad \text { prime to } D \mathbf{N}(\mathfrak{r})\end{cases}
$$

where $\mathbf{N}(c)=\operatorname{Norm}_{\mathbb{Q}(\sqrt{-D}) / \mathbb{Q}}(\mathfrak{r})$. Put

$$
f(z)=\sum_{\mathfrak{A}} \lambda(\mathfrak{H}) \exp (2 \pi \sqrt{-1} \mathbf{N}(\mathfrak{H}) z)
$$

where $\mathfrak{A} \neq(0)$ runs over the set of all the integral ideals prime to \mathfrak{r}. Then f is an eigen form of $\mathbb{Q}\left[T_{m}\right]_{(m, D \mathbf{N}(\mathrm{r}))=1}$ belonging to $\mathrm{S}_{2}\left(\Gamma_{0}(D \mathbf{N}(\mathfrak{r}))\right)$ [34]. We call such a form f a form with complex multiplication. The form f is a normalized new form if and only if λ is a primitive character. In such a case, $\overline{\mathfrak{r}}=\mathfrak{r}$ and D divides $\mathbf{N}(\mathrm{r})$, where $\overline{\mathfrak{r}}$ is the complex conjugate of \mathfrak{r} loc.cit. . The \mathbb{C}-vector space $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$ is identified with $\mathrm{H}^{0}\left(X_{0}(N) \otimes \mathbb{C}, \Omega^{1}\right)$ by $f \mapsto f(z) \mathrm{d} z$. Let $V_{C}=V_{C}(N)$ (resp. $\left.V_{H}=V_{H}(N)\right)$ be the subspace of $H^{0}\left(X_{0}(N), \Omega^{1}\right) \simeq$ $\mathrm{H}^{0}\left(J_{0}(N), \Omega^{1}\right)$ such that $V_{C} \otimes \mathbb{C}\left(\right.$ resp. $\left.V_{H} \otimes \mathbb{C}\right)$ is spanned by the eigen forms with complex multiplication (resp. without complex multiplication). Let T_{C} and T_{H} be the subspaces of the tangent space of $J_{0}(N)$ at the unit section which are associated with V_{C} and V_{H}, respectively. Let $J_{C}=J_{C}(N)$ and $J_{H}=J_{H}(N)$ denote the abelian subvarieties $/ \mathbb{Q}$ of $J_{0}(N)$ whose tangent spaces are T_{C} and T_{H}, respectively. Then $J_{0}(N)$ is isogeneous over \mathbb{Q} to the product $J_{C} \times J_{H}$, and End $J_{0}(N) \otimes \mathbb{Q}=$ End $J_{C} \otimes \mathbb{Q} \times$ End $J_{H} \otimes \mathbb{Q}$ [28] (4.4) (4.5). Let $k(N)$ be the composite of the quadratic fields with discriminant D whose square divides N. For a modular form f of weight 2 and for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$, put

$$
f\left[[g]_{2}=(a d-b c)(c z+d)^{-2} f\left(\frac{a z+b}{c z+d}\right)\right.
$$

For a normalized new form $f=\Sigma a_{n} q^{n}$ and for a Dirichlet character $\chi, f_{(x)}$ denotes the new form with eigen values $a_{n} \chi(n)$ of T_{n} for integers n prime to (level of f) \times (conductor of χ).

Proposition 1.3. Any endomorphism of $J_{H}=J_{H}(N)$ is defined over $K(N)$.
Proof. Let k^{\prime} be the smallest algebraic number field over which all endomorphisms of J_{H} are defined. Then k^{\prime} is a composite of quadratic fields, and any
rational prime p with $p \| N$ is unramified in k^{\prime}, see [27] lemma 1, [32] lemma (1.2), [3]VI, see also [18, 29]. There remains to discuss the 2-primary part of N. Let $f=\Sigma a_{n} q^{n}$ and $g=\Sigma b_{n} q^{n}$ be normalized new forms belonging to V_{H}. If $\operatorname{Hom}\left(J_{\{\sigma f\}}, J_{\{g g\}}\right) \neq\{0\}$, then there exists a primitive Dirichlet character χ of degree one or two such that $a_{n} \chi(n)=b(n)^{\tau}$ for an isomorphism τ of K_{g} into \mathbb{C} and for all integers n prime to N, see [28] (4.4) (4.5). If $\chi=i d$., then $f=\tau g$. The ring End $J_{\{\sigma f\}} \otimes \mathbb{Q}$ is spanned by the twisting operators as a (left) K_{f}-vector space [18, 29]. If moreover End $J_{0}(N) \otimes \mathbb{Q} \simeq K_{f}$, then all endomorphisms of $J_{\{q f\}}$ are defined over \mathbb{Q}. In the other case, let $\eta=\eta_{\lambda}$ be the twisting operator associated with a primitive Dirichlet character λ of order two, then $a_{n}^{e}=a_{n} \lambda(n)$ for an isomorphism ϱ of K_{f} into \mathbb{C} and for all integers n, see [18] remark (2.19). Then $f_{(\mathrm{s})}=\varrho f$ is a normalized new form. If $\chi \neq i d$., then $\tau g=f_{(x)}$ belongs to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$. Therefore it is enough to show that for a primitive Dirichlet character χ of order 2, if $f_{(x)}$ belongs to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right.$), then the square of the conductor of χ divides N. We may assume that ord ${ }_{2}($ level of $f) \leqslant \operatorname{ord}_{2}($ level of $\left.f_{(x)}\right)$. Let $r=2^{m} t$ be the conductor of χ for an odd integer t, and put $\chi=\chi_{1} \chi_{2}$ for the primitive Dirichlet characters χ_{1} and χ_{2} with conductors 2^{m} and t, respectively. As noted as above, t^{2} divides N, so that $\left(f_{(x)}\right)_{\left(x_{2}\right)}=f_{\left(x_{1}\right)}$ belongs to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right.$). If $m \neq 0$, then $4 \mid N$ and the second Fouriere coefficient of $f_{\left(x_{1}\right)}$ is zero [1]. Further we have the following relation:

$$
\left.f_{(11)}=\frac{1}{\sqrt{\chi_{1}(-1) 2^{m}}} \sum_{u \bmod 2^{m}} \chi_{1}(u) f \right\rvert\,\left[\left(\begin{array}{cc}
1 & u / 2^{m} \tag{*}\\
0 & 1
\end{array}\right)\right]_{2}, \quad \text { see }[35] \S 5 .
$$

Put $N=2^{s} M$ for an odd integer M. If $2 m<s$, then

$$
f_{\left(x_{1}\right)} \left\lvert\,\left[\left(\begin{array}{cc}
1 & 0 \tag{**}\\
2^{2 m-1} & 1
\end{array}\right)\right]_{2}=f_{\left(x_{1}\right)} .\right.
$$

But using the above relation (*), we can see that the equality (**) can not be sattisfied.

$$
\text { Put } g_{C}=g_{C}(N)=\operatorname{dim} J_{C}(N) \text { and } g_{H}=g_{H}(N)=\operatorname{dim} J_{H}(N) .
$$

Lemma 1.4. If $g_{0}(N)>1+2 g_{c}(N)$, then all the automorphisms of $X_{0}(N)$ are defined over $k(N)$.

Proof. Let u be an automorphism of $X_{0}(N)$, and put $v=u^{\sigma} u^{-1}$ for $1 \neq \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / k(N))$. Then the automorphism of $J_{0}(N)$ induced by v acts trivially on J_{H} by proposition 1.3. Assume that $v \neq i d$. Then $g_{C} \geqslant 1$. Let
$d(\geqslant 2)$ be the degree of v and $Y=X_{0}(N) /\langle v\rangle$ be the quotient of genus g_{Y}. Then $g_{Y} \geqslant g_{H}$ and $g_{0}(N)=g_{H}+g_{C}$. If $g_{H}=0$, then $g_{0}(N)=g_{C}<$ $1+2 g_{C}$. If $g_{H} \geqslant 1$, then the Riemann-Hurwitz formula leads the inequality that $g_{0}(N)-1 \geqslant d\left(g_{Y}-1\right)\left(\geqslant 1\left(g_{H}-1\right)\right)$. Then $g_{0}(N) \leqslant 2 g_{C}+1$.

Let D be the discriminant of an imaginary quadratic field, and $\mathfrak{r} \neq(0)$ be an integral ideal of $\mathbb{Q}(\sqrt{-D})$ with $\mathfrak{r}=\overline{\mathfrak{r}}$. Let $v(D, \mathfrak{r})$ denote the number of the primitive Hecke characters of $\mathbb{Q}(\sqrt{-D})$ with conductor r which satisfies the condition (1.2). For an integer $n \geqslant 1, \psi(n)$ denotes the number of the positive divisors of n. We know the following.

Lemma 1.5 [34]. $g_{C}=\Sigma_{D} \Sigma_{\mathrm{r}} v(D, \mathfrak{r}) \psi(N / D \mathbf{N}(\mathrm{r}))$, where D runs over the set of the discriminants of imaginary quadratic fields whose squares divide N, and $\mathfrak{r} \neq(0)$ are the integral ideals of $\mathbb{Q}(\sqrt{-D})$ such that $D|\mathbf{N}(\mathrm{r}), D \mathbf{N}(\mathfrak{r})| N$ and $\mathfrak{r}=\overline{\mathrm{r}}$.

Lemma 1.6. If $g_{0}(N) \geqslant 2$, then $g_{0}(N)>1+2 g_{C}$, provide $N \neq 2^{6}, 2^{7}, 2^{8}$, $2^{9}, 3^{4}, 2 \cdot 3^{3}, 2 \cdot 3^{2}, 2^{3} \cdot 3^{3}$.

Proof. For the sake of simplicity, we here denote $g=g_{0}(N)$. For a rational prime p, put $r_{p}=\operatorname{ord}_{p} N$. The genus formula of $X_{0}(N)$ is well known:

$$
\begin{aligned}
g-1= & \frac{1}{12} \prod_{p \mid N} p^{r_{p}-1}(p+1)-e_{2}-e_{3} \\
& -\frac{1}{2} \prod_{r_{p} \geqslant 2 \text { even }} \frac{r_{p}}{p^{2}}-1(p+1) \prod_{r_{p} \text { odd }} \frac{r_{p}-1}{p^{2}},
\end{aligned}
$$

where

$$
\begin{aligned}
& e_{2}= \begin{cases}0 & \text { if } 4 \mid N \\
\frac{1}{2} \prod_{p \mid N}\left(1+\left(\frac{-4}{p}\right)\right) & \text { otherwise }\end{cases} \\
& e_{3}= \begin{cases}0 & \text { if } 9 \mid N \\
\frac{1}{3} \prod_{p \mid N}\left(1+\left(\frac{-3}{p}\right)\right) & \text { otherwise. }\end{cases}
\end{aligned}
$$

We estimate g_{C}. Let D be the discriminant of the imaginary quadratic field $k=\mathbb{Q}(\sqrt{-D})$, and $\mathcal{O}=\mathcal{O}_{k}$ be the ring of integers of k. For an integer
$n \geqslant 1$ and a rational prime p, put $\psi_{p}(n)=1+\operatorname{ord}_{p}(n)$. Put $\left(\frac{-D}{}\right)=\chi_{p} \mu_{p}$ for primitive characters χ_{p} and μ_{p} with conductors p^{r} and D / p^{r} for $r=\operatorname{ord}_{p} D$, respectively. For an integral ideal $\mathfrak{m} \neq(0)$ of $k=\mathbb{Q}(\sqrt{-D})$, let $v_{p}(D, \mathfrak{m})$ denote the number of the primitive characters λ_{p} of $\left(\mathcal{O} \otimes \mathbb{Z}_{p}\right)^{\times}$which satisfy the following condition: for $a \in \mathbb{Z}_{p}^{\times}$,

$$
\lambda_{p}(a)= \begin{cases}\chi_{p}(a) & \text { if } p \mid D \tag{1.7}\\ 1 & \text { otherwise }\end{cases}
$$

Let $h(-D)$ be the class number of $k=\mathbb{Q}(\sqrt{-D})$, and $\mathfrak{r} \neq\{0\}$ be an integral ideal of k with $\mathfrak{r}=\overline{\mathfrak{r}}$. Let N_{p}, D_{p} and \mathfrak{r}_{p} be the p-primary parts of N, D and r. Put

$$
e_{D}= \begin{cases}2 & \text { if } D=4 \\ 3 & \text { if } D=3 \\ 1 & \text { otherwise }\end{cases}
$$

Put $\mu(D, p)=\Sigma_{r_{p}} v_{p}(D, p) \psi_{p}(N / D \mathbf{N}(\mathrm{r}))$, where $\mathrm{r}_{p} \neq(0)$ runs over the set of the ideals of \mathcal{O}_{k} such that $\mathfrak{r}_{p}=\overline{\mathfrak{r}}_{p}, D_{p} \mid \mathfrak{r}_{p}$ and $D \mathfrak{r}_{p} \mid N$. Then the formula in lemma 1.5. gives the following inequality:

$$
\begin{equation*}
g_{C} \leqslant \sum_{D} \frac{h(-D)}{e_{D}} \sum_{\mathrm{r}} v_{p}(D, \mathfrak{r}) \psi_{p}(N / D \mathbf{N}(\mathrm{r}))=\sum_{D} \frac{h(-D)}{e_{D}} \prod_{p \mid N} \mu(D, p) \tag{1.8}
\end{equation*}
$$

