COMPOSITIO MATHEMATICA

M. A. KENKU FUMIYUKI MOMOSE Automorphism groups of the modular curves X₀(N)

Compositio Mathematica, tome 65, nº 1 (1988), p. 51-80 <http://www.numdam.org/item?id=CM_1988_65_1_51_0>

© Foundation Compositio Mathematica, 1988, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Automorphism groups of the modular curves $X_0(N)$

M.A. KENKU¹ & FUMIYUKI MOMOSE^{2,*}

¹Department of Mathematics, Faculty of Science, University of Lagos, Lagos, Nigeria; ²Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, Japan (*author for correspondence)

Received 15 December 1986; accepted in revised form 31 July 1987

Let $N \ge 1$ be an integer and $X_0(N)$ be the modular curve / \mathbb{Q} which corresponds to the modular group $\Gamma_0(N)$. We here discuss the group Aut $X_0(N)$ of automorphisms of $X_0(N) \otimes \mathbb{C}$ (for curves of genus $g_0(N) \ge 2$). Ogg [23] determined them for square free integers N. The determination of Aut $X_0(N)$ has applications to study on the rational points on some modular curves, e.g., [10, 19–21]. Let $\Gamma_0^*(N)$ be the normalization of $\Gamma_0(N)/\pm 1$ in PGL₂⁺(\mathbb{Q}), and put $B_0(N) = \Gamma_0^*(N)/\Gamma_0(N)$ (\subset Aut $X_0(N)$), which is determined in [1] §4. The known example such that Aut $X_0(N) \neq B_0(N)$ is $X_0(37)$ [16] §5 [22]. The modular curve $X_0(37)$ has the hyperelliptic involution which sends the cusps to non cuspidal \mathbb{Q} -rational points, and Aut $X_0(37) \simeq (\mathbb{Z}/2\mathbb{Z})^2$, $B_0(37) \simeq \mathbb{Z}/2\mathbb{Z}$. Our result is the following.

THEOREM 0.1. For $X_0(N)$ with $g_0(N) \ge 2$, Aut $X_0(N) = B_0(N)$, provided $N \ne 37, 63$.

We have not determined Aut $X_0(63)$. The index of $B_0(63)$ in Aut $X_0(63)$ is one or two, see proposition 2.18. The automorphisms of $X_0(N)$ are not defined over \mathbb{Q} , in the general case, and it is not easy to get the minimal models of $X_0(N)$ over the base Spec \mathcal{O}_K for finite extensions K of Q. By the facts as above, the proof of the above theorem becomes complicated. In the first place, using the description of the ring End $J_0(N)$ ($\otimes \mathbb{Q}$) of endomorphisms of the jacobian variety $J_0(N)$ of $X_0(N)$ [18, 29], we show that the automorphisms of $X_0(N)$ are defined over the composite k(N) of quadratic fields with discriminant D such that $D^2|N$, except for $N = 2^8, 2^9, 2^2 3^3, 2^3 3^3$, see corollary 1.11, remark 1.12. For the sake of the simplicity, we here treat the cases for $N \neq 2^8$, 2^9 , $2^2 3^3$, $2^3 3^3$, 37. Using corollary 2.5 [20], we show that automorphisms of $X_0(N)$ are defined over a subfield F(N) which contained in $k(N) \cap \mathbb{Q}(\zeta_8, \sqrt{-3}, \sqrt{5}, \sqrt{-7})$. In the second place, for an automorphism u of $X_0(N)$, we show that if u(0) or $u(\infty)$ is a cusp, then u belongs to $B_0(N)$, see corollary 2.4, where **0** and ∞ are the Q-rational cusps cf. §1. Further we show that if u is defined over \mathbb{Q} , then u belongs to $B_0(N)$, see proposition 2.8. Now assume that u(0) and $u(\infty)$ are not cusps and that $F(N) \neq \mathbb{Q}$. Let l = l(N) be the least prime number not dividing N, and $D = D_l = (l + 1)(u(\mathbf{0})) + (T_l u^{\sigma}(\infty)) - (l + 1)(u(\infty)) - (T_l u^{\sigma}(\mathbf{0}))$ be the divisor of $X_0(N)$, where $\sigma = \sigma_i$ is the Frobenius element of the rational prime l and T_l is the Hecke operator associating to l. Under the assumption on u as above, we show that $0 \neq D \sim 0$ (linearly equivalent), and that $w_N^*(D) \neq D$, where w_N is the fundamental involution of $X_0(N)$, see lemma 2.7, 2.10. Let S_N be the number of the fixed points of w_N , which can be easily described, see (1.16). Then we get the inequality that $S_N \leq 4(l+1)$, see corollary 2.11. Let p_n be the *n*-th prime number. Then using the estimate $p_n < 1.4 \times n \log n$ for $n \ge 4$ [30] theorem 3, we get $l \ge 19$, see lemma 2.13. In the last place, applying an Ogg's idea in [22, 23], we get Aut $X_0(N) = B_0(N)$, except for some integers, see lemma 2.14, 2.15. For the remaining cases, because of the finiteness of the cuspidal subgroup of $J_0(N)$ [13], we can apply lemma 2.16. We apply the other methods to the cases for N = 50, 75, 125, 175, 108, 117 and 63.

The authors thank L. Murata who informed us the estimate of prime numbers [30].

NOTATION. For a prime number p, \mathbb{Q}_p^{ur} denotes the maximal unramified extension of \mathbb{Q}_p , and $\mathbf{W}(\overline{\mathbb{F}}_p)$ is the ring of Witt vectors with coefficients in $\overline{\mathbb{F}}_p$. For a finite extension K of \mathbb{Q} , \mathbb{Q}_p of \mathbb{Q}_p^{ur} , \mathcal{O}_K denotes the ring of integers of K. For an abelian variety A defined over K, A_{e_K} denotes the Néron model of A over the base Spec \mathcal{O}_K . For a commutative ring R, $\mu_n(R)$ denotes the group of *n*-th roots of unity belonging to R.

§1. Preliminaries

Let $N \ge 1$ be an integer, and $X_0(N)$ be the modular curve $/\mathbb{Q}$ which corresponds to the modular group $\Gamma_0(N)$. Let $\mathscr{X}_0(N)$ denote the normalization of the projective *j*-line $\mathscr{X}_0(1) \simeq \mathbb{P}^1_{\mathbb{Z}}$ in the function field of $X_0(N)$. For a positive divisor *M* of *N* prime to N/M, denotes the canonical involution of $\mathscr{X}_0(N)$ which is defined by $(E, A) \mapsto (E/A_M, (E_M + A)/A_M)$ (at the generic fibre), where *A* is a cyclic subgroup of order *N* and A_M is the cyclic subgroup of *A* of order *M*. Let \mathfrak{H} be the complex upper half plane $\{z \in \mathbb{C} | \text{ Im } (z) > 0\}$. Under the canonical identification of $X_0(N) \otimes \mathbb{C}$ with $\Gamma_0(N) \setminus \mathfrak{H} \cup \{i\infty, \mathbb{Q}\}, w_M$ is represented by a matrix $\binom{Ma}{Nc} \frac{b}{Md}$ for integers *a*, *b*, *c* and *d* with $M^2ad - Nbc = M$. For a fixed rational prime *p*, and a subscheme *Y* of $\mathscr{X}_0(N), Y^h$ denotes the open subscheme of *Y* obtained by excluding the supersingular points on $Y \otimes \mathbb{F}_p$. For a prime divisor *p* with p' || N, the special fibre $\mathscr{X}_0(N) \otimes \mathbb{F}_p$ has r + 1 irreducible components E_0, E_1, \ldots, E_r . We choose $Z' = E_0$ (resp. $Z = E_r$) so that Z'^h (resp. Z^h) is the coarse moduli space $/\mathbb{F}_p$ of the isomorphism classes of the generalized elliptic curves E with a cyclic subgroup A isomorphic to $\mathbb{Z}/N\mathbb{Z}$ (resp. μ_N), locally for the étale topology [4]V, VI. then Z'^h and Z^h are smooth over spec \mathbb{F}_p . For a prime number p with $p || N, \mathscr{X}_0(N) \otimes \mathbb{F}_p$ is reduced, and Z and Z' intersect transversally at the supersingular points on $\mathscr{X}_0(N) \otimes \mathbb{F}_p$. For a supersingular points x on $\mathscr{X}_0(N) \otimes \mathbb{F}_p$ with p || N, let y be the image of x under the natural morphism of $\mathscr{X}_0(N) \mapsto \mathscr{X}_0(N/p)$: $(E, A) \mapsto (E, A_{M/p})$, and (F, B) be an object associating to y. Then the completion of the local ring $\mathscr{O}_{\mathscr{X}_0(N),x} \otimes \mathbb{W}(\overline{\mathbb{F}}_p)$ along the section x is isomorphic to $\mathbb{W}(\overline{\mathbb{F}}_p)[[X, Y]]/(XY - p^m)$ for $m = \frac{1}{2}|\operatorname{Aut}(F, B)|$ [4]VI (6.9). Let $\mathbf{0} = \binom{0}{1}$ and $\infty = \binom{1}{0}$ denote the Q-rational cusps of $\mathscr{X}_0(N)$ which are represented by $(\mathbb{G}_m \times \mathbb{Z}/N\mathbb{Z}, \mathbb{Z}/N\mathbb{Z})$ and (\mathbb{G}_m, μ_N) , respectively.