For a positive integer $m, \varphi(m)$ denotes the Euler's number of m. By the well known formula of the class number of $\mathbb{Q}(\sqrt{-D}): h(-D)=1 /\left[2-\left(\frac{-D}{2}\right)\right]$ $\Sigma_{0<a<D / 2}(-D / a)$ for $D \neq 4,3$ e.g., [2], we get the following inequality: for $D \neq 4$ nor 3 ,

$$
h(-D) \leqslant \frac{1}{2-(-D / 2)} \cdot \frac{1}{2} \varrho(D)= \begin{cases}\prod_{p \mid D}(p-1) & \text { if } 8 \| D \\ \frac{1}{6} \prod_{p \mid D}(p-1) & \text { if }\left(\frac{-D}{2}\right)=-1 \\ \frac{1}{2} \prod_{p \mid D}(p-1) & \text { otherwise. }\end{cases}
$$

For a prime divisor p of N with $p \| N, \mu(D, p)=2$. If $8 \| D$ and $\operatorname{ord}_{2} N \leqslant 7$, then $\mu(D, 2)=0$, see (1.7). For an odd prime divisor p of N with $p^{2} \mid N$,
put

$$
\mu^{\prime}(D, p)= \begin{cases}(p-1) \mu(D, p) & \text { if } p \| D \\ \mu(D, p) & \text { otherwise }\end{cases}
$$

If $4 \mid N$, put

$$
\mu^{\prime}(D, 2)= \begin{cases}2 \mu(d, 2) & \text { if } 8 \| D \\ \frac{1}{3} \mu(D, 2) & \text { if }\left(-\frac{D}{2}\right)=-1 \\ \mu(D, 2) & \text { otherwise. }\end{cases}
$$

Further let $\mu(p)$ be the maximal value of $\mu^{\prime}(D, p)$ for discriminants D whose squares divide N. Then by (1.9),

$$
\frac{h(-D)}{e_{D}} \prod_{p \mid N} \mu(D, p) \leqslant \frac{1}{2} \prod_{p^{2} \mid N} \mu(p) \prod_{p \| N} 2
$$

Then the inequalities (1.8) and (1.9) gives the following estimates of g_{C} :

$$
2 g_{C} \leqslant \begin{cases}\prod_{p^{2} \mid N} 2 \mu(p) \prod_{p \| N} 2 & \text { if } 2^{8} \mid N \tag{1.10}\\ \frac{1}{2} \prod_{p^{2} \mid N} 2 \mu(p) \prod_{p \| N} 2 & \text { otherwise. }\end{cases}
$$

One can easily calculate $\mu(D, p)$: Put $r=\operatorname{ord}_{p} N$ for a fixed rational prime p.

Cast $p \neq 2$:

	$p \mid D$	$(-D / p)=1$	$(-D / p)=-1$
$n=2 r$ $(\geqslant 2)$	$1+2 \cdot \frac{p^{r}-1}{p-1}$	$p^{r}+p^{r-1}+2 r-1$	$\frac{p^{r}+1}{p-1}\left(p^{r}+p^{r-1}-2\right)$ $+2 r+1$
$n=2 r+1$ $(\geqslant 3)$	$-1+p^{r}+2 \cdot \frac{p^{r}-1}{p-1}$	$2 p^{r}+2 r$	$2 \cdot \frac{p+1}{p-1}\left(p^{r}-1\right)$
$+2 r+2$			

Case $p=2$:

	$8 \\| D$	$4 \\| D$	$(-D / 2)=1$	$(-D / 2)=-1$
$n=2 r$ $(\geqslant 2)$	$2^{r}-12$ $(r \geqslant 4)$	$2^{r}+2^{r-1}-4$ $(r \geqslant 2)$	$2^{r}+2^{r-1}+2 r-1$	$3\left(2^{r}+2^{r-1}-2\right)$ $+2 r+1$
$n=2 r+1$ $(\geqslant 3)$	$2^{r}+$$2^{r-1}-12$ $(r \geqslant 4)$$2^{r+1}-4$ $(r \geqslant 2)$	$2^{r+1}+2 r$	$6\left(2^{r}-1\right)+2 r+2$	

Using the genus formula of $X_{0}(N)$ and the estimate (1.10) of g_{C}, one can see that $g>1+2 g_{C}$, except for some integers N. For the remaining cases, a direct calculation makes complete this lemma.

Corollary 1.11. Any automorphism of $X_{0}(N)\left(g_{0}(N) \geqslant 2\right)$ is defined over the field $k(N)$ provided $N \neq 2^{8}, 2^{9}, 2^{2} 3^{3}, 2^{3} 3^{3}$.

Proof. Lemma 1.3, 1.4 and 1.6 give this lemma, except for $N=2^{6}, 2^{7}, 3^{4}$, $2 \cdot 3^{3}, 2^{3} 3^{2}$. The ring End $J_{C} \otimes \mathbb{Q}$ is determined by the associated Hecke characters [3, 34]. Considering the condition (1.2), we get the result also for the remaining cases.

Remark 1.12. We here add the results on the fields of definition of endomorphisms of J_{C} for $N=2^{8}, 2^{9}, 2^{2} 3^{3}, 2^{3} 3^{3}$.
(1) $N=2^{8}, 2^{9}$: Let χ be a character of the ideal group of $\mathbb{Q}(\sqrt{-1})$ of order 4 which satisfies the following conditions:
(i) $\chi((\alpha))=1 \quad$ for $\quad \alpha \in \mathbb{Q}(\sqrt{-1})$ with $\alpha \equiv 1 \bmod ^{\times} 8$.
(ii) $\chi((\alpha))=1 \quad$ for $\quad \alpha \in \mathbb{Z}$ prime to 2 .

Let $J_{C(-1)}$ and $J_{C(-2)}$ be the abelian subvarieties \mathbb{Q} of J_{C} whose tangent spaces $\otimes \mathbb{C}$ correspond to the subspaces spanned by the eigen forms induced by the Hecke characters of $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-2})$, respectively. Let $k^{\prime}(N)$ be the class field of $\mathbb{Q}(\sqrt{-1})$ associated with $\operatorname{ker}(\chi)$. Then any endomorphisms of $J_{C(-1)}$ is defined over $k^{\prime}(N)$ and End $J_{C} \otimes \mathbb{Q} \simeq$ End $J_{C(-1)} \otimes \mathbb{Q} \times$ End $J_{C(-2)} \otimes \mathbb{Q}$. The same argument as in lemma 1.4 shows that any automorphism of $X_{0}(N)$ is defined over $k^{\prime}(N)$. Note that $\zeta_{16}=\exp (2 \pi \sqrt{-1} / 16)$ does not belong to $k^{\prime}(N)$.
(2) $N=2^{2} 3^{3}, 2^{3} 3^{3}$: Let $\chi \neq 1$ be a character of the ideal group of $\mathbb{Q}(\sqrt{-3})$ which satisfies the following conditions:
(i) $\chi((\alpha))=1 \quad$ for $\quad \alpha \in \mathbb{Q}(\sqrt{-3})^{\times}$with $\alpha \equiv 1 \bmod ^{\times} 6$.
(ii) $\chi((\alpha))=1$ for $a \in \mathbb{Z}$ prime to 6 .

Then any endomorphism of J_{C} is defined over the class field $k^{\prime}(N)$ associated with $\operatorname{ker}(\chi)$. Note that ζ_{9} and ζ_{8} do not belong to $k(N)$.

Let $p \geqslant 5$ be a prime number and K be a finite extension of $\mathbb{Q}_{p}^{u r}$ of degree e_{K}. For an elliptic curve E defined over K, and an integer $m \geqslant 3$ prime to p, let ϱ_{m} be the representation of $G_{K}=\mathrm{Gal}(\bar{K} / K)$ induced by the Galois action of G_{K} on the m-torsion points $E_{m}(\bar{K})$. Then $\varrho_{m}\left(G_{K}\right)$ becomes a subgroup of $\mathbb{Z} / 4 \mathbb{Z}$ or $\mathbb{Z} / 6 \mathbb{Z}$, and $\operatorname{ker}\left(\varrho_{m}\right)$ is independent of the integer $m \geqslant 3$ prime to p. Let K^{\prime} be the extension of K associated with $\operatorname{ker}\left(\varrho_{m}\right)$, and e be the degree of the extension K^{\prime} / K. Let $\pi=\pi_{K}$ be a prime element of the ring $R=\mathcal{O}_{K}$ of integers of K. Then we know that (i) If the modular invariant $j(E) \not \equiv 0,1728 \bmod \pi$, then $e=1$ or 2 , (ii) If $e=4$, then $j(E) \equiv 1728 \bmod \pi$, (iii) If $e=3$ or 6 , then $j(E) \equiv 0 \bmod \pi$ e.g., [31] §5 (5.6) [36] p. 46. Now assume that E has a cyclic subgroup $A(/ K)$ of order N for an integer N divisible by p^{2}. Put $e^{\prime}=e$ if e is odd, and $e^{\prime}=e / 2$ if e is even.

Lemma 1.13 ([20] § lemma (2.2), (2.3)). If $e_{K} e^{\prime}<p-1$, then the pair (E, A) defines a R-valued section of the smooth part of $\mathscr{X}_{0}(N)$.

Corollary 1.14. Let $x: \operatorname{Spec} R \rightarrow \mathscr{X}_{0}(N)$ be a section of an integer N divisible by p^{2}. If $e_{K}=1$ and $p \geqslant 5$, then x is a section of the smooth part of $\mathscr{X}_{0}(N)$. If $e_{K}=2$ and $p \geqslant 7$, then x is a section of the smooth part of $\mathscr{X}_{0}(N)$.

Remark 1.15. Under the notation as above, we here consider the cases for $e_{K}=2$ and $p=5,7$. Put $N=p^{r} m$ for coprime integers p^{r} and $m(r \geqslant 2)$. Under one of the following conditions (i), (ii) on $m, e^{\prime}=1$ for $p=5$, and $e^{\prime} \leqslant 2$ for $p=7$.
$p=5: \quad$ Conditions on m.
(i) 4,6 or 9 divides m.
(ii) 2 or a rational prime q with $q=2 \bmod 3$ divides m, and a rational prime q^{\prime} with $q^{\prime} \equiv 3 \bmod 4$ divides m.
$p=7: \quad$ (i) 2 or 9 divides m.
(ii) A rational prime q with $q \equiv 2 \bmod 3$ divides m.
(1.16) The fixed points of w_{N}.

Let w_{N} be the fundamental involution of $X_{0}(N):(E, A) \mapsto\left(E / A, E_{N} / A\right)$.
Put $N=N_{1}^{2} N_{2}$ for the square free integer N_{2}. Let k_{N} be the class field of $\mathbb{Q}\left(\sqrt{-N_{2}}\right)$ which is associated with the order of $\mathbb{Q}\left(\sqrt{-N_{2}}\right)$ with conductor
N_{1}. Put $h_{N}=\left|k_{N}: \mathbb{Q}\left(\sqrt{-N_{2}}\right)\right|$. Then as well known (see e.g. [12] Chapter 8 theorem 7)

$$
h_{N}=h\left(-N_{2}\right) \frac{N_{1}}{\left|\mathcal{O}^{\times}: \mathcal{O}_{N_{1}}^{\times}\right|} \sum_{p \mid N_{1}}\left(1-\left(\frac{-N_{2}}{p}\right) \frac{1}{p}\right),
$$

where \mathcal{O} is the ring of integers of $\mathbb{Q}\left(\sqrt{-N_{2}}\right)$ and $\mathcal{O}_{N_{1}}=\mathbb{Z}+N_{1} \mathcal{O}$. Let S_{N} be the number of the fixed points of w_{N}. Then

$$
S_{N}= \begin{cases}h_{N} & \text { if } N_{2} \equiv 1 \quad \text { or } 2 \bmod 4 \\ h_{N}+h_{4 N} & \text { if } N_{2} \equiv 3 \bmod 4\end{cases}
$$

Let $p \leqslant 13$ (or $p=17,19,23$ or 29 etc.) be a rational prime and M be an integer prime to p. Then supersingular points on $\mathscr{X}_{0}(1) \otimes \mathbb{F}_{p}$ are all \mathbb{F}_{p}-rational and the supersingular points on $\mathscr{X}_{0}(M) \otimes \mathbb{F}_{p}$, hence those on $\mathscr{X}_{0}(p M) \otimes \mathbb{F}_{p}$ are all $\mathbb{F}_{p^{2}}$-rational [3]V theorem 4.17, [36] table $6 \mathrm{p} .142-144$. Let $m(M, p)=g_{0}(p M)-2 g_{0}(M)+1$. For a prime divisor q of M, put $r_{q}=\operatorname{ord}_{q} M$. Put

$$
\begin{aligned}
& m(2)= \begin{cases}\sum_{i=0}^{r_{2}} \varphi\left(\left(2^{i}, 2^{r_{2}-i}\right)\right) & \text { if } r_{2} \leqslant 6 \\
16 & \text { if } r_{2} \geqslant 6, \quad \text { and }\end{cases} \\
& m(3)= \begin{cases}\sum_{i=0}^{r_{3}} \varphi\left(\left(3^{i}, 3^{r_{3}-i}\right)\right) & \text { if } r_{3} \leqslant 2 \\
4 & \text { if } r_{3} \geqslant 2,\end{cases}
\end{aligned}
$$

where φ is the Euler's function. The number of the $\mathbb{F}_{p^{2}}$-rational cusps on $\mathscr{X}_{0}(M) \otimes \mathbb{F}_{p}=m(2) m(3) \prod_{\substack{q \mid M \\ q \neq 2,3}} 2$. Therefore

$$
\begin{equation*}
\# \mathscr{X}_{0}(M)\left(\mathbb{F}_{p^{2}}\right) \geqslant g_{0}(p M)-2 g_{0}(M)+1+m(2) m(3) \prod_{\substack{q \mid M \\ q \neq 2,3}} 2 \tag{1.17}
\end{equation*}
$$