(1.1) Let $S_2(\Gamma_0(N))$ be the \mathbb{C} -vector space of holomorphic cusp forms of weight 2 belonging to $\Gamma_0(N)$. Then $S_2(\Gamma_0(N))$ is spanned by the eigen forms of the Hecke ring $\mathbb{Q}[T_m]_{(m,N)=1}$ e.g., [1] [33] Chap. 3 (3.5). Let $f = \sum a_n q^n$, $a_1 = 1$, be a normalized new form belonging to $S_2(\Gamma_0(N))$ cf. [1]. Put $K_f = \mathbb{Q}(\{a_n\}_{n \ge 1})$, which is a totally real algebraic number field of finite degree, see loc.cit. For each isomorphism σ of K_t into \mathbb{C} , put $\sigma f = \sum a_n^{\sigma} q^n$, which is also a normalized new form belonging to $S_2(\Gamma_0(N))$ [33] Chap. 7 (7.9). For a positive divisor d of N/(level of f), put $f|e_d = \sum a_n q^{dn}$, which belongs to $S_2(\Gamma_0(N))$ and has the eigen values a_n of T_n for integers *n* prime to N[1]. The set $\{f|e_d\}_{f,d}$ becomes a basis of $S_2(\Gamma_0(N))$, where f runs over the set of all the normalized new forms belonging to $S_2(\Gamma_0(N))$, and d are the positive divisors of N/(level of f). To the set $\{\sigma f\}, \sigma \in \text{Isom } (K_f, \mathbb{C})$, of the normalized new forms, there corresponds a factor $J_{\{\sigma f\}}$ (/Q) of the jacobian variety $J_0(N)$ of $X_0(N)$ [35] §4. Let m(f) (= $m(\sigma f)$) be the number of the positive divisors of N/(level of f). Then $J_0(N)$ is isogenous over Q to the product of the abelian varieties

$$\prod_{\{\sigma f\}} J^{m(f)}_{\{\sigma f\}},$$

where σf runs over the set of the normalized new forms belonging to $S_2(\Gamma_0(N))$. For each normalized new form f belonging to $S_2(\Gamma_0(N))$, let V(f) be the \mathbb{C} -vector space spanned by $\{f|e_d\}$, d|N/(level of f). Then $S_2(\Gamma_0(N))$ is decomposed into the direct sum $\bigoplus_f V(f)$ of the eigen spaces V(f) of the Hecke ring $\mathbb{Q}[T_m]_{(m,N)=1}$, where f runs over the set of the normalized new forms belonging to $S_2(\Gamma_0(N))$.

54 M.A. Kenku and F. Momose

Let $\mathbb{Q}(\sqrt{-D})$ be an imaginary quadratic field with discriminant *D*. Let λ be a Hecke character of $\mathbb{Q}(\sqrt{-D})$ with conductor r which satisfies the following conditions:

$$\begin{cases} \lambda((\alpha)) = \alpha & \text{for } \alpha \in \mathbb{Q}(\sqrt{-D})^{\times} \text{ with } \alpha \equiv 1 \mod^{\times} r, \\ \lambda((a)) = \left(\frac{-D}{a}\right) a & \text{for } a \in \mathbb{Z} \text{ prime to } D\mathbf{N}(r), \end{cases}$$

where $N(c) = \text{Norm}_{\mathbb{Q}(\sqrt{-D})/\mathbb{Q}}(\mathbf{r})$. Put

$$f(z) = \sum_{\mathfrak{A}} \lambda(\mathfrak{A}) \exp (2\pi \sqrt{-1} \mathbf{N}(\mathfrak{A}) z),$$

where $\mathfrak{A} \neq (0)$ runs over the set of all the integral ideals prime to r. Then f is an eigen form of $\mathbb{Q}[T_m]_{(m,DN(\mathfrak{r}))=1}$ belonging to $S_2(\Gamma_0(DN(\mathfrak{r})))$ [34]. We call such a form f a form with complex multiplication. The form f is a normalized new form if and only if λ is a primitive character. In such a case, $\bar{r} = r$ and D divides N(r), where \bar{r} is the complex conjugate of r loc.cit. The C-vector space $S_2(\Gamma_0(N))$ is identified with $H^0(X_0(N) \otimes \mathbb{C}, \Omega^1)$ by $f \mapsto f(z) dz$. Let $V_C = V_C(N)$ (resp. $V_H = V_H(N)$) be the subspace of $H^0(X_0(N), \Omega^1) \simeq$ $\mathrm{H}^{0}(J_{0}(N), \Omega^{1})$ such that $V_{C} \otimes \mathbb{C}$ (resp. $V_{H} \otimes \mathbb{C}$) is spanned by the eigen forms with complex multiplication (resp. without complex multiplication). Let T_C and T_H be the subspaces of the tangent space of $J_0(N)$ at the unit section which are associated with V_C and V_H , respectively. Let $J_C = J_C(N)$ and $J_H = J_H(N)$ denote the abelian subvarieties $/\mathbb{Q}$ of $J_0(N)$ whose tangent spaces are T_C and T_H , respectively. Then $J_0(N)$ is isogeneous over \mathbb{Q} to the product $J_C \times J_H$, and End $J_0(N) \otimes \mathbb{Q}$ = End $J_C \otimes \mathbb{Q} \times$ End $J_H \otimes \mathbb{Q}$ [28] (4.4) (4.5). Let k(N) be the composite of the quadratic fields with discriminant D whose square divides N. For a modular form f of weight 2 and for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{Q}), \text{ put}$

$$f|[g]_2 = (ad - bc)(cz + d)^{-2}f\left(\frac{az + b}{cz + d}\right).$$

For a normalized new form $f = \sum a_n q^n$ and for a Dirichlet character χ , $f_{(\chi)}$ denotes the new form with eigen values $a_n \chi(n)$ of T_n for integers *n* prime to (level of f) × (conductor of χ).

PROPOSITION 1.3. Any endomorphism of $J_H = J_H(N)$ is defined over K(N).

Proof. Let k' be the smallest algebraic number field over which all endomorphisms of J_H are defined. Then k' is a composite of quadratic fields, and any

rational prime p with $p \parallel N$ is unramified in k', see [27] lemma 1, [32] lemma (1.2), [3]VI, see also [18, 29]. There remains to discuss the 2-primary part of N. Let $f = \sum a_n q^n$ and $g = \sum b_n q^n$ be normalized new forms belonging to V_H . If Hom $(J_{\{\sigma f\}}, J_{\{\sigma g\}}) \neq \{0\}$, then there exists a primitive Dirichlet character χ of degree one or two such that $a_n\chi(n) = b(n)^r$ for an isomorphism τ of K_{σ} into \mathbb{C} and for all integers *n* prime to *N*, see [28] (4.4) (4.5). If $\chi = id$, then $f = \tau g$. The ring End $J_{\{\sigma f\}} \otimes \mathbb{Q}$ is spanned by the twisting operators as a (left) K_{f} -vector space [18, 29]. If moreover End $J_0(N) \otimes \mathbb{Q} \simeq K_f$, then all endomorphisms of $J_{\{\sigma_f\}}$ are defined over \mathbb{Q} . In the other case, let $\eta = \eta_{\lambda}$ be the twisting operator associated with a primitive Dirichlet character λ of order two, then $a_n^{\varrho} = a_n \lambda(n)$ for an isomorphism ρ of K_f into \mathbb{C} and for all integers n, see [18] remark (2.19). Then $f_{(\lambda)} = \varrho f$ is a normalized new form. If $\chi \neq id$, then $\tau g = f_{(\chi)}$ belongs to $S_2(\Gamma_0(N))$. Therefore it is enough to show that for a primitive Dirichlet character χ of order 2, if $f_{(\chi)}$ belongs to $S_2(\Gamma_0(N))$, then the square of the conductor of χ divides N. We may assume that $\operatorname{ord}_2(\operatorname{level} \operatorname{of} f) \leq \operatorname{ord}_2(\operatorname{level}$ of $f_{(\chi)}$). Let $r = 2^m t$ be the conductor of χ for an odd integer t, and put $\chi = \chi_1 \chi_2$ for the primitive Dirichlet characters χ_1 and χ_2 with conductors 2^m and t, respectively. As noted as above, t^2 divides N, so that $(f_{(x)})_{(x_2)} = f_{(x_1)}$ belongs to $S_2(\Gamma_0(N))$. If $m \neq 0$, then 4|N and the second Fouriere coefficient of $f_{(\chi_1)}$ is zero [1]. Further we have the following relation:

$$f_{(\chi_1)} = \frac{1}{\sqrt{\chi_1(-1)2^m}} \sum_{u \mod 2^m} \chi_1(u) f \left[\begin{pmatrix} 1 & u/2^m \\ 0 & 1 \end{pmatrix} \right]_2, \text{ see [35] §5.} \quad (*)$$

Put $N = 2^{s} M$ for an odd integer M. If 2m < s, then

$$f_{(\chi_1)} \left\| \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 2^{2m-1} & 1 \end{bmatrix} \right\|_2 = f_{(\chi_1)}.$$
 (**)

But using the above relation (*), we can see that the equality (**) can not be sattisfied. \Box

Put $g_C = g_C(N) = \dim J_C(N)$ and $g_H = g_H(N) = \dim J_H(N)$.

LEMMA 1.4. If $g_0(N) > 1 + 2g_C(N)$, then all the automorphisms of $X_0(N)$ are defined over k(N).

Proof. Let u be an automorphism of $X_0(N)$, and put $v = u^{\sigma}u^{-1}$ for $1 \neq \sigma \in \text{Gal}(\bar{\mathbb{Q}}/k(N))$. Then the automorphism of $J_0(N)$ induced by v acts trivially on J_H by proposition 1.3. Assume that $v \neq id$. Then $g_C \ge 1$. Let

 $d (\ge 2)$ be the degree of v and $Y = X_0(N)/\langle v \rangle$ be the quotient of genus g_Y . Then $g_Y \ge g_H$ and $g_0(N) = g_H + g_C$. If $g_H = 0$, then $g_0(N) = g_C < 1 + 2g_C$. If $g_H \ge 1$, then the Riemann-Hurwitz formula leads the inequality that $g_0(N) - 1 \ge d(g_Y - 1)$ ($\ge 1(g_H - 1)$). Then $g_0(N) \le 2g_C + 1$. \Box

Let D be the discriminant of an imaginary quadratic field, and $r \neq (0)$ be an integral ideal of $\mathbb{Q}(\sqrt{-D})$ with $r = \bar{r}$. Let v(D, r) denote the number of the primitive Hecke characters of $\mathbb{Q}(\sqrt{-D})$ with conductor r which satisfies the condition (1.2). For an integer $n \ge 1$, $\psi(n)$ denotes the number of the positive divisors of n. We know the following.

LEMMA 1.5 [34]. $g_C = \sum_D \sum_r v(D, r) \psi(N/DN(r))$, where D runs over the set of the discriminants of imaginary quadratic fields whose squares divide N, and $r \neq (0)$ are the integral ideals of $\mathbb{Q}(\sqrt{-D})$ such that $D|\mathbf{N}(r), D\mathbf{N}(r)|N$ and $r = \bar{r}$.

LEMMA 1.6. If $g_0(N) \ge 2$, then $g_0(N) > 1 + 2g_C$, provide $N \ne 2^6, 2^7, 2^8, 2^9, 3^4, 2 \cdot 3^3, 2 \cdot 3^2, 2^3 \cdot 3^3$.

Proof. For the sake of simplicity, we here denote $g = g_0(N)$. For a rational prime p, put $r_p = \operatorname{ord}_p N$. The genus formula of $X_0(N)$ is well known:

$$g - 1 = \frac{1}{12} \prod_{p|N} p^{r_p - 1}(p + 1) - e_2 - e_3$$
$$- \frac{1}{2} \prod_{r_p \ge 2 \text{ even }} \frac{r_p}{p^2} - 1 (p + 1) \prod_{r_p \text{ odd}} \frac{r_p - 1}{p^2},$$

where

$$e_{2} = \begin{cases} 0 & \text{if } 4|N \\ \frac{1}{2} \prod_{p|N} \left(1 + \left(\frac{-4}{p}\right)\right) & \text{otherwise} \end{cases}$$
$$e_{3} = \begin{cases} 0 & \text{if } 9|N \\ \frac{1}{3} \prod_{p|N} \left(1 + \left(\frac{-3}{p}\right)\right) & \text{otherwise.} \end{cases}$$

We estimate g_c . Let D be the discriminant of the imaginary quadratic field $k = \mathbb{Q}(\sqrt{-D})$, and $\mathcal{O} = \mathcal{O}_k$ be the ring of integers of k. For an integer

 $n \ge 1$ and a rational prime p, put $\psi_p(n) = 1 + \operatorname{ord}_p(n)$. Put $(\stackrel{-D}{-}) = \chi_p \mu_p$ for primitive characters χ_p and μ_p with conductors p^r and D/p^r for $r = \operatorname{ord}_p D$, respectively. For an integral ideal $m \ne (0)$ of $k = \mathbb{Q}(\sqrt{-D})$, let $v_p(D, m)$ denote the number of the primitive characters λ_p of $(\mathcal{O} \otimes \mathbb{Z}_p)^{\times}$ which satisfy the following condition: for $a \in \mathbb{Z}_p^{\times}$,

$$\lambda_p(a) = \begin{cases} \chi_p(a) & \text{if } p | D \\ 1 & \text{otherwise.} \end{cases}$$
(1.7)

Let h(-D) be the class number of $k = \mathbb{Q}(\sqrt{-D})$, and $\mathbf{r} \neq \{0\}$ be an integral ideal of k with $\mathbf{r} = \bar{\mathbf{r}}$. Let N_p , D_p and \mathbf{r}_p be the p-primary parts of N, D and r. Put

$$e_D = \begin{cases} 2 & \text{if } D = 4 \\ 3 & \text{if } D = 3 \\ 1 & \text{otherwise.} \end{cases}$$

Put $\mu(D, p) = \sum_{\mathbf{r}_p} v_p(D, p) \psi_p(N/D\mathbf{N}(\mathbf{r}))$, where $\mathbf{r}_p \neq (0)$ runs over the set of the ideals of \mathcal{O}_k such that $\mathbf{r}_p = \bar{\mathbf{r}}_p$, $D_p |\mathbf{r}_p$ and $D\mathbf{r}_p |N$. Then the formula in lemma 1.5. gives the following inequality:

$$g_C \leqslant \sum_D \frac{h(-D)}{e_D} \sum_{\mathfrak{r}} v_p(D, \mathfrak{r}) \psi_p(N/D\mathbf{N}(\mathfrak{r})) = \sum_D \frac{h(-D)}{e_D} \prod_{p|N} \mu(D, p).$$
(1.8)

For a positive integer *m*, $\varphi(m)$ denotes the Euler's number of *m*. By the well known formula of the class number of $\mathbb{Q}(\sqrt{-D})$: $h(-D) = 1/[2 - (\frac{-D}{2})]$ $\Sigma_{0 < a < D/2} (-D/a)$ for $D \neq 4,3$ e.g., [2], we get the following inequality: for $D \neq 4$ nor 3,

$$h(-D) \leq \frac{1}{2 - (-D/2)} \cdot \frac{1}{2} \varrho(D) = \begin{cases} \prod_{p \mid D} (p - 1) & \text{if } 8 \parallel D \\ \frac{1}{6} \prod_{p \mid D} (p - 1) & \text{if } \left(\frac{-D}{2}\right) = -1 \\ \frac{1}{2} \prod_{p \mid D} (p - 1) & \text{otherwise.} \end{cases}$$

For a prime divisor p of N with $p||N, \mu(D, p) = 2$. If 8||D and $\operatorname{ord}_2 N \leq 7$, then $\mu(D, 2) = 0$, see (1.7). For an odd prime divisor p of N with $p^2|N$,

put

$$\mu'(D, p) = \begin{cases} (p - 1)\mu(D, p) & \text{if } p \| D \\ \mu(D, p) & \text{otherwise.} \end{cases}$$

If 4|N, put

$$\mu'(D, 2) = \begin{cases} 2\mu(d, 2) & \text{if } 8 \| D \\ \frac{1}{3} \mu(D, 2) & \text{if } \left(-\frac{D}{2} \right) = -1 \\ \mu(D, 2) & \text{otherwise.} \end{cases}$$

Further let $\mu(p)$ be the maximal value of $\mu'(D, p)$ for discriminants D whose squares divide N. Then by (1.9),

$$\frac{h(-D)}{e_D}\prod_{p\mid N}\mu(D,p)\leqslant \frac{1}{2}\prod_{p^2\mid N}\mu(p)\prod_{p\mid N}2.$$

Then the inequalities (1.8) and (1.9) gives the following estimates of g_C :

$$2g_C \leqslant \begin{cases} \prod_{p^2 \mid N} 2\mu(p) \prod_{p \mid N} 2 & \text{if } 2^8 \mid N \\ \frac{1}{2} \prod_{p^2 \mid N} 2\mu(p) \prod_{p \mid N} 2 & \text{otherwise.} \end{cases}$$
(1.10)

One can easily calculate $\mu(D, p)$: Put $r = \operatorname{ord}_p N$ for a fixed rational prime p.