§2. Automorphisms of $X_{0}(N)$

In this section, we discuss the automorphisms of the modular curves $X_{0}(N)$ of genus $g_{0}(N) \geqslant 2$. For an automorphism u of $X_{0}(N), u$ denotes also the
induced automorphism of the jacobian variety $J_{0}(N)$. Let $k(N)$ be the composite of the quadratic fields with discriminants D whose squares divide N. For the integers $N=2^{8}, 2^{9}, 2^{3} 3^{3}$ and $2^{3} 3^{3}$, let $k^{\prime}(N)$ be the fields defined in remark 1.12.
(2.1) (see [1] §4). Let $A_{\infty}=A_{\infty}(N)$ denote the subgroup of Aut $X_{0}(N)$ consisting of the automorphisms which fix the cusp $\infty=\binom{1}{0}$, and put $B_{\infty}=A_{\infty} \cap B_{0}(N)$. Then A_{∞} is a cyclic group. Let $\mathbb{Q}[[q]]$ be the completion of the local ring $\mathcal{O}_{X_{0}(N), \infty}$ with the canonical local parameter q see [4] VII. For $\gamma \in A_{\infty}, \gamma *(q)=\zeta_{m} q+c_{2} q^{2}+\cdots$ for a primitive m-th root ζ_{m} of unity and $c_{i} \in \overline{\mathbb{Q}}$. Then we see easily that the field of definition of γ is $\mathbb{Q}\left(\zeta_{m}\right)$. Put $r_{2}=\min \left\{3,\left[\frac{1}{2} \operatorname{ord}_{2} N\right]\right\}, r_{3}=\left\{1,\left[\frac{1}{2} \operatorname{ord}_{3} N\right]\right\}$ and $m=2^{r_{2}} 3^{r_{3}}$. Then A_{∞} is generated by $\left(\begin{array}{cc}1 & 1 / m \\ 0 & 1\end{array}\right) \bmod \Gamma_{0}(N)$.

Lemma 2.2. Under the notation as above, suppose that an involution u belongs to A_{∞}. Then u is defined over \mathbb{Q} and it is not the hyperelliptic involution. Moreover $4 \mid N$.

Proof. Let $\mathbb{Q}[[q]]$ be the completion of the local ring at the cusp ∞ with the canonical local parameter q [3] VII. Put $u *(q)=c_{1} q+c_{2} q^{2}+\cdots$ for $c_{t} \in \overline{\mathbb{Q}}$. Then one sees easily that $c_{1}=-1$ and that u is defined over \mathbb{Q}. The hyperelliptic modular curves of type $X_{0}(N)$ are all known [22] theorem 2. In all cases, the hyperelliptic involution of $X_{0}(N)$ do not fix the cusp ∞. Using the congruence relation [3] [33] Chapter 7 (7.4), one sees that u commutes with the Hecke operators T_{l} for prime numbers l prime to N. For a normalized new form g belonging to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$, let $V(g)$ be the subspace spanned by $g \mid e_{d}$ for positive divisors d of $N /($ level of $g)$ cf. (1.1). Then $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)=$ $\oplus V(g)$ as $\mathbb{Q}\left[T_{l}\right]_{(l, N)=1}$-modules, where g runs over the set of the normalized new forms belonging to $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$. If $N /($ level of $g)$ is odd, then $u * \mid V(g)$ becomes a triangular matrix with the eigen values -1 for a choice of the basis of $V(g)$. Hence $u * \mid V(g)=-1_{V(g)}$. If N is odd, then $u *=-1$ on $\mathrm{S}_{2}\left(\Gamma_{0}(N)\right)$. Then $u=-1$ on $J_{0}(N)$, and it is a contradiction. Now consider the case $2 \| N$. Let $K(/ \mathbb{Q})$ be the abelian subvariety of $J_{0}(N)$ whose tangent space $\operatorname{Tan}_{0} K \otimes \mathbb{C}$ corresponds to the subspace $\oplus^{\prime} V(g)$ for the normalized new forms g with even level. Then as noted as above, u acts on K under -1 . Let $\tilde{\mathscr{X}}_{0}(N) \rightarrow$ Spec $\mathbf{W}\left(\overline{\mathcal{F}}_{2}\right)$ be the minimal model of $X_{0}(N) \otimes \mathbb{Q}_{2}^{u r}$, and Σ be the dual graph of the special fibre $\tilde{\mathscr{X}}_{0}(N) \otimes \overline{\mathbb{F}}_{2}$. Let Z and Z^{\prime} be the irreducible components of $\tilde{\mathscr{X}}_{0}(N) \otimes \overline{\mathbb{F}}_{2}$ which contains the cusps $\infty \otimes \overline{\mathbb{F}}_{2}$ and $\mathbf{0} \otimes \overline{\mathcal{F}}_{2}$, respectively cf. $\S 1$. Since the genus $g_{0}(N) \geqslant 2$, the selfintersection numbers of Z and Z^{\prime} are $\leqslant-3$, and those of the other irreducible components are all -2 . Denote also by u the induced automorphism
of the minimal model $\tilde{\mathscr{X}}_{0}(N)$. Note that u is defined over \mathbb{Q}. Then u send $Z \cup Z^{\prime}$ to itself. By the condition $u(\infty)=\infty, u$ fixes Z and Z^{\prime}. Let P^{τ} be the kernel of the degree map Pic $\tilde{\mathscr{X}}_{0}(N) \rightarrow \mathbb{Z}, P^{0}$ be the connected component of the unit section of P^{τ}, and E be the Zariski closure of the unit section of the generic fibre $P^{\tau} \otimes \mathbb{Q}_{2}^{u r}$. Then the Néron model $J_{0}(N)_{W\left(\mathbb{F}_{2}\right)}=P^{\tau} / E$ and $P^{0} \cap E=\{0\}$, see [25] §8 (8.1), [4] VI. Let l be an odd prime number and $T_{l}, V_{l}=T_{l} \otimes \mathbb{Q}_{l}$ be the Tate modules. Then $V_{l}\left(\mathrm{H}^{1}(\Sigma, \mathbb{Z}) \otimes \mathbb{G}_{m}\right)=V_{l}\left(P^{0}\right)=V_{l}(K)^{I}$, where I is the inertia subgroup $\mathrm{Gal}\left(\overline{\mathbb{Q}}_{2} / \mathbb{Q}_{2}^{u r}\right)$ [32] lemma 1. Then one sees that u acts under -1 on $H^{1}(\Sigma, \mathbb{Z})$. Since u fixes Z and Z^{\prime}, considering the action of u on the dual graph Σ, one sees that $\mathrm{H}^{1}(\Sigma, \mathbb{Z})=\{0\}$ or \mathbb{Z}, i.e., $g_{0}(N)=2 g_{0}(N / 2)$ or $=2 g_{0}(N / 2)+1$. By the result [23], it suffices to discuss the case when $N / 2$ is not square free. Then there are at least six cusps on $X_{0}(N / 2)$, since $g_{0}(N / 2) \geqslant 1$. Then the Riemann-Hurwitz relation

$$
g_{0}(N)-1 \geqslant 3\left\{g_{0}(N / 2)-1\right\}+\frac{1}{2} \#\left\{\operatorname{cusps} \text { on } X_{0}(N / 2)\right\} .
$$

gives a contradiction.
Corollary 2.3. $A_{\infty}=B_{\infty}$.
Proof. Let $\mathbb{Q}[[q]]$ be the completion of the local ring at the cusp ∞ with the canonical local parameter q. Put $u *(q)=c_{1} q+c_{2} q+\cdots$ for $c_{i} \in \overline{\mathbb{Q}}$. Then c_{1} is a root of unity belonging to the field $k(N)$, or $k^{\prime}(N)$ for $N=2^{8}$, $2^{9}, 2^{2} 3^{3}$ and $2^{3} 3^{3}$ cf. corollary 1.11 , remark 1.12 . Hence $c_{1} \in \mu_{24}(k(N))$, see loc.cit. For the case $\operatorname{ord}_{2} N \leqslant 1$, by (2.1) and lemma 2.2, $A_{\infty}=B_{\infty}$. For the case $\operatorname{ord}_{2} N \geqslant 2$, by (2.1), $A_{\infty}=B_{\infty}$.

Corollary 2.4. Let C be a $k(N)$ or $k^{\prime}(N)$-rational cusp, and u be an automorphism of $X_{0}(N)$ such that $u(C)$ is a cusp. Then u belongs to the subgroup $B_{0}(N)$.

Proof. It suffices to note that $B_{0}(N)$ acts transitively on the set of the $k(N)$ or $k^{\prime}(N)$-rational cusps on $X_{0}(N)$.

Let " $F(N)$ " be the subfield of $k(N) \cap \mathbb{Q}\left(\zeta_{8}, \sqrt{-3}, \sqrt{5}, \sqrt{-7}\right)$ which contains $k(N) \cap \mathbb{Q}\left(\zeta_{8}, \sqrt{-3}\right)$ and satisfies the following conditions for $p=5$ and 7 : the rational prime $p=5$ (resp. $p=7$) is unramified in $F(N)$ if one of the conditions (i), (ii) in (1.15) for p is satisfied.

Lemma 2.5. If an automorphism u of $X_{0}(N)$ is defined over $k(N)$, then u is defined over $F(N)$.

Proof. It is enough to show that for each rational prime $p \geqslant 5$ with $p^{2} \mid N$, if p is unramified in $F(N)$, then u is defined over $\mathbb{Q}_{p}^{u r}$, see corollary 1.11, remark 1.12. First note that the $k(N)$-rational cusps on $\mathscr{X}_{0}(N) \otimes \mathbb{Z}[1 / 6]$ are the sections of the smooth part $\mathscr{X}_{0}(N)^{\text {smooth }} \otimes \mathbb{Z}[1 / 6]$ see lemma 1.13 , corollary 1.14 , remark 1.15 , [4]. Let p be a rational prime which is unramified in $F(N)$. Then we know that any $k(N)$-rational point on $X_{0}(N)$ defines a $\mathcal{O}_{k(N)} \otimes \mathbb{Z}_{p}$-section of $\mathscr{X}_{0}(N)^{\text {smooth }}$, see loc.cit. For $1 \neq \sigma \in \mathrm{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}^{u r}\right)$, let x be the section of $J_{0}(N)$ defined by

$$
x=c l\left((u(\mathbf{0}))-(u(\infty))-\left(u^{\sigma}(\mathbf{0})\right)+\left(u^{\sigma}(\infty)\right)\right)
$$

Since $\operatorname{cl}((\mathbf{0})-(\infty))$ is of finite order [13], x is of finite order and is defined over $k(N) \otimes \mathbb{Q}_{p}^{u r}$. Let \mathfrak{p} be a prime ideal of $\mathcal{O}=\mathcal{O}_{k(N)}$ lying over the rational prime p, and $\mathcal{O}_{\mathfrak{p}}$ be the completion along \mathfrak{p}. As noted as above, $u(0)$, $u(\infty), u^{\sigma}(0)$ and $u^{\sigma}(\infty)$ define the \mathcal{O}_{p}-sections of $\mathscr{X}_{0}(N)^{\text {smooth }}$ such that $u(\mathbf{0}) \otimes \kappa(\mathfrak{p})=u^{\sigma}(\mathbf{0}) \otimes \kappa(\mathfrak{p})$ and $u(\infty) \otimes \kappa(\mathfrak{p})=u^{\sigma}(\infty) \otimes \kappa(\mathfrak{p})$. Then by the universal property of the Néron model, we see that $x \otimes \kappa(\mathfrak{p})=0(=$ the unit section). Further by the conditions that x is of finite order and that $p>\operatorname{ord}_{\mathfrak{p}}(p)+1$, we see that x is the unit section [26] §3 (3.3.2), [15] proposition 1.1. Thus we get the linearly equivalent relation: $(u(\mathbf{0}))+$ $\left(u^{\sigma}(\infty)\right) \sim(u(\infty))+\left(u^{\sigma}(\mathbf{0})\right)$. Now suppose that $u^{\sigma} \neq u$.

Case $u(\infty)=u^{\sigma}(\infty)$: Put $v=u^{\sigma} u^{-1}(\neq \mathrm{id}$.). Then v fixes the cusps $\mathbf{0}$ and ∞, so that v belongs to $B_{0}(N)$, corollary 2.3. But any non trivial automorphism belonging to $B_{0}(N)$ does not fix both of $\mathbf{0}$ and $\infty[1] \S 4$.