Cast $p \neq 2$:

	p D	(-D/p) = 1	(-D/p) = -1
$n = 2r$ (≥ 2)	$1 + 2 \cdot \frac{p^r - 1}{p - 1}$	$p^r+p^{r-1}+2r-1$	$\frac{p^{r}+1}{p-1}(p^{r}+p^{r-1}-2) + 2r+1$
$n = 2r + 1$ (≥ 3)	$-1 + p' + 2 \cdot \frac{p' - 1}{p - 1}$	2p' + 2r	$2 \cdot \frac{p+1}{p-1} (p^{r} - 1) + 2r + 2$

Case p = 2:

	8 <i>D</i>	4 <i>D</i>	(-D/2) = 1	(-D/2) = -1
$n = 2r$ (≥ 2)	$2^r - 12$ $(r \ge 4)$	$2^r + 2^{r-1} - 4$ $(r \ge 2)$	$2^r + 2^{r-1} + 2r - 1$	$3(2^{r} + 2^{r-1} - 2) + 2r + 1$
$\overline{n = 2r + 1}_{(\ge 3)}$	$2^{r} + 2^{r-1} - 12$ (r \ge 4)	$2^{r+1} - 4$ $(r \ge 2)$	$2^{r+1} + 2r$	$6(2^r-1)+2r+2$

Using the genus formula of $X_0(N)$ and the estimate (1.10) of g_c , one can see that $g > 1 + 2g_c$, except for some integers N. For the remaining cases, a direct calculation makes complete this lemma.

COROLLARY 1.11. Any automorphism of $X_0(N)$ ($g_0(N) \ge 2$) is defined over the field k(N) provided $N \ne 2^8$, 2^9 , 2^23^3 , 2^33^3 .

Proof. Lemma 1.3, 1.4 and 1.6 give this lemma, except for $N = 2^6$, 2^7 , 3^4 , $2 \cdot 3^3$, $2^3 3^2$. The ring End $J_C \otimes \mathbb{Q}$ is determined by the associated Hecke characters [3, 34]. Considering the condition (1.2), we get the result also for the remaining cases.

REMARK 1.12. We here add the results on the fields of definition of endomorphisms of J_C for $N = 2^8$, 2^9 , $2^2 3^3$, $2^3 3^3$.

(1) $N = 2^8$, 2^9 : Let χ be a character of the ideal group of $\mathbb{Q}(\sqrt{-1})$ of order 4 which satisfies the following conditions:

(i) $\chi((\alpha)) = 1$ for $\alpha \in \mathbb{Q}(\sqrt{-1})$ with $\alpha \equiv 1 \mod^{\times} 8$. (ii) $\chi((\alpha)) = 1$ for $\alpha \in \mathbb{Z}$ prime to 2.

Let $J_{C(-1)}$ and $J_{C(-2)}$ be the abelian subvarieties $/\mathbb{Q}$ of J_C whose tangent spaces $\otimes \mathbb{C}$ correspond to the subspaces spanned by the eigen forms induced by the Hecke characters of $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-2})$, respectively. Let k'(N)be the class field of $\mathbb{Q}(\sqrt{-1})$ associated with ker (χ) . Then any endomorphisms of $J_{C(-1)}$ is defined over k'(N) and End $J_C \otimes \mathbb{Q} \simeq$ End $J_{C(-1)} \otimes \mathbb{Q} \times$ End $J_{C(-2)} \otimes \mathbb{Q}$. The same argument as in lemma 1.4 shows that any automorphism of $X_0(N)$ is defined over k'(N). Note that $\zeta_{16} = \exp(2\pi\sqrt{-1}/16)$ does not belong to k'(N).

(2) $N = 2^2 3^3$, $\overline{2^3 3^3}$: Let $\chi \neq 1$ be a character of the ideal group of $\mathbb{Q}(\sqrt{-3})$ which satisfies the following conditions:

(i) $\chi((\alpha)) = 1$ for $\alpha \in \mathbb{Q}(\sqrt{-3})^{\times}$ with $\alpha \equiv 1 \mod^{\times} 6$. (ii) $\chi((\alpha)) = 1$ for $\alpha \in \mathbb{Z}$ prime to 6. Then any endomorphism of J_c is defined over the class field k'(N) associated with ker (χ). Note that ζ_9 and ζ_8 do not belong to k(N).

Let $p \ge 5$ be a prime number and K be a finite extension of \mathbb{Q}_p^{ur} of degree e_K . For an elliptic curve E defined over K, and an integer $m \ge 3$ prime to p, let ϱ_m be the representation of $G_K = \text{Gal}(\bar{K}/K)$ induced by the Galois action of G_K on the *m*-torsion points $E_m(\bar{K})$. Then $\varrho_m(G_K)$ becomes a subgroup of $\mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/6\mathbb{Z}$, and ker (ϱ_m) is independent of the integer $m \ge 3$ prime to p. Let K' be the extension of K associated with ker (ϱ_m) , and e be the degree of the extension K'/K. Let $\pi = \pi_K$ be a prime element of the ring $R = \mathcal{O}_K$ of integers of K. Then we know that (i) If the modular invariant $j(E) \not\equiv 0$, 1728 mod π , then e = 1 or 2, (ii) If e = 4, then $j(E) \equiv 1728 \mod \pi$, (iii) If e = 3 or 6, then $j(E) \equiv 0 \mod \pi$ e.g., [31] §5 (5.6) [36] p. 46. Now assume that E has a cyclic subgroup A(/K) of order N for an integer N divisible by p^2 . Put e' = e if e is odd, and e' = e/2 if e is even.

LEMMA 1.13 ([20] § lemma (2.2), (2.3)). If $e_{k}e' , then the pair (E, A) defines a R-valued section of the smooth part of <math>\mathcal{X}_{0}(N)$.

COROLLARY 1.14. Let x: Spec $R \to \mathscr{X}_0(N)$ be a section of an integer N divisible by p^2 . If $e_K = 1$ and $p \ge 5$, then x is a section of the smooth part of $\mathscr{X}_0(N)$. If $e_K = 2$ and $p \ge 7$, then x is a section of the smooth part of $\mathscr{X}_0(N)$.

REMARK 1.15. Under the notation as above, we here consider the cases for $e_K = 2$ and p = 5, 7. Put $N = p^r m$ for coprime integers p^r and $m (r \ge 2)$. Under one of the following conditions (i), (ii) on $m, e^r = 1$ for p = 5, and $e^r \le 2$ for p = 7.

- p = 5: Conditions on m.
 - (i) 4, 6 or 9 divides m.
 - (ii) 2 or a rational prime q with $q = 2 \mod 3$ divides m, and a rational prime q' with $q' \equiv 3 \mod 4$ divides m.

p = 7: (i) 2 or 9 divides m.

(ii) A rational prime q with $q \equiv 2 \mod 3$ divides m.

(1.16) The fixed points of w_N .