Case $u(\infty) \neq u^{\sigma}(\infty)$: By the above linear equivalence, there exists the hyperelliptic involution γ of $X_{0}(N)$ with $\gamma u(0)=u^{\sigma}(0)$. Then by the condition on p as above and by the classification of hyperelliptic modular curves of type $X_{0}(N)$ [23] theorem 2, there remains the case for $N=50$. But $k(50)=F(50)=\mathbb{Q}(\sqrt{5})$, corollary 1.11 .

Let l be a prime number prime to N, and T_{l} be the Hecke operator associated with l.

Lemma 2.6. Let u be an automorphism of $X_{0}(N)$ defined over a composite of quadratic fields, and σ_{l} be a Frobenius element of the rational prime l. Then

$$
u T_{l}=T_{l} u^{\sigma_{l}} \text { on } J_{0}(N)
$$

Proof. On $J_{0}(N) \otimes \mathbb{F}_{l}$, we have the congruence relation [3, 33] Chapter 7 (7.4):

$$
T_{l}=F+V, \quad F V=V F=l
$$

where F is the Frobenius map and V is the Verschiebung. Put $u^{(l)}=u^{\sigma_{l}}$ on $J_{0}(N) \otimes \mathbb{F}_{l}$. Then the assumption on u as above shows that $u F=F u^{(l)}$ and $u V=V u^{(l)}$.

Let \mathscr{D} (resp. \mathscr{D}_{0}, resp. \mathscr{D}_{l}) be the group of divisors of $X_{0}(N)$ (resp. of degree 0 , resp. which are linearly equivalent to 0). For a prime number l prime to N, and for an automorphism u of $X_{0}(N), T_{l}$ and $u, u^{\sigma_{l}}$ act on $\mathscr{D}, \mathscr{D}_{0}$ and \mathscr{D}_{l}. Put $\alpha_{l}=u T_{l}-T_{l} u^{\sigma_{l}}$ on $J_{0}(N)$. Then by lemma 2.6, $\alpha_{l}=0$ on $J_{0}(N) \otimes \mathbb{C}=\mathscr{D}_{0} / \mathscr{D}_{l}$. Put $\quad D_{l}=\alpha_{l}((\mathbf{0})-(\infty)) \quad(=(l+1)(u(\mathbf{0}))+$ $\left.\left(T_{l} u^{\sigma_{l}}(\infty)\right)-(l+1)(u(\infty))-\left(T_{l} u^{\sigma_{l}}(\mathbf{0})\right)\right)$. Then $D_{l} \sim 0$, linearly equivalent to the zero divisor.

Lemma 2.7. Under the notation as above, let u be an automorphism of $X_{0}(N)$ defined over the field $F(N)$. Then if $u(0)$ or $u(\infty)$ is not a cusp, then $D_{l} \neq 0$.

Proof. If $D_{l}=0$, then $(l+1)(u(\mathbf{0}))=\left(T_{l} u^{\sigma_{l}}(\mathbf{0})\right)$ and $(l+1)(u(\infty))=$ $\left(T_{l} u^{\sigma_{l}}(\infty)\right)$. Suppose that $D_{l}=0$ and that $u(\mathbf{0})$ is not a cusp. Let $z \in \mathfrak{H}=$ $\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ be the point which corresponds to $u^{\sigma_{l}}(0)$ under the canonical identification of $X_{0}(N) \otimes \mathbb{C}$ with $\Gamma_{0}(N) \backslash \mathfrak{G} \cup\{i \infty, \mathbb{Q}\}$. Then

$$
T_{l} u^{\sigma_{l}}(\mathbf{0}) \equiv(l z)+\sum_{i=0}^{l-1}\left(\frac{z+i}{l}\right) \bmod \Gamma_{0}(N)
$$

The corresponding points on $X_{0}(N) \otimes \mathbb{C}$ to $(l z)$ and $(z+i / l)$ are represented by elliptic curves $E=\mathbb{C} / \mathbb{Z}+\mathbb{Z} l z$ and $\mathbb{C} / \mathbb{Z}+\mathbb{Z}(z+i / l)$ with level structures, respectively. Then by the assumption $D_{l}=0, E \simeq$ $\mathbb{C} / \mathbb{Z}+\mathbb{Z}(z+i / l)$ for the integers $i, 0 \leqslant i \leqslant l-1$. Consider the following homomorphisms f_{i} with kernel C_{i} :

$$
f_{i}: E \xrightarrow{\text { can. }} \mathbb{C} / \mathbb{Z}+\mathbb{Z} \frac{z+i}{l} \xrightarrow{\sim} E .
$$

Then $C_{i}=\mathbb{Z}\left((i / l)+\left(1 / l^{2}\right) l z\right) \bmod L=\mathbb{Z}+\mathbb{Z} l z$ are cyclic subgroups of order l^{2}, and $\left(C_{i}\right)_{l}\left(=\operatorname{ker}\left(l: C_{i} \rightarrow C_{i}\right)\right)=(1 / l) \mathbb{Z} l z \bmod L$. This is a contradiction. (Because, there are at most two cyclic subgroups A_{i} of order l^{2} with $E / A_{i} \simeq E$. If $l=2$ and there are such subgroups $A_{i}(i=1,2)$, then $2 A_{1} \neq 2 A_{2}$.

Proposition 2.8. Let u be an automorphism of $X_{0}(N)$ defined over \mathbb{Q}. Then u belongs to the subgroup $B_{0}(N)$, provided $N \neq 37$.

Proof. By the results on the rational points on $X_{0}(N)$ [10, 15, 17], we know that $u(0)$ is a cusp, provided $N \neq 37,43,67,163$. The rest of the proof owes to corollary 2.4 and [23] Satz 1.

The following result is immediate from corollary 1.11 , remark 1.12 and lemma 2.5.

Corollary 2.9. If $F(N)=\mathbb{Q}$, then Aut $X_{0}(N)=B_{0}(N)$, provided $N \neq 37$.
Now consider the case $F(N) \neq \mathbb{Q}$. In this case N are divisible by the square of $2,3,5$ or 7 , see lemma 2.5 . Let u be an automorphism of $X_{0}(N)$ which is not defined over \mathbb{Q}. If $u(0)$ or $u(\infty)$ is a cusp, then u belongs to the subgroup $B_{0}(N)$, see corollary 2.4. So we assume that $u(0)$ and $u(\infty)$ are not cusps. Let l be a prime number prime to $N, \sigma=\sigma_{l}$ be a Frobenius element of the rational prime l, and $D_{l}=(l+1)(u(0))+\left(T_{l} u^{\sigma}(\infty)\right)-(l+1)(u(\infty))-$ $\left(T_{l} u^{\sigma}(\mathbf{0})\right)(\sim 0)$ be the divisor of $X_{0}(N)$ defined as above, see lemma 2.7, for $N \neq 2^{8}, 2^{9}, 2^{2} 3^{3}, 2^{3} 3^{3} \mathrm{cf}$. corollary 1.11 , remark 1.12. Under the assumption on u as above, $D_{l} \neq 0$ by lemma 2.7.

Lemma 2.10. Under the assumption as above for $N \neq 37,2^{8}, 2^{9}, 2^{2} 3^{3}, 2^{3} 3^{3}$, assumes that $D_{l} \neq 0$ and $l \geqslant 5$. Then $w_{N} *\left(D_{l}\right) \neq D_{l}$, and $u(\mathbf{0}), u(\infty)$ are not the fixed points of w_{N}.

Proof. If $D_{l}=w_{N} *\left(D_{l}\right)$, then

$$
\begin{aligned}
(l & +1)(u(\mathbf{0}))+\left(T_{l} u^{\sigma}(\infty)\right)+(l+1)\left(w_{N} u(\infty)\right)+\left(T_{l} w_{N} u^{\sigma}(\mathbf{0})\right) \\
& =(l+1)\left(w_{N} u(\mathbf{0})\right)+\left(T_{l} w_{N} u^{\sigma}(\infty)\right)+(l+1)(u(\infty))+\left(T_{l} u^{\sigma}(\mathbf{0})\right)
\end{aligned}
$$

(Note that $w_{N} T_{l}=T_{l} w_{N}$ on $J_{0}(N)$, since w_{N} is defined over \mathbb{Q}, see lemma 2.6.) The assumption $D_{l} \neq 0$ shows that $(l+1)(u(0)) \neq\left(T_{l} w_{N} u^{\sigma}(\infty)\right)$ nor $\left(T_{l} u^{\sigma}(\mathbf{0})\right)$, see the proof in lemma 2.7. Suppose that $w_{N} *\left(D_{l}\right)=D_{l}$. Then the similar argument as in the proof of lemma 2.7 shows that $u(0)$ and $u(\infty)$ are the fixed points of w_{N}, since $l \geqslant 5$. Let p be a prime divisor of N with $p \| N$ or $p \geqslant 11$. Then u defines an automorphism of the minimal model $\widetilde{\mathscr{X}}_{0}(N) \rightarrow$ Spec $\mathbf{W}\left(\overline{\mathbb{F}}_{p}\right)$, see lemma 2.5. If $p \| N$, then $u(\mathbf{0}) \otimes \overline{\mathbb{F}}_{p}$ and $u(\infty) \otimes \overline{\mathbb{F}}_{p}$ are not the supersingular points (, because $g_{0}(N) \geqslant 2$). By our assumption and corollary 2.9 , the automorphism u is not defined over \mathbb{Q},
and N is divisible by the square of a prime $q \leqslant 7$ see lemma 2.5 . Therefore if $p \geqslant 11$, then $\mathscr{X}_{0}(N) \otimes \overline{\mathbb{F}}_{p}$ has at least three supersingular points, and the points $u(\mathbf{0})$ and $u(\infty)$ define the sections of different irreducible components of $\widetilde{\mathscr{X}}_{0}(N) \otimes \overline{\mathbb{F}}_{p}$ see corollary 1.14. Hence N is a form $2^{a} 3^{b} 5^{c} 7^{d}$ for integers $a, b, c, d=0$ or $\geqslant 2$. Let S be the set of rational primes which ramify in $F(N)$. Then we see that $S=\{2,3\},\{2\},\{3\},\{5\}$ or $\{7\}$, see corollary 1.14, remark 1.15, lemma 2.5, proposition 2.8. Put $N=N_{1}^{2} N_{2}$ for the square free integer N_{2}. Let k_{N} be the class field of $\mathbb{Q}\left(\sqrt{-N_{2}}\right)$ associated with the order with conductor N_{1}. Then the condition $w_{N} u(\mathbf{0})=u(\mathbf{0})$ gives the inequality that $[F(N): \mathbb{Q}] \leqslant\left[k(N): \mathbb{Q}\left(\sqrt{-N_{2}}\right)\right]$, which is satisfied only for $N=2^{6}$, see (1.16). For $N=2^{6}, F(N)=\mathbb{Q}\left(\zeta_{8}\right)$ and k_{N} is the class field of $\mathbb{Q}(\sqrt{-1})$ of degree 4 , see loc.cit. Thus $u(0)$ is not a fixed point of w_{N}.

Corollary 2.11. Under the notation and assumption as in lemma 2.10, let S_{N} be the number of the fixed points of w_{N} on $X_{0}(N)$. Then $S_{N} \leqslant 4(l+1)$.

Proof. Put $D_{+}=(l+1)(u(\mathbf{0}))+\left(T_{l} u^{\sigma}(\infty)\right)$ and $D_{-}=(l+1)(u(\infty))+$ ($T_{l} u^{\sigma}(\mathbf{0})$) for a Frobenius element $\sigma=\sigma_{l}$ of the rational prime l. Let n_{+}, n_{-} be the numbers of the fixed points of w_{N} belonging to Supp $\left(D_{+}\right)$and Supp $\left(D_{-}\right)$, respectively. Then Supp $\left(w_{N} *\left(D_{+}\right)\right)$(resp. Supp $\left(w_{N} *\left(D_{-}\right)\right)$) contains exactly n_{+}(resp. n_{-}) fixed points of w_{N}. Consider the rational function f on $X_{0}(N)$ whose divisor $(f)=D_{l}=D_{+}-D_{-}(\neq 0$, by our assumption). Put $g=w_{N} *(f) / f-1$, which is not a constant function, see lemma 2.10. For a fixed point x of w_{N} not belonging to $\operatorname{Supp}\left(D_{+}\right) \cup$ Supp $\left(D_{-}\right), g(x)=0$. Then $4(l+1)-\left(n_{+}+n_{-}\right) \geqslant$the degree of $g \geqslant S_{N}-\left(n_{+}+n_{-}\right)$.