Let w_N be the fundamental involution of $X_0(N)$: $(E, A) \mapsto (E/A, E_N/A)$. Put $N = N_1^2 N_2$ for the square free integer N_2 . Let k_N be the class field of $\mathbb{Q}(\sqrt{-N_2})$ which is associated with the order of $\mathbb{Q}(\sqrt{-N_2})$ with conductor N_1 . Put $h_N = |k_N: \mathbb{Q}(\sqrt{-N_2})|$. Then as well known (see e.g. [12] Chapter 8 theorem 7)

$$h_N = h(-N_2) \frac{N_1}{|\mathcal{O}^{\times}:\mathcal{O}_{N_1}^{\times}|} \sum_{p|N_1} \left(1 - \left(\frac{-N_2}{p}\right) \frac{1}{p}\right),$$

where \mathcal{O} is the ring of integers of $\mathbb{Q}(\sqrt{-N_2})$ and $\mathcal{O}_{N_1} = \mathbb{Z} + N_1 \mathcal{O}$. Let S_N be the number of the fixed points of w_N . Then

$$S_N = \begin{cases} h_N & \text{if } N_2 \equiv 1 \text{ or } 2 \mod 4\\ h_N + h_{4N} & \text{if } N_2 \equiv 3 \mod 4. \end{cases}$$

Let $p \leq 13$ (or p = 17, 19, 23 or 29 etc.) be a rational prime and M be an integer prime to p. Then supersingular points on $\mathscr{X}_0(1) \otimes \mathbb{F}_p$ are all \mathbb{F}_p -rational and the supersingular points on $\mathscr{X}_0(M) \otimes \mathbb{F}_p$, hence those on $\mathscr{X}_0(pM) \otimes \mathbb{F}_p$ are all \mathbb{F}_{p^2} -rational [3]V theorem 4.17, [36] table 6 p. 142–144. Let $m(M, p) = g_0(pM) - 2g_0(M) + 1$. For a prime divisor q of M, put $r_q = \operatorname{ord}_q M$. Put

$$m(2) = \begin{cases} \sum_{i=0}^{r_2} \varphi((2^i, 2^{r_2-i})) & \text{if } r_2 \leq 6\\ 16 & \text{if } r_2 \geq 6, \text{ and} \end{cases}$$
$$m(3) = \begin{cases} \sum_{i=0}^{r_3} \varphi((3^i, 3^{r_3-i})) & \text{if } r_3 \leq 2\\ 4 & \text{if } r_3 \geq 2, \end{cases}$$

where φ is the Euler's function. The number of the \mathbb{F}_{p^2} -rational cusps on $\mathscr{X}_0(M) \otimes \mathbb{F}_p = m(2)m(3) \prod_{\substack{q \mid M \\ q \neq 2,3}} 2$. Therefore

$$\# \mathscr{X}_0(M)(\mathbb{F}_{p^2}) \ge g_0(pM) - 2g_0(M) + 1 + m(2)m(3) \prod_{\substack{q|M \\ q \neq 2,3}} 2.$$
(1.17)

§2. Automorphisms of $X_0(N)$

In this section, we discuss the automorphisms of the modular curves $X_0(N)$ of genus $g_0(N) \ge 2$. For an automorphism u of $X_0(N)$, u denotes also the

induced automorphism of the jacobian variety $J_0(N)$. Let k(N) be the composite of the quadratic fields with discriminants D whose squares divide N. For the integers $N = 2^8$, 2^9 , $2^3 3^3$ and $2^3 3^3$, let k'(N) be the fields defined in remark 1.12.

(2.1) (see [1] §4). Let $A_{\infty} = A_{\infty}(N)$ denote the subgroup of Aut $X_0(N)$ consisting of the automorphisms which fix the cusp $\infty = \binom{1}{0}$, and put $B_{\infty} = A_{\infty} \cap B_0(N)$. Then A_{∞} is a cyclic group. Let $\mathbb{Q}[[q]]$ be the completion of the local ring $\mathcal{O}_{X_0(N),\infty}$ with the canonical local parameter q see [4] VII. For $\gamma \in A_{\infty}, \gamma * (q) = \zeta_m q + c_2 q^2 + \cdots$ for a primitive *m*-th root ζ_m of unity and $c_i \in \overline{\mathbb{Q}}$. Then we see easily that the field of definition of γ is $\mathbb{Q}(\zeta_m)$. Put $r_2 = \min \{3, [\frac{1}{2} \operatorname{ord}_2 N]\}, r_3 = \{1, [\frac{1}{2} \operatorname{ord}_3 N]\}$ and $m = 2^{r_2} 3^{r_3}$. Then A_{∞} is generated by $\binom{1}{0} \frac{1/m}{2}$ mod $\Gamma_0(N)$.

LEMMA 2.2. Under the notation as above, suppose that an involution u belongs to A_{∞} . Then u is defined over \mathbb{Q} and it is not the hyperelliptic involution. Moreover 4|N.

Proof. Let $\mathbb{Q}[[q]]$ be the completion of the local ring at the cusp ∞ with the canonical local parameter q [3] VII. Put $u * (q) = c_1 q + c_2 q^2 + \cdots$ for $c_i \in \overline{\mathbb{Q}}$. Then one sees easily that $c_1 = -1$ and that u is defined over Q. The hyperelliptic modular curves of type $X_0(N)$ are all known [22] theorem 2. In all cases, the hyperelliptic involution of $X_0(N)$ do not fix the cusp ∞ . Using the congruence relation [3] [33] Chapter 7 (7.4), one sees that u commutes with the Hecke operators T_l for prime numbers l prime to N. For a normalized new form g belonging to $S_2(\Gamma_0(N))$, let V(g) be the subspace spanned by $g|e_d$ for positive divisors d of N/(level of g) cf. (1.1). Then $S_2(\Gamma_0(N)) =$ $\oplus V(g)$ as $\mathbb{Q}[T_{I}]_{(I,N)=1}$ -modules, where g runs over the set of the normalized new forms belonging to $S_2(\Gamma_0(N))$. If N/(level of g) is odd, then u * |V(g)|becomes a triangular matrix with the eigen values -1 for a choice of the basis of V(g). Hence $u * | V(g) = -1_{V(g)}$. If N is odd, then u * = -1 on $S_2(\Gamma_0(N))$. Then u = -1 on $J_0(N)$, and it is a contradiction. Now consider the case 2||N. Let $K(/\mathbb{Q})$ be the abelian subvariety of $J_0(N)$ whose tangent space Tan₀ $K \otimes \mathbb{C}$ corresponds to the subspace $\bigoplus' V(g)$ for the normalized new forms g with even level. Then as noted as above, u acts on K under -1. Let $\widetilde{\mathscr{X}}_0(N) \to \text{Spec } \mathbf{W}(\overline{\mathbb{F}}_2)$ be the minimal model of $X_0(N) \otimes \mathbb{Q}_2^{ur}$, and Σ be the dual graph of the special fibre $\tilde{\mathscr{X}}_0(N) \otimes \overline{\mathbb{F}}_2$. Let Z and Z' be the irreducible components of $\widetilde{\mathscr{X}}_0(N)\otimes \overline{\mathbb{F}}_2$ which contains the cusps $\infty\otimes \overline{\mathbb{F}}_2$ and $\mathbf{0} \otimes \overline{\mathbb{F}}_2$, respectively cf. §1. Since the genus $g_0(N) \ge 2$, the selfintersection numbers of Z and Z' are ≤ -3 , and those of the other irreducible components are all -2. Denote also by u the induced automorphism

of the minimal model $\widetilde{\mathscr{X}}_0(N)$. Note that u is defined over \mathbb{Q} . Then usend $Z \cup Z'$ to itself. By the condition $u(\infty) = \infty$, u fixes Z and Z'. Let P^{r} be the kernel of the degree map Pic $\widetilde{\mathscr{X}}_0(N) \to \mathbb{Z}$, P^0 be the connected component of the unit section of P^{r} , and E be the Zariski closure of the unit section of the generic fibre $P^{\mathsf{r}} \otimes \mathbb{Q}_2^{ur}$. Then the Néron model $J_0(N)_{|\mathsf{W}(\mathbb{F}_2)} = P^{\mathsf{r}}/E$ and $P^0 \cap E = \{0\}$, see [25] §8 (8.1), [4] VI. Let l be an odd prime number and T_l , $V_l = T_l \otimes \mathbb{Q}_l$ be the Tate modules. Then $V_l(\mathrm{H}^1(\Sigma, \mathbb{Z}) \otimes \mathbb{G}_m) = V_l(P^0) = V_l(K)^l$, where I is the inertia subgroup Gal $(\overline{\mathbb{Q}}_2/\mathbb{Q}_2^{ur})$ [32] lemma 1. Then one sees that u acts under -1 on $\mathrm{H}^1(\Sigma, \mathbb{Z})$. Since u fixes Z and Z', considering the action of u on the dual graph Σ , one sees that $\mathrm{H}^1(\Sigma, \mathbb{Z}) = \{0\}$ or \mathbb{Z} , i.e., $g_0(N) = 2g_0(N/2)$ or $= 2g_0(N/2) + 1$. By the result [23], it suffices to discuss the case when N/2is not square free. Then there are at least six cusps on $X_0(N/2)$, since $g_0(N/2) \ge 1$. Then the Riemann–Hurwitz relation

$$g_0(N) - 1 \ge 3\{g_0(N/2) - 1\} + \frac{1}{2} \# \{\text{cusps on } X_0(N/2)\}.$$

gives a contradiction.

COROLLARY 2.3. $A_{\infty} = B_{\infty}$.

Proof. Let $\mathbb{Q}[[q]]$ be the completion of the local ring at the cusp ∞ with the canonical local parameter q. Put $u * (q) = c_1 q + c_2 q + \cdots$ for $c_i \in \overline{\mathbb{Q}}$. Then c_1 is a root of unity belonging to the field k(N), or k'(N) for $N = 2^8$, 2^9 , $2^2 3^3$ and $2^3 3^3$ cf. corollary 1.11, remark 1.12. Hence $c_1 \in \mu_{24}(k(N))$, see loc.cit. For the case ord₂ $N \leq 1$, by (2.1) and lemma 2.2, $A_{\infty} = B_{\infty}$. For the case ord₂ $N \geq 2$, by (2.1), $A_{\infty} = B_{\infty}$.

COROLLARY 2.4. Let C be a k(N) or k'(N)-rational cusp, and u be an automorphism of $X_0(N)$ such that u(C) is a cusp. Then u belongs to the subgroup $B_0(N)$.

Proof. It suffices to note that $B_0(N)$ acts transitively on the set of the k(N) or k'(N)-rational cusps on $X_0(N)$.

Let "F(N)" be the subfield of $k(N) \cap \mathbb{Q}(\zeta_8, \sqrt{-3}, \sqrt{5}, \sqrt{-7})$ which contains $k(N) \cap \mathbb{Q}(\zeta_8, \sqrt{-3})$ and satisfies the following conditions for p = 5 and 7: the rational prime p = 5 (resp. p = 7) is unramified in F(N) if one of the conditions (i), (ii) in (1.15) for p is satisfied.

LEMMA 2.5. If an automorphism u of $X_0(N)$ is defined over k(N), then u is defined over F(N).

Proof. It is enough to show that for each rational prime $p \ge 5$ with $p^2|N$, if p is unramified in F(N), then u is defined over \mathbb{Q}_p^{ur} , see corollary 1.11, remark 1.12. First note that the k(N)-rational cusps on $\mathscr{X}_0(N) \otimes \mathbb{Z}[1/6]$ are the sections of the smooth part $\mathscr{X}_0(N)^{smooth} \otimes \mathbb{Z}[1/6]$ see lemma 1.13, corollary 1.14, remark 1.15, [4]. Let p be a rational prime which is unramified in F(N). Then we know that any k(N)-rational point on $X_0(N)$ defines a $\mathcal{O}_{k(N)} \otimes \mathbb{Z}_p$ -section of $\mathscr{X}_0(N)^{smooth}$, see loc.cit. For $1 \neq \sigma \in \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p^{ur})$, let x be the section of $J_0(N)$ defined by

$$x = cl((u(0)) - (u(\infty)) - (u^{\sigma}(0)) + (u^{\sigma}(\infty))).$$

Since $cl((\mathbf{0}) - (\infty))$ is of finite order [13], x is of finite order and is defined over $k(N) \otimes \mathbb{Q}_p^{ur}$. Let p be a prime ideal of $\mathcal{O} = \mathcal{O}_{k(N)}$ lying over the rational prime p, and \mathcal{O}_p be the completion along p. As noted as above, $u(\mathbf{0})$, $u(\infty)$, $u^{\sigma}(\mathbf{0})$ and $u^{\sigma}(\infty)$ define the \mathcal{O}_p -sections of $\mathcal{X}_0(N)^{smooth}$ such that $u(\mathbf{0}) \otimes \kappa(p) = u^{\sigma}(\mathbf{0}) \otimes \kappa(p)$ and $u(\infty) \otimes \kappa(p) = u^{\sigma}(\infty) \otimes \kappa(p)$. Then by the universal property of the Néron model, we see that $x \otimes \kappa(p) = 0$ (= the unit section). Further by the conditions that x is of finite order and that $p > \operatorname{ord}_p(p) + 1$, we see that x is the unit section [26] §3 (3.3.2), [15] proposition 1.1. Thus we get the linearly equivalent relation: $(u(\mathbf{0})) + (u^{\sigma}(\infty)) \sim (u(\infty)) + (u^{\sigma}(\mathbf{0}))$. Now suppose that $u^{\sigma} \neq u$.

Case $u(\infty) = u^{\sigma}(\infty)$: Put $v = u^{\sigma}u^{-1} (\neq id.)$. Then v fixes the cusps **0** and ∞ , so that v belongs to $B_0(N)$, corollary 2.3. But any non trivial automorphism belonging to $B_0(N)$ does not fix both of **0** and ∞ [1] §4.

Case $u(\infty) \neq u^{\sigma}(\infty)$: By the above linear equivalence, there exists the hyperelliptic involution γ of $X_0(N)$ with $\gamma u(\mathbf{0}) = u^{\sigma}(\mathbf{0})$. Then by the condition on p as above and by the classification of hyperelliptic modular curves of type $X_0(N)$ [23] theorem 2, there remains the case for N = 50. But $k(50) = F(50) = \mathbb{Q}(\sqrt{5})$, corollary 1.11.

Let *l* be a prime number prime to *N*, and T_l be the Hecke operator associated with *l*.

LEMMA 2.6. Let u be an automorphism of $X_0(N)$ defined over a composite of quadratic fields, and σ_l be a Frobenius element of the rational prime l. Then

$$uT_l = T_l u^{\sigma_l}$$
 on $J_0(N)$.

Proof. On $J_0(N) \otimes \mathbb{F}_l$, we have the congruence relation [3, 33] Chapter 7 (7.4):

$$T_l = F + V, \quad FV = VF = l,$$

where F is the Frobenius map and V is the Verschiebung. Put $u^{(l)} = u^{\sigma_l}$ on $J_0(N) \otimes \mathbb{F}_l$. Then the assumption on u as above shows that $uF = Fu^{(l)}$ and $uV = Vu^{(l)}$.

Let \mathscr{D} (resp. \mathscr{D}_0 , resp. \mathscr{D}_l) be the group of divisors of $X_0(N)$ (resp. of degree 0, resp. which are linearly equivalent to 0). For a prime number l prime to N, and for an automorphism u of $X_0(N)$, T_l and u, u^{σ_l} act on \mathscr{D} , \mathscr{D}_0 and \mathscr{D}_l . Put $\alpha_l = uT_l - T_l u^{\sigma_l}$ on $J_0(N)$. Then by lemma 2.6, $\alpha_l = 0$ on $J_0(N) \otimes \mathbb{C} = \mathscr{D}_0/\mathscr{D}_l$. Put $D_l = \alpha_l((\mathbf{0}) - (\infty))$ (= $(l + 1)(u(\mathbf{0})) + (T_l u^{\sigma_l}(\infty)) - (l + 1)(u(\infty)) - (T_l u^{\sigma_l}(\mathbf{0})))$. Then $D_l \sim 0$, linearly equivalent to the zero divisor.

LEMMA 2.7. Under the notation as above, let u be an automorphism of $X_0(N)$ defined over the field F(N). Then if $u(\mathbf{0})$ or $u(\infty)$ is not a cusp, then $D_l \neq 0$.