Now under the assumption that $u(\mathbf{0})$ and $u(\infty)$ are not cusps, we estimate the least prime number l not dividing N. Let p_{n} be the n-th prime number. We know the following estimate of p_{n} for $n \geqslant 4$ [30] theorem 3:

$$
\begin{equation*}
p_{n}<1.4 \times n \log (n), \tag{2.12}
\end{equation*}
$$

Let $l(N)$ be the least prime number not dividing N.
Lemma 2.13. Under the notation and the assumption as above, $l(N) \leqslant 19$.
Proof. We may assume that $N \neq 2^{8}, 2^{9}, 2^{2} 3^{3}, 2^{3} 3^{3}$. Put $N=N_{1}^{2} N_{2}$ for the square free integer N_{2}. Let $n_{i}(i=1,2)$ be the numbers of the prime divisors of N_{i}, and n be the number of the prime divisors of N. We
will show that $n \leqslant 7$, applying lemma 2.10 . We know the following (1.16):

$$
S_{N}= \begin{cases}\frac{1}{2} N_{1} \prod_{p \mid N_{1}}\left(1-\left(\frac{-1}{p}\right) \frac{1}{p}\right) & \text { if } N_{2}=1 \\ \frac{4}{3} N_{1} \prod_{p \mid N_{1}}\left(1-\left(\frac{-3}{p}\right) \frac{1}{p}\right) & \text { if } N_{2}=3 \\ h\left(-N_{2}\right) \prod_{p \mid N_{1}}\left(1-\left(\frac{-N_{2}}{p}\right) \frac{1}{p}\right) & \text { if } N_{2} \neq 1 \text { and } N_{2} \equiv-1 \bmod 4 \\ \geqslant 2 h\left(-N_{2}\right) \prod_{p \mid N_{1}}\left(1-\left(\frac{-N_{2}}{p}\right) \frac{1}{p}\right) & \text { if } N_{2} \neq 3 \text { and } N_{2} \equiv-1 \bmod 4\end{cases}
$$

As well known, $n_{2} \leqslant \operatorname{ord}_{2} h\left(-N_{2}\right)$ if $N_{2} \equiv 1 \bmod 4$, and $n_{2}-1 \leqslant$ $\operatorname{ord}_{2} h\left(-N_{2}\right)$ if $N_{2} \not \equiv 1 \bmod 4$ (see e.g., [2]). Then the above formula of S_{N} gives the estimate that $S_{N} \geqslant 2^{n}$ for $n \geqslant 7$. Then corollary 2.11 and (2.12) give the following estimate of S_{N} for $n \geqslant 7$:

$$
S_{N} \leqslant 4\left(1+p_{n+1}\right)<4\{1+1.4 \times(n+1) \log (n+1)\}
$$

Then by a calculation, we get $n \leqslant 7$.
Let p be a prime divisor of N with $r=\operatorname{ord}_{p} N$. Put $M=M / p^{r}$, and let $\pi=\pi_{N, M}: \mathscr{X}_{0}(N) \rightarrow \mathscr{X}_{0}(M)$ be the natural morphism. For a prime number l not dividing N, let D_{l} be the divisor defined in lemma 2.7. For $N \neq 2^{8}, 2^{9}$, $2^{2} 3^{3}, 2^{3} 3^{3}, c l\left(D_{l}\right)=0$ on $J_{0}(N)$, so that the image $\pi\left(c l\left(D_{l}\right)\right)=0$ under the natural homomorphism $\pi: J_{0}(N) \rightarrow J_{0}(M)$ of jacobian varieties. Let $E_{l}=$ $(l+1)(\pi u(0))+\left(T_{l} \pi u^{\sigma}(\infty)\right)-(l+1)(\pi u(\infty))-\left(T_{l} \pi u^{\sigma}(0)\right)$ be a divisor of $X_{0}(M)$. Then $E_{l} \sim 0$ (for $N \neq 2^{8}, \quad 2^{9}, \quad 2^{2} 3^{3}, \quad 2^{3} 3^{3}$), since $\pi\left(T_{l} \mid J_{0}(N)\right)=\left(T_{l} \mid J_{0}(M)\right) \pi$. We give a criterion for $E_{l} \neq 0$.

Lemma 2.14. Under the notation as above, assume that $u(\mathbf{0})$ and $u(\infty)$ are not cusps. If the following conditions are satisfied, then $E_{l} \neq 0$: There exists a prime divisor q of N with $t=\operatorname{ord}_{q} N$ such that $g_{0}\left(N / q^{t}\right) \geqslant 1$ and that q satisfies the following conditions (i), (ii) and (iii):
(i) $q \| N$.
(ii) $q \geqslant 11$.
(iii) $q=5$ or 7 which satisfies one of the conditions (i), (ii) for q in lemma 1.15 .

Proof. It suffices to show that under the conditions as above $\pi u(0) \neq \pi u(\infty)$, see the proof of lemma 2.7. Any automorphisms u of
$X_{0}(N)$ is defined over the field $F(N)$, see corollary 1.11 , lemma 2.5 . Let \mathfrak{q} be a prime of $F(N)$ lying over the rational prime q which satisfies the above conditions. Then u defines the automorphism u of the minimal model $\widetilde{\mathscr{Y}} \rightarrow \operatorname{Spec} \mathcal{O}_{q}$ of $X_{0}(N) \otimes F(N)_{q}$, where \mathcal{O}_{q} is the completion of the ring of integers of $F(N)$ along \mathfrak{q}. Let $Z^{\prime}=E_{0}$ and $Z=E_{t}$ be the irreducible components of $\mathscr{X}_{0}(N) \otimes \mathbb{F}_{q}$ cf. $\S 1$. Then $Z \simeq Z^{\prime} \simeq \mathscr{X}_{0}\left(N / q^{t}\right) \otimes \mathbb{F}_{q}$, see [4] VI, which are smooth over \mathbb{F}_{q}. By our assumption $g_{0}\left(N / q^{t}\right) \geqslant 1$. Then by the construction of the minimal model $\tilde{\mathscr{Y}} \longrightarrow \mathscr{X}_{0}(N) \otimes \mathcal{O}_{q}$ (birational map), Z and Z^{\prime} do not become points on $\tilde{\mathscr{Y}}$. Denote also by Z and Z^{\prime} the proper transforms of Z and Z^{\prime} by the birational map $\tilde{\mathscr{Y}}--\mathscr{X}_{0}(N) \otimes \mathcal{O}_{q}$. Then $u(\mathbf{0}) \otimes \kappa(\mathfrak{q})$ and $u(\infty) \otimes \kappa(\mathfrak{q})$ are sections of $\left(Z \cup Z^{\prime}\right)^{h}\left(=Z \cup Z^{\prime}-\right.$ \{supersingular points\}), see corollary 1.14 , remark 1.15 and the conditions on q as above. As $0 \otimes \kappa(\mathfrak{q})$ belongs to $Z^{\prime h}$ and $\infty \otimes \kappa(\mathfrak{q})$ belongs to Z^{h}, so that $u(\mathbf{0}) \otimes \kappa(\mathfrak{q})$ and $u(\infty) \otimes \kappa(\mathfrak{q})$ are the sections of the different irreducible components $\subset Z \cup Z^{\prime}$. Denote also by Z and Z^{\prime} the images of Z and Z^{\prime} under the natural morphism of $\mathscr{X}_{0}(N)$ to $\mathscr{X}_{0}(M)$. Then $\pi u(\mathbf{0}) \otimes \kappa(\mathfrak{q})$ and $\pi u(\infty) \otimes \kappa(q)$ are the sections of the different irreducible components. Hence $\pi u(0) \neq \pi(u(\infty)$.

Lemma 2.15 (see [22, 23]). Let $M>1$ be an integer and p be a prime number not dividing M. Let $D=\Sigma_{t} n_{i}\left(x_{i}\right)$ be a divisor of $X_{0}(M)$ of degree $d=\Sigma_{t} n_{i}$ with $n_{i} \geqslant 1$. Assume that D is defined over a composite of quadratic fields and that $\operatorname{dim} H^{0}\left(X_{0}(M), \mathcal{O}(D)\right)>1$. Then

$$
\# \mathfrak{X}_{0}(M)\left(\mathbb{F}_{p^{2}}\right) \leqslant d\left(p^{2}-1\right)-\sum_{i}\left(n_{i}-1\right)
$$

Proof. It is immediate from the upper semicontinuity, see E.G.A. IV (7.7.5) 1.

Lemma 2.16. Let $p \geqslant 3$ be a prime number which satisfies one of the following conditions (i) $\operatorname{ord}_{p} N \leqslant 1$, (ii) $p \geqslant 11$, or (iii) $p=5$ or 7 satisfies one of the conditions (i), (ii) in Remark 1.15. Then for any automorphism u of $X_{0}(N)$, if $u(\mathbf{0})$ and $u(\infty)$ are not cusps, then $u(0) \otimes \overline{\mathbb{F}}_{p}$ or $u(\infty) \otimes \overline{\mathbb{F}}_{p}$ is not a cusp.

Proof. Under the assumption on p as above, $u(\mathbf{0}) \otimes \overline{\mathbb{F}}_{p}$ and $u(\infty) \otimes \overline{\mathbb{F}}_{p}$ are the sections of the smooth part $\mathscr{X}_{0}(N)^{\text {smooth }}$, and u is defined over $\mathbb{Q}_{\underline{p}}^{u r}$, see corollary 1.11 , Remark $1.12,1.15$, lemma 2.5 . Suppose that $u(0) \otimes \overline{\mathbb{F}}_{p}$ and $u(\infty) \otimes \overline{\mathbb{F}}_{p}$ are cusps. Let C_{1} and C_{2} be the cusps on $\mathscr{X}_{0}(N)$ such that $C_{1} \otimes \overline{\mathbb{F}}_{p}=u(\mathbf{0}) \otimes \overline{\mathbb{F}}_{p}$ and $C_{2} \otimes \overline{\mathbb{F}}_{p}=u(\infty) \otimes \overline{\mathbb{F}}_{p}$. Consider the section x
the Néron model $J_{0}(N)_{\mathbf{W}_{\left(\mathbb{F}_{p}\right)}}$ defined by

$$
x=\operatorname{cl}\left((u(0))-(u(\infty))-\left(C_{1}\right)+\left(C_{2}\right)\right)
$$

(Note that under the condition on p as above, C_{i} are defined over $\mathbb{Q}_{p}^{u r}$). By the choice of $C_{i}, x \otimes \overline{\mathbb{F}}_{p}=0$. The classes $u(c l(\mathbf{0})-(\infty))=c l((u(\mathbf{0}))-$ $(u(\infty)))$ and $c l\left(\left(C_{1}\right)-\left(C_{2}\right)\right)$ are of finite order, see [13] proposition 3.2. Then by the specialization lemma [26] §3 (3.3.2), [15] lemma 1.1, x is the unit section. If $F(N)=\mathbb{Q}$ and $N \neq 37$, then $u(0)$ and $u(\infty)$ are cusps, see corollary 2.9. For the case $N=37$, see [16] §5. If $u(0)$ and $u(\infty)$ are not cusps and $N \neq 37$, then $X_{0}(N)$ must be hyperelliptic and the hyperelliptic involution sends 0 to a cusp, see [22] theorem 2.

Now applying (1.17), lemma $2.13,2.14,2.15,2.16$, we can prove main theorem.

Theorem 2.17. For the modular curves $X_{0}(N)$ with $g_{0}(N) \geqslant 2$, Aut $X_{0}(N)=$ $B_{0}(N)$, provided $N \neq 37,63$.