Proof. If $D_l = 0$, then $(l + 1)(u(\mathbf{0})) = (T_l u^{\sigma_l}(\mathbf{0}))$ and $(l + 1)(u(\infty)) = (T_l u^{\sigma_l}(\infty))$. Suppose that $D_l = 0$ and that $u(\mathbf{0})$ is not a cusp. Let $z \in \mathfrak{H} = \{z \in \mathbb{C} | \text{Im } (z) > 0\}$ be the point which corresponds to $u^{\sigma_l}(\mathbf{0})$ under the canonical identification of $X_0(N) \otimes \mathbb{C}$ with $\Gamma_0(N) \setminus \mathfrak{H} \cup \{i \infty, \mathbb{Q}\}$. Then

$$T_{l}u^{\sigma_{l}}(\mathbf{0}) \equiv (lz) + \sum_{i=0}^{l-1} \left(\frac{z+i}{l}\right) \mod \Gamma_{0}(N).$$

The corresponding points on $X_0(N) \otimes \mathbb{C}$ to (lz) and (z + i/l) are represented by elliptic curves $E = \mathbb{C}/\mathbb{Z} + \mathbb{Z}lz$ and $\mathbb{C}/\mathbb{Z} + \mathbb{Z}(z + i/l)$ with level structures, respectively. Then by the assumption $D_l = 0$, $E \simeq \mathbb{C}/\mathbb{Z} + \mathbb{Z}(z + i/l)$ for the integers $i, 0 \leq i \leq l - 1$. Consider the following homomorphisms f_i with kernel C_i :

$$f_i: E \xrightarrow{\operatorname{can.}} \mathbb{C}/\mathbb{Z} + \mathbb{Z} \frac{z+i}{l} \xrightarrow{\sim} E.$$

Then $C_i = \mathbb{Z}((i/l) + (1/l^2)lz) \mod L = \mathbb{Z} + \mathbb{Z}lz$ are cyclic subgroups of order l^2 , and $(C_i)_l$ (=ker $(l: C_i \to C_i)$) = $(1/l)\mathbb{Z}lz \mod L$. This is a contradiction. (Because, there are at most two cyclic subgroups A_i of order l^2 with $E/A_i \simeq E$. If l = 2 and there are such subgroups A_i (i = 1, 2), then $2A_1 \neq 2A_2$.

PROPOSITION 2.8. Let u be an automorphism of $X_0(N)$ defined over \mathbb{Q} . Then u belongs to the subgroup $B_0(N)$, provided $N \neq 37$.

Proof. By the results on the rational points on $X_0(N)$ [10, 15, 17], we know that $u(\mathbf{0})$ is a cusp, provided $N \neq 37, 43, 67, 163$. The rest of the proof owes to corollary 2.4 and [23] Satz 1.

The following result is immediate from corollary 1.11, remark 1.12 and lemma 2.5.

COROLLARY 2.9. If $F(N) = \mathbb{Q}$, then Aut $X_0(N) = B_0(N)$, provided $N \neq 37$.

Now consider the case $F(N) \neq \mathbb{Q}$. In this case N are divisible by the square of 2, 3, 5 or 7, see lemma 2.5. Let u be an automorphism of $X_0(N)$ which is not defined over \mathbb{Q} . If $u(\mathbf{0})$ or $u(\infty)$ is a cusp, then u belongs to the subgroup $B_0(N)$, see corollary 2.4. So we assume that $u(\mathbf{0})$ and $u(\infty)$ are not cusps. Let l be a prime number prime to N, $\sigma = \sigma_l$ be a Frobenius element of the rational prime l, and $D_l = (l + 1)(u(\mathbf{0})) + (T_l u^{\sigma}(\infty)) - (l + 1)(u(\infty)) - (T_l u^{\sigma}(\mathbf{0})) (\sim 0)$ be the divisor of $X_0(N)$ defined as above, see lemma 2.7, for $N \neq 2^8$, 2^9 , $2^2 3^3$, $2^3 3^3$ cf. corollary 1.11, remark 1.12. Under the assumption on u as above, $D_l \neq 0$ by lemma 2.7.

LEMMA 2.10. Under the assumption as above for $N \neq 37, 2^8, 2^9, 2^2 3^3, 2^3 3^3$, assumes that $D_l \neq 0$ and $l \geq 5$. Then $w_N * (D_l) \neq D_l$, and $u(\mathbf{0}), u(\infty)$ are not the fixed points of w_N .

Proof. If $D_l = w_N * (D_l)$, then

$$(l + 1)(u(\mathbf{0})) + (T_{l}u^{\sigma}(\infty)) + (l + 1)(w_{N}u(\infty)) + (T_{l}w_{N}u^{\sigma}(\mathbf{0}))$$

= $(l + 1)(w_{N}u(\mathbf{0})) + (T_{l}w_{N}u^{\sigma}(\infty)) + (l + 1)(u(\infty)) + (T_{l}u^{\sigma}(\mathbf{0})).$

(Note that $w_N T_l = T_l w_N$ on $J_0(N)$, since w_N is defined over \mathbb{Q} , see lemma 2.6.) The assumption $D_l \neq 0$ shows that $(l + 1)(u(\mathbf{0})) \neq (T_l w_N u^{\sigma}(\infty))$ nor $(T_l u^{\sigma}(\mathbf{0}))$, see the proof in lemma 2.7. Suppose that $w_N * (D_l) = D_l$. Then the similar argument as in the proof of lemma 2.7 shows that $u(\mathbf{0})$ and $u(\infty)$ are the fixed points of w_N , since $l \ge 5$. Let p be a prime divisor of N with $p \parallel N$ or $p \ge 11$. Then u defines an automorphism of the minimal model $\widetilde{\mathscr{X}}_0(N) \rightarrow \text{Spec } \mathbf{W}(\overline{\mathbb{F}}_p)$, see lemma 2.5. If $p \parallel N$, then $u(\mathbf{0}) \otimes \overline{\mathbb{F}}_p$ and $u(\infty) \otimes \overline{\mathbb{F}}_p$ are not the supersingular points (, because $g_0(N) \ge 2$). By our assumption and corollary 2.9, the automorphism u is not defined over \mathbb{Q} ,

and N is divisible by the square of a prime $q \leq 7$ see lemma 2.5. Therefore if $p \geq 11$, then $\mathscr{X}_0(N) \otimes \overline{\mathbb{F}}_p$ has at least three supersingular points, and the points $u(\mathbf{0})$ and $u(\infty)$ define the sections of different irreducible components of $\widetilde{\mathscr{X}}_0(N) \otimes \overline{\mathbb{F}}_p$ see corollary 1.14. Hence N is a form $2^a 3^b 5^c 7^d$ for integers a, b, c, d = 0 or ≥ 2 . Let S be the set of rational primes which ramify in F(N). Then we see that $S = \{2, 3\}, \{2\}, \{3\}, \{5\}$ or $\{7\}$, see corollary 1.14, remark 1.15, lemma 2.5, proposition 2.8. Put $N = N_1^2 N_2$ for the square free integer N_2 . Let k_N be the class field of $\mathbb{Q}(\sqrt{-N_2})$ associated with the order with conductor N_1 . Then the condition $w_N u(\mathbf{0}) = u(\mathbf{0})$ gives the inequality that $[F(N): \mathbb{Q}] \leq [k(N): \mathbb{Q}(\sqrt{-N_2})]$, which is satisfied only for $N = 2^6$, see (1.16). For $N = 2^6$, $F(N) = \mathbb{Q}(\zeta_8)$ and k_N is the class field of $\mathbb{Q}(\sqrt{-1})$ of degree 4, see loc.cit. Thus $u(\mathbf{0})$ is not a fixed point of w_N .

COROLLARY 2.11. Under the notation and assumption as in lemma 2.10, let S_N be the number of the fixed points of w_N on $X_0(N)$. Then $S_N \leq 4(l + 1)$.

Proof. Put $D_+ = (l + 1)(u(\mathbf{0})) + (T_l u^{\sigma}(\infty))$ and $D_- = (l + 1)(u(\infty)) + (T_l u^{\sigma}(\mathbf{0}))$ for a Frobenius element $\sigma = \sigma_l$ of the rational prime *l*. Let n_+, n_- be the numbers of the fixed points of w_N belonging to Supp (D_+) and Supp (D_-) , respectively. Then Supp $(w_N * (D_+))$ (resp. Supp $(w_N * (D_-)))$ contains exactly n_+ (resp. n_-) fixed points of w_N . Consider the rational function f on $X_0(N)$ whose divisor $(f) = D_l = D_+ - D_- (\neq 0, \text{ by our assumption})$. Put $g = w_N * (f)/f - 1$, which is not a constant function, see lemma 2.10. For a fixed point x of w_N not belonging to Supp $(D_+) \cup$ Supp $(D_-), g(x) = 0$. Then $4(l + 1) - (n_+ + n_-) \ge$ the degree of $g \ge S_N - (n_+ + n_-)$.

Now under the assumption that $u(\mathbf{0})$ and $u(\infty)$ are not cusps, we estimate the least prime number l not dividing N. Let p_n be the *n*-th prime number. We know the following estimate of p_n for $n \ge 4$ [30] theorem 3:

$$p_n < 1.4 \times n \log(n),$$
 (2.12)

Let l(N) be the least prime number not dividing N.

LEMMA 2.13. Under the notation and the assumption as above, $l(N) \leq 19$.