Proof. It is enough to discuss the case $F(N) \neq \mathbb{Q}$, see remark 1.15, corollary 2.9. Suppose that Aut $X_{0}(N) \neq B_{0}(N)$. Then there exists an automorphism u of $X_{0}(N)$ such that $u(0)$ and $u(\infty)$ are not cusps, see corollary 2.4. At first, we treat the cases for $N \neq 2^{8}, 2^{9}, 2^{2} 3^{3}, 2^{3} 3^{3}$. Let $l=l(N)$ be the least prime number not dividing N, and $D=D_{l}=(l+1)(u(0))+\left(T_{l} u^{\sigma}(\infty)\right)-$ $(l+1)(u(\infty))-(l+1)(u(\infty))-\left(T_{l} u^{\sigma}(0)\right)(\neq 0)$ be the divisor of $X_{0}(N)$ defined in lemma 2.7 for $\sigma=\sigma_{l}$. Then D is defined over $F(N)$ (corollary 1.11, lemma 2.5), $0 \neq D$ and $l \leqslant 19$ by lemma 2.7, 2.13. We apply lemma 2.14. For $l=13,17$ and 19 , applying lemma $2.14,2.15$ to $p=2$, we see that $l \leqslant 11$. For $l=11$, applying the above lemmas to $p=2$, we see $N=$ $2 \cdot 3^{2} \cdot 5 \cdot 7,2^{3} \cdot 3^{2} \cdot 5 \cdot 7,2^{3} \cdot 3^{2} \cdot 5 \cdot 7,2^{4} \cdot 3^{2} \cdot 5 \cdot 7,2^{5} \cdot 3^{2} \cdot 5 \cdot 7,2^{4} \cdot 3 \cdot 5 \cdot 7$ or $2^{5} \cdot 3 \cdot 5 \cdot 7$. Further applying lemma $2.14,2.15$ to $p=3$ and 5 , we see $N \neq 2^{4} \cdot 3^{2} \cdot 5 \cdot 7,2^{5} \cdot 3^{2} \cdot 5^{7} \cdot 7,2^{5} \cdot 3 \cdot 5 \cdot 7$. For $l=7$, the same argument as above shows that $N=2 \cdot 3^{2} \cdot 5,2^{2} \cdot 3^{2} \cdot 5,2^{3} \cdot 3^{2} \cdot 5,2^{4} \cdot 3 \cdot 5,2^{5} \cdot 3 \cdot 5$, $2 \cdot 3^{3} \cdot 5,2^{2} \cdot 3^{3} \cdot 5$ or $2 \cdot 3^{2} \cdot 5^{2}$. For $l=5, N=2^{4} \cdot 3 \cdot 7,2^{4} \cdot 3 \cdot 11$, $2^{4} \cdot 3 \cdot 13,2^{4} \cdot 3^{2} \cdot 7,2^{2} \cdot 3^{2} \cdot 11,2 \cdot 3^{3} \cdot 7,2 \cdot 3^{2} \cdot 7,2 \cdot 3^{2} \cdot 11,2 \cdot 3^{2} \cdot 13$, $2 \cdot 3^{2} \cdot 17,2 \cdot 3^{2} \cdot 19,2 \cdot 3^{2} \cdot 23,2^{7} \cdot 3,2^{6} \cdot 3,2^{5} \cdot 3^{2}, 2^{5} \cdot 3,2^{4} \cdot 3^{2}, 2^{4} \cdot 3^{2}$, $2^{4} \cdot 3,2^{3} \cdot 3^{2}, 2^{2} \cdot 3^{4}, 2^{2} \cdot 3^{3}, 2 \cdot 2^{4}$ or $2 \cdot 3^{3}$. For $l=3, N=2^{6}, 2^{7}, 2^{5} \cdot 5$, $2^{4} \cdot 5,2^{4} \cdot 7,2^{4} \cdot 13$ or $2 \cdot 5^{2}$. For $l=2, N=3^{4}, 3^{2} \cdot 5,3^{2} \cdot 7,3^{2} \cdot 7,3^{2} \cdot 11$, $3^{2} \cdot 13,3^{2} \cdot 17,3 \cdot 5^{2}, 5^{3}$ or $5^{2} \cdot 7$. For the remaining cases, we apply lemma 2.16. Choose a prime number $p \geqslant 3$ which satisfies one of the conditions (i), (ii), (iii) in lemma 2.16, and splits in $F(N)$ for $N \neq 2^{8}, 2^{9}, 2^{2} 3^{3}, 2^{3} 3^{3}$,
and in $k^{\prime}(N)$ for $N=2^{8}, 2^{9}, 2^{2} 3^{3}, 2^{3} 3^{3}$ (see corollary 1.11, remark 1.12, lemma 2.5). By a calculation, we see that there is a prime number $p \geqslant 3$ as above such that $\mathscr{X}_{0}(N)\left(\mathbb{F}_{p}\right)$ consists of the cusps (and the supersingular points if $p \| N$), provided $N \neq 2^{2} \cdot 3^{3}, 3^{2} \cdot 7,3^{2} \cdot 13,2 \cdot 5^{2}, 3 \cdot 5^{2}, 5^{2} \cdot 7,5^{3}$. Thus lemma 2.16 gives the result, except for $N=2^{2} \cdot 3^{2}, 3^{2} \cdot 7,3^{2} \cdot 13$, $2 \cdot 5^{2}, 3 \cdot 5^{2}$ and 5^{3}.

In the following, we give the proofs for $N=50,75,125,175,108$ and 117. Let $\tilde{\mathscr{X}}=\tilde{\mathscr{X}}_{0}(N) \rightarrow$ Spec \mathbb{Z} be the minimal model of $X_{0}(N)$. For a prime divisor p of N with $p \| N$, Aut $X_{0}(N)$ becomes a subgroup of Aut $\tilde{\mathscr{X}} \otimes \overline{\mathbb{F}}_{p}$. Let Z, Z^{\prime} be the irreducible components of $\tilde{\mathscr{X}}_{0}(N) \otimes \mathbb{F}_{p}(p \| N)$, and Aut $_{z} \tilde{\mathscr{X}} \otimes \overline{\mathrm{~F}}_{p}$ be the subgroup of Aut $\tilde{\mathscr{X}} \otimes \overline{\mathbb{F}}_{p}$ consisting the automorphisms which fix Z (, hence fix Z^{\prime}). We denote also by Z, Z^{\prime} the proper transforms of Z and Z^{\prime} under the quadratic transformation $\widetilde{\mathscr{X}} \rightarrow \mathscr{X}=$ $\mathscr{X}_{0}(N)$. For the pairs $(N, p)=(50,2),(75,3),(175,7),(63,7)$ and $(117,13)$, $X_{0}(N / p) \simeq \mathbb{P}_{\mathbb{Q}}^{1}$. For a pair (N, p) as above, if an automorphism u fixes Z and has more than three fixed points on Z, then $u=\mathrm{id}$. For N as above and an automorphism u of $X_{0}(N), u$ or $u w_{N}$ fixes Z and Z^{\prime}. Let $J=J_{0}(N)$ be the jacobian variety of $X_{0}(N)$, and u be an automorphism of $X_{0}(N)$ which fixes Z for (N, p) as above.

Proof for $N=50$: Aut $_{Z} \widetilde{\mathscr{X}} \otimes \overline{\mathbb{F}}_{p} \simeq \mathbb{Z} / 2 \mathbb{Z}$ and it is generated by the canonical involution w_{25}, see below:

Proof for $N=75$: The set of the \mathbb{F}_{9}-rational points on $Z\left(\simeq \mathscr{X}_{0}(25) \otimes \mathbb{F}_{3}\right)$ consists of the \mathbb{F}_{3}-rational cusps C_{1}, C_{2}, non cuspidal \mathbb{F}_{3}-rational points C_{3}, C_{4}, and the supersingular points. Then u acts on the set $\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$. For $1 \neq \sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{5}) / \mathbb{Q}), u^{\sigma}\left(C_{i}\right)=\left(u\left(C_{i}\right)\right)^{(3)}=u\left(C_{i}\right)$, where $\left(u\left(C_{i}\right)\right)^{(3)}$ is the image of $u\left(C_{i}\right)$ under the Frobenius map $Z \rightarrow Z$. Then $u^{-1} u^{\sigma}$ has more than four fixed points on Z, so that $u^{\sigma}=u$. Then by lemma $2.5,2.8, u$ belongs to the subgroup $B_{0}(75)$.

Proof for $N=125$: Put $J_{1}=J_{+}=(w+1) J$ and $J_{-}=(w-1) J$, where $w=w_{125}$. Then J_{-}is isogenous over \mathbb{Q} to a product of two \mathbb{Q}-simple abelian varieties J_{2} and J_{3} with $\operatorname{dim} J_{2}=4$, $\operatorname{dim} J_{3}=2$, see [5,36] table 5. The abelian varieties J_{1} and J_{3} are simple over \mathbb{C}, and they are isogenous with
each other over $\mathbb{Q}(\sqrt{5})$, see [18] [29]. The abelian variety J_{2} is isogenous over $\mathbb{Q}(\sqrt{5})$ to a product of two abelian varieties, loc.cit. Let $V=V_{J}, V_{i}=V_{J_{i}}$ be the tangent spaces of J and J_{i} at the unit sections. Suppose that an automorphism u of $X_{0}(125)$ is not defined over \mathbb{Q}.

Claim $u w=w u$: Put $v=w u w u^{-1}$. Then v acts trivially on J_{2}, since u acts on J_{2} (see above) and $w=-1$ on J_{2}. Suppose $v \neq$ id. Let Y be the quotient $X_{0}(125) /\langle v\rangle$ with genus g_{Y}, and $(2 \leqslant) d$ be the degree of v. Then $g_{Y} \geqslant 4$ and the Riemann-Hurwitz formula yields $d=2$ and $g_{Y}=4$. Thus v acts on $V_{1} \oplus V_{2}$ under -1 , hence $v=-1$ on $J_{1}+J_{2}$. Then $v(\neq w)$ is defined over \mathbb{Q}. But the non trivial automorphism of $X_{0}(125)$ defined over \mathbb{Q} is w, proposition 2.8 .

The above claim shows that the action of u is compatible with the decomposition $V=V_{1} \oplus V_{2} \otimes V_{3}$, hence with $J=J_{1}+J_{2}+J_{3}$. Put $v=u^{\sigma} u^{-1}(\neq \mathrm{id}$.) for $1 \neq \sigma \in \mathrm{Gal}(\mathbb{Q}(\sqrt{5}) / \mathbb{Q})$. Let Y be the quotient $X_{0}(125) /\langle v\rangle$ with genus g_{Y}, and $(2 \leqslant) \mathrm{d}$ be the degree of v. As noted as above, all endomorphisms of J_{1} and J_{3} are defined over \mathbb{Q}, so that v acts trivially on $J_{1}+J_{3}$. Then the Riemann-Hurwitz formula shows that $d=2$ and $g_{Y}=4$. Then $v=-1$ on J_{2}, and v is defined over \mathbb{Q}. But $w \neq v$.

Proof for $N=175$: Let $\alpha_{i}, \alpha_{i}^{\prime}=\alpha_{i}^{(7)}(1 \leqslant i \leqslant 8)$ be the supersingular points on $\mathscr{X}_{0}(175) \otimes \mathbb{F}_{7}$. Let $E\left(/ \overline{\mathbb{F}}_{7}\right)$ be an elliptic curve with modular invariant $j(E)=1728$, and A, A^{\prime} be the independent cyclic subgroups of order 25 which are fixed by Aut $E \simeq \mathbb{Z} / 4 \mathbb{Z}$. Then $\left(E, A^{\prime}\right) \simeq\left(E / A, E_{25} / A\right)$, and the pairs $(E, A),\left(E, A^{\prime}\right)$ represent the supersingular points, say α_{1} and α_{1}^{\prime}, and $w_{25}\left(\alpha_{1}\right)=\alpha_{1}^{\prime}, u\left(\left\{\alpha_{1}, \alpha_{1}^{\prime}\right\}\right)=\left\{\alpha_{1}, \alpha_{1}^{\prime}\right\}$, see below. Since u and w_{25} fix the irreducible components Z and $Z^{\prime}, v=u$ or w_{25} fixes $\alpha_{1}, \alpha_{1}^{\prime}$ and Z. Let T be the subgroup of Aut $Z\left(\simeq \mathrm{PGL}_{2}\right)$ consisting of automorphisms which fix $\alpha_{1}, \alpha_{1}^{\prime}$. Then T is the non split torus. If v does not belong to the subgroup $B_{0}(175)$, then u is not defined over \mathbb{F}_{7}, and the order of v is 16 or divisible by 3 , see lemma 2.5 , proposition 2.8 . In both cases as above, v acts on the set $\left\{\alpha_{i}, \alpha_{i}^{\prime}\right\}_{2 \leqslant i \leqslant 8}$. Then v have more than three fixed points on Z. Therefore $v=$ id., and it contradicts to our assumption.

Proof for $N=108$: Any automorphism of $X_{0}(108)$ is defined over the class field $k^{\prime}=k(108)^{\prime}$ of $\mathbb{Q}(\sqrt{-3})$, see Remark 1.12. The rational prime 31
splits in k^{\prime}, and $\mathscr{X}\left(\mathbb{F}_{31}\right)$ consists of the cusps $C_{i}(1 \leqslant i \leqslant 18)$ and non cuspidal points $x_{i}(1 \leqslant i \leqslant 18)$. Let u be an automorphism of $X_{0}(108)$. If u is defined over $\mathbb{Q}(\sqrt{-3})$, applying lemma 2.16 to $p=7$, we see that u belongs to $B_{0}(108)$. Suppose that u is not defined over $\mathbb{Q}(\sqrt{-3})$, and let $1 \neq \sigma \in \operatorname{Gal}\left(k^{\prime} / \mathbb{Q}(\sqrt{-3})\right)$. Applying lemma 2.16 to $p=7$, we see that $\#\left\{\left\{u\left(C_{i}\right)\right\}_{i} \cap\left\{C_{i}\right\}_{i}\right\} \leqslant 1$ and $\#\left\{\left\{u^{\sigma}\left(C_{i}\right)\right\}_{i} \cap\left\{C_{i}\right\}_{i}\right\} \leqslant 1$, see corollary 2.4. Then \# $\left\{\left\{u\left(C_{i}\right)\right\}_{i} \cap\left\{u^{\sigma}\left(C_{i}\right)\right\}_{i}\right\} \geqslant 16$, hence $\#\left\{\left\{u^{\sigma} u^{-1}\left(C_{i}\right)\right\}_{i} \cap\left\{C_{i}\right\}_{i}\right\} \geqslant 16$. Put $\gamma=u^{\sigma} u^{-1}(\neq \mathrm{id}$.$) . Then there are cusps P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}$ such that $\gamma\left(P_{1}\right) \otimes \mathbb{F}_{31}=P_{1}^{\prime} \otimes \mathbb{F}_{31}$ and $\gamma\left(P_{2}\right) \otimes \mathbb{F}_{31}=P_{2}^{\prime} \otimes \mathbb{F}_{31}$. Consider the section $x=\operatorname{cl}\left(\left(\gamma\left(P_{1}\right)\right)-\left(\gamma\left(P_{2}\right)\right)-\left(P_{1}^{\prime}\right)+\left(P_{2}^{\prime}\right)\right)$ of the jacobian variety $J=$ $J_{0}(108)$. Then x is of finite order [13] proposition 3.2, and $x \otimes \mathbb{F}_{31}$ is the unit section. By the specialization lemma [26] §3 (3.3.2), [15] lemma 1.1, x is the unit section, so that $\gamma\left(P_{i}\right)$ are cusps, since $X_{0}(108)$ is not hyperelliptic [22]. Therefore γ belongs to $B_{0}(108)$, see corollary 2.4. Let J_{C} be the abelian subvariety $(/ \mathbb{Q})$ of J with complex multiplication, and J_{H} be the abelian subvariety $(/ \mathbb{Q})$ without complex multiplication. Then $\operatorname{dim} J_{C}=6$ and $\operatorname{dim} J_{H}=4[36]$ table 5 . All endomorphisms of J_{H} are defined over $\mathbb{Q}(\sqrt{-3})$ (proposition 1.3), so that $\gamma=$ id. on J_{H}. Let Y be the quotient $X_{0}(108) /\langle\gamma\rangle$ with genus $g_{Y} \geqslant 4$, and $(2 \leqslant) d$ be the degree of γ. The Riemann-Hurwitz formula shows that (i) $d=2, g_{Y}=4$, 5 or (ii) $d=3, g_{Y}=4$. Let $J_{C_{1}}$ (resp. $J_{C_{2}}$) be the abelian subvariety $(/ \mathbb{Q})$ of J_{C} associated with the eigen forms of $T_{l}(l \times 6)$ which have same eigen values with the new forms of level 36 and 108 (resp. 27). Then $J_{C}=J_{C_{1}}+J_{C_{2}}$, $\operatorname{dim} J_{C_{1}}=\operatorname{dim} J_{C_{2}}=3$, and $\operatorname{End}_{\mathbb{Q}(\sqrt{-3})} J_{C} \otimes \mathbb{Q} \simeq \operatorname{End} J_{C_{1}} \otimes \mathbb{Q} \times$ End $J_{C_{2}} \otimes \mathbb{Q}$, where $\operatorname{End}_{\mathbb{Q}(\sqrt{-3})}$ is the subring consisting of endomorphisms defined over $\mathbb{Q}(\sqrt{-3})$.

sign of the eigen					
values of $\left(w_{4}, w_{27}\right)$	++	+-	-+	-	
dimensions of	0	1	1	1	J_{H}
the factors	0	0	$1+1$	1	$J_{C_{1}}$
	0	$1+1$	0	1	$J_{C_{2}}$

The automorphism γ acts trivially on J_{H}, w_{4} acts on $J_{C_{1}}$ under -1 , and w_{27} acts on $J_{C_{2}}$ under -1 . Then dim $\operatorname{ker}\left(w_{m} \gamma w_{m} \gamma^{-1}-1: J \rightarrow J\right) \geqslant 7$ for $m=4$ and 27. Then the Riemann-Hurwitz formula shows that $\gamma w_{4}=w_{4} \gamma$ and $\gamma w_{27}=w_{27} \gamma$. Put $E=\left(w_{27}-1\right) J_{C_{1}}$, which is an elliptic curve $(/ \mathbb{Q})$ with conductor 36 , see above. Then γ acts on E under ± 1. Therefore the second case (ii) as above does not occur. In the first case, $\operatorname{dim}\left(w_{m} \gamma+1\right) J \geqslant 6$ for $m=4,27$ or 108 , see the above table. The same argument as above yields $\gamma=w_{m}$ for $m=4,27$ or 108. But w_{m} do not act trivially on J_{H}, see above, Thus we get a contradiction.

For points $x_{t}, 1 \leqslant i \leqslant r$, let $\operatorname{Aut}_{\left(x_{i}\right)} Z$ be the subgroup of Aut Z consisting of automorphisms which fix x_{i} 's.

Proof for $N=117$: Let $\alpha_{i}, \alpha_{i}^{\prime}=\alpha_{i}^{(13)}(1 \leqslant i \leqslant 6)$ be the supersingular points on $\mathscr{X}_{0}(117) \otimes \mathbb{F}_{13}$. The subgroup $B_{0}(117) \cap \operatorname{Aut}_{z} \widetilde{X} \otimes \mathbb{F}_{13}$ acts transitively on the set $\left\{\alpha_{1}, \alpha_{i}^{\prime}\right\}_{1 \leqslant 1 \leqslant 6}$. There are two pairs of the supersingular points, say $\left\{\alpha_{1}, \alpha_{1}^{\prime}\right\}$ and $\left\{\alpha_{2}, \alpha_{2}^{\prime}\right\}$, such that $\alpha_{1}^{\prime}=w_{9}\left(\alpha_{1}\right)$ and $\alpha_{2}^{\prime}=w_{9}\left(\alpha_{9}\right)$. For any $u \in$ Aut $X_{0}(117) \cap \mathrm{Aut}_{Z} \tilde{\mathscr{X}} \otimes \mathbb{F}_{13}$, there is an automorphism $\gamma \in B_{0}(117)$ such that $v=u \gamma$ fixes Z, α_{1} and α_{1}^{\prime}. Note that any automorphism of $X_{0}(117)$ is defined over $\mathbb{Q}(\sqrt{-3})$ cf. lemma 2.5 . The subgroup $T=\operatorname{Aut}_{\left(\alpha_{1}, \alpha_{1}^{\prime}\right)} Z$ is the non split torus, and v belongs to $T\left(\mathbb{F}_{13}\right) \simeq \mathbb{Z} / 14 \mathbb{Z}$. If the order of v is divisible by 7 , then v^{2} acts on the set $\left\{\alpha_{i}, \alpha_{i}^{\prime}\right\}_{2 \leqslant i \leqslant 6}$, and it has the other fixed points $\alpha_{i}, \alpha_{i}^{\prime}$ for an integer $i \geqslant 2$. Therefore $v^{2}=$ id. The automorphisms $w_{13} v w_{13} v$ and $w_{9} v w_{9} v$ fix Z and $\alpha_{1}, \alpha_{1}^{\prime}$, since $w_{13}\left(\alpha_{i}\right)=\alpha_{i}^{\prime}$. If $v \neq$ id., then $T \cap$ Aut $X_{0}(117)=\langle v\rangle$, see above. Therefore v commutes with w_{9} and w_{13}. For $1 \neq \sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{-3}) / \mathbb{Q})$ and $m=9,13, v^{\sigma} w_{m}=$ $\left(v w_{m}\right)^{\sigma}=w_{m} v^{\sigma}$. For $\varepsilon, \varepsilon^{\prime}= \pm$, put $J_{\varepsilon, \varepsilon^{\prime}}=\left(w_{9}+\varepsilon 1\right)\left(w_{13}+\varepsilon^{\prime} 1\right) J$. Then we have the following table cf. [36] table 5.

$\left(\varepsilon, \varepsilon^{\prime}\right)$	++	+-	-+	-
$\operatorname{dim} J_{\varepsilon, \varepsilon^{\prime}}$	2	$1+2$	$2+2$	$1+1$
$\operatorname{dim}\left(J_{\varepsilon, \varepsilon^{\prime}}\right)^{\text {new }}$	0	2	2	1

The old part $J^{\text {old }}$ of J is isogenous to $J_{0}(39) \times J_{0}(39)$ [1], so that the \mathbb{Q}-simple factors of $J^{\text {old }}$ have multiplicative reduction at the rational prime 3 and 13 [4], and the ring of endomorphisms of such a factor is generated by Hecke operators [18] [29]. Let $\gamma_{j}=\left(\begin{array}{ll}1 & j / 3 \\ 0 & 1\end{array}\right) \bmod \Gamma_{0}(117)$, which commutes with w_{13}. Then the twisting operator $\eta=\gamma_{1}-\gamma_{2}$ acts on $\left(w_{13}+1\right) J=$ $J_{++}+J_{-+}[35] \S 4,[18,29]$. Since $\eta\left(J_{++}\right)$does not have multiplicative reduction at the rational prime $3[18,29], J_{-+}$is isogenous over \mathbb{Q} to the product $J_{++} \times \eta\left(J_{++}\right)$. Put $J_{+-}=A_{+-}+E_{+-}$for $\mathbb{Q}-$ rational abelian subvariety A_{+-}of dimension two and an elliptic curve E_{+-}. Then we see that η acts on A_{+-}(see above table) and that A_{+-}is isogenous to a product to two elliptic curves. We here note that any abelian subvariety of J has multiplicutive reduction at 13 [4] (above table). Now consider the automorphisms u and v. If $v=$ id., the u belongs to $B_{0}(117)$. Suppose $v \neq$ id..

Claim: The action of v on $J_{++}+J_{+-}$is $\mathbb{Q}-$ rational: As noted as above, v acts \mathbb{Q}-rationally on J_{++}and E_{+-}, so that v acts on J_{++}and E_{+-}under ± 1. Denote also by v the involution of $X_{+}=X_{0}(117) /\left\langle w_{9}\right\rangle$ (Note that v
commutes with w_{9}). Let $\mathscr{X}_{+} \rightarrow \operatorname{Spec} \mathbb{Z}$ be the minimal model of X_{+}, and $\beta_{i}=$ image of $\left\{\alpha_{i}, \alpha_{i}^{\prime}\right\}(i=1,2)$ be the \mathbb{F}_{13}-rational supersingular points of $\mathscr{X}_{+} \otimes \mathbb{F}_{13}$. The other supersingular points on $\mathscr{X}_{+} \otimes \mathbb{F}_{13}$ are not defined over \mathbb{F}_{13}. By lemma $2.5, v$ is defined over $\mathbb{Q}(\sqrt{-3})$, so that $v \otimes \mathbb{F}_{13}$ is defined over \mathbb{F}_{13}. As v fixes β_{1}, so that v fixes also β_{2}, and does not fix the other supersingular points. Let Σ be the dual graph of the special fibre $\mathscr{X}_{+} \otimes \overline{\mathbb{F}}_{13}$. Then $\mathbf{H}^{1}(\Sigma, \mathbb{Z}) \otimes \mathbb{G}_{\mathrm{m}}$ is canonically isogenous to the connected component of $J_{+/ \mathbb{Z}} \otimes \mathbb{F}_{13}$ of the unit section, where J_{+}is the jacobian variety of X_{+}[4] VI, $[25] \S 8$ (8.1). Denote also by v the involution of $\mathscr{X}_{+} \otimes \mathbb{Z}_{13}$ induced by v. The action of v on $\mathrm{H}^{1}(\Sigma, \mathbb{Z})$ is represented by the matrix

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

The jacobian variety J_{+}is canonically isomorphic to $\left(w_{9}+1\right) J$, since the double covering $X_{0}(117) \rightarrow X_{+}$has ramification points. Then $(v+1)\left(w_{9}+1\right) J$ is of dimension three. As noted as above, v acts on J_{++}, A_{+-}and E_{+-}, and it acts under ± 1 on J_{++}and E_{+-}. If $v=-1$ on J_{++}, then $v=$ id. on $J_{+-}=A_{+-}+E_{+-}$(see above representation). Then v acts \mathbb{Q}-rationally on $\left(w_{9}+1\right) J=J_{++}+J_{+-}$. Now consider the case $v=$ id. on J_{++}. If v acts trivially on E_{+-}, then v acts on A_{+-}under -1 , and its action is \mathbb{Q}-rational. Now suppose that $v=-1$ on E_{+-}. Then $(v+1) A_{+-}$is an elliptic curve. The involution $v w_{13}$ acts trivially on $J_{++}+E_{+-}$, and $\left(v w_{13}+1\right) A_{+-}$is an elliptic curve. Then the RiemannHurwitz formula gives a contradiction.

The above claim shows that v acts \mathbb{Q}-rationally on $X_{+}=X_{0}(117) /\left\langle w_{9}\right\rangle$. Let $C_{i}, w_{9}\left(C_{i}\right)(1 \leqslant i \leqslant 4)$ be the cusps on $X_{0}(117)$, and $D_{i}=$ image of $\left\{C_{i}, w_{9}\left(C_{i}\right)\right\}$ be the (\mathbb{Q}-rational) cusps on X_{+}. As $\mathscr{X}_{+}\left(\mathbb{F}_{5}\right)$ consists of the cusps $D_{i} \otimes \mathbb{F}_{5}$ cf. [4] VI 3.2, so that v sends the set $\left\{D_{i} \otimes \mathbb{F}_{5}\right\}_{i}$ to itself. Then v sends the set $\left\{C_{i} \otimes \mathbb{F}_{5}\right\}_{i}$ to itself. Therefore by the lemma 2.16, we see that v, hence u also, belongs to $B_{0}(117)$.

We add a result on Aut $X_{0}(63)$ below. It seems that Aut $X_{0}(63)$ will be determined by using the defining equation of $X_{0}(63)$ with an explicit representation of $B_{0}(63)$.

Proposition 2.18. The index of $B_{0}(63)$ in Aut $X_{0}(63)$ is one or two. If Aut $X_{0}(63) \neq B_{0}(63)$, then there exists an automorphism u such that $u^{2}=w_{9}, w_{7} u=w_{7} u$. The representation of Aut $X_{0}(63)$ on the tangent space of $J_{0}(63)$ is as follows:

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & 1 / 3 \\
0 & 1
\end{array}\right) \bmod \Gamma_{0}(63)=\left(\begin{array}{rrrrr}
0 & 0 & 0 & -1 & 0 \\
0 & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0
\end{array}\right), \\
\left(u=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0
\end{array}\right)\right) \\
w_{9}=\left(\begin{array}{lllr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), w_{7}=\left(\begin{array}{rrrrr}
1 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right) .
\end{gathered}
$$

Proof. The modular curve $Z \simeq \mathscr{X}_{0}(9) \otimes \mathbb{F}_{7}$ is defined by the equation

$$
j-1728=\frac{\left\{\left(t^{2}-3\right)\left(t^{2}-2 t+3\right)\left(t^{2}+t+3\right)\right\}^{2}}{t\left(t^{2}+3 t+3\right)}
$$

with $w_{9} *(t)=3 / t[6]$ IV $\S 2$. The cusps are defined by $C_{\infty}: t=0, C_{0}$: $t=\infty, C_{1}: t=1, C_{2}: t=3$. Let γ_{∞} be the automorphism of $X_{0}(63)$ represented by the matrix $\left(\begin{array}{cc}1 & 1 / 3 \\ 0 & 1\end{array}\right)$ (or $\left(\begin{array}{cc}1 & -1 / 3 \\ 0 & 1 / 3\end{array}\right)$). Then $\gamma_{\infty} *(t)=t /(t+4)$, since $\gamma_{\infty}\left(C_{\infty}\right)=C_{\infty}, \gamma_{\infty}\left(C_{0}\right)=C_{1}$ and $\gamma_{\infty}\left(C_{1}\right)=C_{2}$. Let $\alpha_{i}, \alpha_{i}^{\prime}=\alpha_{i}^{(7)}$ be the supersingular points on Z defined by $\alpha_{1}: t=2 \sqrt{-1}, \alpha_{2}=\gamma_{\infty}\left(\alpha_{1}\right)$ and
$\alpha_{3}=\gamma_{\infty}\left(\alpha_{2}\right)$. Then w_{9} fixes α_{1} and α_{1}^{\prime}, and exchanges α_{i} with α_{i}^{\prime} for $i=2,3$. On $\mathscr{X} \otimes \mathbb{F}_{7}=\mathscr{X}_{0}(63) \otimes \mathbb{F}_{7}, w_{7}$ exchanges α_{i} with α_{i}^{\prime} for $i=1,2,3$. The automorphism groups of the objects associating to the points $\alpha_{i}, \alpha_{i}^{\prime}$ are all $\{ \pm 1\}$, so that $\mathscr{X} \otimes \mathbb{Z}_{7} \rightarrow \operatorname{Spec} \mathbb{Z}_{7}$ is the minimal model of $X_{0}(63) \otimes \mathbb{Q}_{7}$, see [4] VI §6. For any $u \in$ Aut $X_{0}(63) \cap$ Aut Z, there exists an element $\gamma \in B_{0}(63)$ such that $v=\gamma u$ fixes $Z, Z^{\prime}, \alpha_{1}$ and α_{1}^{\prime}. The subgroup $T=\mathrm{Aut}_{\left(\alpha_{1}, \alpha_{1}^{\prime}\right)} Z$ is the non split torus, and w_{9} belongs to $T\left(\mathbb{F}_{7}\right) \simeq \mathbb{Z} / 8 \mathbb{Z}$. Note that for any automorphisms g of $X_{0}(63), g \otimes \mathbb{F}_{7}$ is defined over \mathbb{F}_{7}, see lemma 2.5. The automorphism v acts on the set $\left\{\alpha_{2}, \alpha_{2}^{\prime}, \alpha_{3}, \alpha_{3}^{\prime}\right\}$, and it has no fixed point on this set if $v \neq \mathrm{id}$. Therefore the order of v divides 4. If v is of order four, then for $w=v$ or $v^{-1}, w *(t)=(2 t+4) /(-t+2)$, $w\left(\alpha_{2}\right)=\alpha_{3}, w\left(\alpha_{3}\right)=\alpha_{2}^{\prime}$ and $v^{2}=w_{9}$. Let Σ be the dual graph of the special fibre $\mathscr{X} \otimes \mathbb{F}_{7}$, and $e_{2 i-1}, e_{2 i}(1 \leqslant i \leqslant 3)$ be the paths which are associated with the points α_{i} and α_{i}^{\prime} with the orientation from Z to Z^{\prime}. The representation of the automorphisms on $\mathrm{H}^{1}(\Sigma, \mathbb{Z})$ for the basis $x_{i}=e_{i+1}-e_{1}$ $(1 \leqslant i \leqslant 5)$ is as follows:

$$
\begin{aligned}
& v \text { or } v^{-1}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), v^{2}=w_{9}\left(w_{9}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right),\right. \\
& w_{7}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 \\
1 & -1 & 0 & 0 & -1 \\
1 & 0 & 0 & -1 & 0
\end{array}\right), \gamma_{\infty}=\left(\begin{array}{lllll}
0 & -1 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Then $w_{7} v=v w_{7}$. Put $J_{\varepsilon, \varepsilon^{\prime}}=\left(w_{9}+\varepsilon 1\right)\left(w_{7}+\varepsilon^{\prime} 1\right) J$ for $\varepsilon, \varepsilon^{\prime}= \pm$. Then we have the following table [36] table 5.

$\left(\varepsilon, \varepsilon^{\prime}\right)$	++	+	-+	-
$\operatorname{dim} J_{\varepsilon, \varepsilon^{\prime}}$	1	2	$1+1$	0
$\operatorname{dim}\left(J_{\varepsilon, \varepsilon^{\prime}}\right)^{\text {new }}$	0	2	1	0

The abelian subvariety J_{+-}is isogenous over $\mathbb{Q}(\sqrt{-3})$ to a product of two elliptic curves. Note that any abelian subvariety of $J=J_{0}(63)$ has multiplicutive reduction at the rational prime 7. Changing the basis (from $\left\{x_{i}\right\}_{1 \leqslant i \leqslant 5}$ to $\left\{x_{i}^{\prime}=2 x_{1}+\sum_{i=2}^{5} x_{i}, x_{2}^{\prime}=x_{2}+x_{3}, x_{3}^{\prime}=x_{4}+x_{5}, x_{4}^{\prime}=\right.$ $\left.x_{2}-x_{3}, x_{5}^{\prime}=x_{4}-x_{5}\right\}$), we get the representation as in this proposition.

REmark 2.19. Let $\Gamma=\Gamma(3) \cap \Gamma_{0}(7)$ be the modular group, and X_{Γ} be the modular curve $/ \mathbb{Q}(\sqrt{-3})$ associated with Γ :

$$
\Gamma=\left\{\left.\left(\begin{array}{ll}
a & d \\
c & d
\end{array}\right) \in \Gamma_{0}(7) \right\rvert\, a-1 \equiv b \equiv c \equiv d-1 \equiv 0 \bmod 3\right\}
$$

Then X_{Γ} is isomorphic to $X_{0}(63)$ over $\mathbb{Q}(\sqrt{-3})$, since $\Gamma_{0}(63)=\left\langle g^{-1} \Gamma g\right.$, $\pm 1\rangle$ for $g=\left(\begin{array}{cc}3 a & b \\ 2 l c & 3 d\end{array}\right)$ for integers a, b, c, d with $3 a d-7 b c=1$. Let $B=B_{\Gamma}$ be the subgroup of Aut X_{Γ} generated by 2×2 matrices, and H be the subgroup generated by the elements $g \in \Gamma_{0}(7)$ with $g \equiv\left(\begin{array}{ll}* & 0 \\ 0 & *\end{array}\right)$ or $\left(\begin{array}{c}0 \\ * \\ *\end{array}\right)$ $\bmod 3$. Then H is a normal subgroup of Aut X_{Γ} isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2} \mathrm{cf}$. proposition 2.18. Let $Y=X_{\Gamma} / H$ be the modular group $\left(\rightarrow X_{0}(1)\right)$, which is of genus two. Then the function field of Y is generated by the functions x and y with the relations:

$$
y x^{3}=y^{2}+13 y+49, \text { and } \sqrt[3]{j}=x\left(y^{2}+5 y+1\right)
$$

see [6] IV §2. Using the minimal model of Y over the base \mathbb{Z}_{7}, by the similar argument as in the proof of the proposition 2.18, we see that the index of the subgroup B / H in Aut Y is two. Further we see that exists an automorphism g of Y which is not represented by any 2×2 matrix defined by

$$
g *(x)=-3 / x, \quad g *(y)=\lambda \frac{y-\bar{\lambda}}{y-\lambda}
$$

for $\lambda, \bar{\lambda}$ with $\lambda+\bar{\lambda}=-13, \lambda \bar{\lambda}=49$, see loc. cit.. Further if $B_{0}(63) \neq$ Aut $X_{0}(63)$, then Aut $Y=\left\{\right.$ Aut $\left.X_{0}(63)\right\} / H$.

References

1. A.O.L. Atkin and J. Lehner, Hecke operators on $\Gamma_{0}(m)$, Math. Ann. 1985 (1970) 134-160.
2. Z.I. Borevich and I.R. Safarevich, Number Theory, Academic Press, New York and London (1966).
3. P. Deligne, Formes modulaires et représentation l-adiques, Sém. Bourbaki 1968/69, exposé n³55, Lecture Notes in Math. 189 (1971).
4. P. Deligne and M. Rapoport, Schémas de modules des courbes elliptiques, Vol. II of the Proceedings of the International Summer School on Modular Functions, Antwerp 1972, Lecture Notes in Math. 349.
5. K. Doi and M. Yamauchi, On the Hecke operators for $\Gamma_{0}(N)$ and class fields over quadratic fields, J. Math. Soc. Japan 25 (1973) 629-643.
6. R. Fricke, Die Elliptischen Functionen und ihre Anwendungen, Leipzig-Berlin, Teubner 1922.
7. M.A. Kenku, The modular curve $X_{0}(39)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 85 (1979) 21-23.
8. M.A. Kenku, The modular curves $X_{0}(65)$ and $X_{0}(91)$ and rational isogeny, Math. Proc. Cambridge Philos. 87 (1980) 15-20.
9. M.A. Kenku, The modular curve $X_{0}(169)$ and rational isogeny, J. London Math. Soc. (2), 22 (1981) 239-244.
10. M.A. Kenku, On the modular curves $X_{0}(125), X_{1}(25)$ and $X_{1}(49)$, J. London Math. Soc. (2), 23 (1981) 415-427.
11. M.A. Kenku, Rational torsion points on elliptic curves defined over quadratic fields, to appear.
12. S. Lang, Elliptic Functions. Addison-Wesley, Reading Math.
13. Y. Manin, Parabolic points and zeta functions of modular forms, Math. USSR-Izvestija, Vol. 6, No. 1 (1972) 19-64.
14. B. Mazur, Modular curves and the Eisenstein ideals, Publ. Math. I.H.E.S. 47 (1977).
15. B. Mazur, Rational isogenies of prime degree, Inv. Math. 44 (1978) 129-162.
16. B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Inv. Math. 25 (1974) 1-61.
17. J.F. Mestre, Points rationnels de la courbe modulaire $X_{0}(169)$, Ann. Inst. Fourier, Grenoble 30, 2 (1980) 17-27.
18. F. Momose, On the l-adic representations attached to modular forms, J. Facult. Sci. Univ. Tokyo, Vol. 28, No. 1 (1981) 89-109.
19. F. Momose, Rational points on the modular curves $X_{\text {split }}(p)$, Comp. Math. 52 (1984) 115-137.
20. F. Momose, Rational points on the modular curves $X_{0}\left(p^{r}\right)$, J. Facult. Sci. Univ. Tokyo, 33 (1986) 585-631.
21. F. Momose, p-torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. Vol. 96 (1984), 139-165.
22. A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974) 449-462.
23. A. Ogg, Über die Automorphismengruppe von $X_{0}(N)$, Math. Ann. 228 (1977) 279-292.
24. F. Oort and J. Tate, Group schemes of prime order, Ann. Scient. Ec. Norm. Sup. série 4, 3 (1970), 1-21.
25. M. Raynaud, Spécialisation du fonctor de Picard, Publ. Math. I.H.E.S. 38 (1970) 27-76.
26. M. Raynaud, Schémas en groupes de type (p, . . . , p) Bull. Soc. Math. France 102 (1974) 241-280.
27. K.A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. Math. 101 (1975) 555-562.
28. K.A. Ribet, On l-adic representations attached to modular forms, Inv. Math. 28 (1975) 245-275.
29. K.A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980) 43-62.
30. J.B. Rossor and L. Schoenfeld, Approximate formula for some functions of prime numbers, Illinois J. Math. Vol. 6 (1962) 64-94.
31. J.P. Serre, Propriétés galoissiennes des points d'ordre fini des courbes elliptiques, Inv. Math. 15 (1972) 259-331.
32. J.P. Serre and J. Tate, Good reduction of abelian varieties, Ann. Math. 88 (1968) 429-517.
33. G. Shimura, Introduction to the Arithmetic theory of Automorphic functions, Publ. Math. Soc. No. 11, Tokyo-Princeton 1970.
34. G. Shimura, On elliptic curves with complex multiplication as factors of the jacobians of modular function fields, Nagoya Math. J 43 (1971) 199-208.
35. G. Shimura, On the factors of jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973) 525-544.
36. Modular functions of one variable IV, Lecture Notes in Math. 476.