Proof. We may assume that $N \neq 2^8$, 2^9 , $2^2 3^3$, $2^3 3^3$. Put $N = N_1^2 N_2$ for the square free integer N_2 . Let n_i (i = 1, 2) be the numbers of the prime divisors of N_i , and n be the number of the prime divisors of N. We

68 M.A. Kenku and F. Momose

will show that $n \leq 7$, applying lemma 2.10. We know the following (1.16):

$$S_{N} = \begin{cases} \frac{1}{2}N_{1}\prod_{p|N_{1}}\left(1-\left(\frac{-1}{p}\right)\frac{1}{p}\right) & \text{if } N_{2} = 1\\ \frac{4}{3}N_{1}\prod_{p|N_{1}}\left(1-\left(\frac{-3}{p}\right)\frac{1}{p}\right) & \text{if } N_{2} = 3\\ h(-N_{2})\prod_{p|N_{1}}\left(1-\left(\frac{-N_{2}}{p}\right)\frac{1}{p}\right) & \text{if } N_{2} \neq 1 \text{ and } N_{2} \equiv -1 \text{ mod } 4\\ \ge 2h(-N_{2})\prod_{p|N_{1}}\left(1-\left(\frac{-N_{2}}{p}\right)\frac{1}{p}\right) & \text{if } N_{2} \neq 3 \text{ and } N_{2} \equiv -1 \text{ mod } 4 \end{cases}$$

As well known, $n_2 \leq \operatorname{ord}_2 h(-N_2)$ if $N_2 \equiv 1 \mod 4$, and $n_2 - 1 \leq \operatorname{ord}_2 h(-N_2)$ if $N_2 \not\equiv 1 \mod 4$ (see e.g., [2]). Then the above formula of S_N gives the estimate that $S_N \geq 2^n$ for $n \geq 7$. Then corollary 2.11 and (2.12) give the following estimate of S_N for $n \geq 7$:

$$S_N \leq 4(1 + p_{n+1}) < 4\{1 + 1.4 \times (n + 1) \log (n + 1)\}.$$

Then by a calculation, we get $n \leq 7$.

Let p be a prime divisor of N with $r = \operatorname{ord}_p N$. Put $M = M/p^r$, and let $\pi = \pi_{N,M}$: $\mathscr{X}_0(N) \to \mathscr{X}_0(M)$ be the natural morphism. For a prime number l not dividing N, let D_l be the divisor defined in lemma 2.7. For $N \neq 2^8$, 2^9 , $2^2 3^3$, $2^3 3^3$, $cl(D_l) = 0$ on $J_0(N)$, so that the image $\pi(cl(D_l)) = 0$ under the natural homomorphism π : $J_0(N) \to J_0(M)$ of jacobian varieties. Let $E_l = (l+1)(\pi u(\mathbf{0})) + (T_l \pi u^{\sigma}(\infty)) - (l+1)(\pi u(\infty)) - (T_l \pi u^{\sigma}(\mathbf{0}))$ be a divisor of $X_0(M)$. Then $E_l \sim 0$ (for $N \neq 2^8$, 2^9 , $2^2 3^3$, $2^3 3^3$), since $\pi(T_l|J_0(N)) = (T_l|J_0(M))\pi$. We give a criterion for $E_l \neq 0$.

LEMMA 2.14. Under the notation as above, assume that $u(\mathbf{0})$ and $u(\infty)$ are not cusps. If the following conditions are satisfied, then $E_l \neq 0$: There exists a prime divisor q of N with $t = \operatorname{ord}_q N$ such that $g_0(N/q^t) \ge 1$ and that q satisfies the following conditions (i), (ii) and (iii):

- (i) $q \parallel N$.
- (ii) $q \ge 11$.
- (iii) q = 5 or 7 which satisfies one of the conditions (i), (ii) for q in lemma 1.15.

Proof. It suffices to show that under the conditions as above $\pi u(\mathbf{0}) \neq \pi u(\infty)$, see the proof of lemma 2.7. Any automorphisms u of

 $X_0(N)$ is defined over the field F(N), see corollary 1.11, lemma 2.5. Let q be a prime of F(N) lying over the rational prime q which satisfies the above conditions. Then u defines the automorphism u of the minimal model $\tilde{\mathscr{Y}} \to \operatorname{Spec} \mathcal{O}_{\mathfrak{q}} \text{ of } X_0(N) \otimes F(N)_{\mathfrak{q}}, \text{ where } \mathcal{O}_{\mathfrak{q}} \text{ is the completion of the ring of }$ integers of F(N) along q. Let $Z' = E_0$ and $Z = E_t$ be the irreducible components of $\mathscr{X}_0(N) \otimes \mathbb{F}_q$ cf. §1. Then $Z \simeq Z' \simeq \mathscr{X}_0(N/q') \otimes \mathbb{F}_q$, see [4] VI, which are smooth over \mathbb{F}_q . By our assumption $g_0(N/q') \ge 1$. Then by the construction of the minimal model $\tilde{\mathscr{Y}} \longrightarrow \mathscr{X}_0(N) \otimes \mathscr{O}_{\mathfrak{g}}$ (birational map), Z and Z' do not become points on $\tilde{\mathscr{Y}}$. Denote also by Z and Z' the proper transforms of Z and Z' by the birational map $\widetilde{\mathscr{Y}} \longrightarrow \mathscr{X}_0(N) \otimes \mathscr{O}_{\alpha}$. Then $u(\mathbf{0}) \otimes \kappa(\mathbf{q})$ and $u(\infty) \otimes \kappa(\mathbf{q})$ are sections of $(Z \cup Z')^h (= Z \cup Z')^{-1}$ {supersingular points}), see corollary 1.14, remark 1.15 and the conditions on q as above. As $\mathbf{0} \otimes \kappa(\mathbf{q})$ belongs to Z'^h and $\infty \otimes \kappa(\mathbf{q})$ belongs to Z^h , so that $u(\mathbf{0}) \otimes \kappa(\mathbf{q})$ and $u(\infty) \otimes \kappa(\mathbf{q})$ are the sections of the different irreducible components $\subset Z \cup Z'$. Denote also by Z and Z' the images of Z and Z' under the natural morphism of $\mathscr{X}_0(N)$ to $\mathscr{X}_0(M)$. Then $\pi u(\mathbf{0}) \otimes \kappa(\mathfrak{q})$ and $\pi u(\infty) \otimes \kappa(q)$ are the sections of the different irreducible components. Hence $\pi u(\mathbf{0}) \neq \pi(u(\infty))$.

LEMMA 2.15 (see [22, 23]). Let M > 1 be an integer and p be a prime number not dividing M. Let $D = \sum_i n_i(x_i)$ be a divisor of $X_0(M)$ of degree $d = \sum_i n_i$ with $n_i \ge 1$. Assume that D is defined over a composite of quadratic fields and that dim $H^0(X_0(M), \mathcal{O}(D)) > 1$. Then

$$#\mathfrak{X}_{0}(M)(\mathbb{F}_{p^{2}}) \leq d(p^{2}-1) - \sum_{i} (n_{i}-1).$$

Proof. It is immediate from the upper semicontinuity, see E.G.A. IV (7.7.5) 1.

LEMMA 2.16. Let $p \ge 3$ be a prime number which satisfies one of the following conditions (i) $\operatorname{ord}_p N \le 1$, (ii) $p \ge 11$, or (iii) p = 5 or 7 satisfies one of the conditions (i), (ii) in Remark 1.15. Then for any automorphism u of $X_0(N)$, if $u(\mathbf{0})$ and $u(\infty)$ are not cusps, then $u(\mathbf{0}) \otimes \overline{\mathbb{F}}_p$ or $u(\infty) \otimes \overline{\mathbb{F}}_p$ is not a cusp.

Proof. Under the assumption on p as above, $u(\mathbf{0}) \otimes \overline{\mathbb{F}}_p$ and $u(\infty) \otimes \overline{\mathbb{F}}_p$ are the sections of the smooth part $\mathscr{X}_0(N)^{smooth}$, and u is defined over \mathbb{Q}_p^{ur} , see corollary 1.11, Remark 1.12, 1.15, lemma 2.5. Suppose that $u(\mathbf{0}) \otimes \overline{\mathbb{F}}_p$ and $u(\infty) \otimes \overline{\mathbb{F}}_p$ are cusps. Let C_1 and C_2 be the cusps on $\mathscr{X}_0(N)$ such that $C_1 \otimes \overline{\mathbb{F}}_p = u(\mathbf{0}) \otimes \overline{\mathbb{F}}_p$ and $C_2 \otimes \overline{\mathbb{F}}_p = u(\infty) \otimes \overline{\mathbb{F}}_p$. Consider the section x

the Néron model $J_0(N)_{W(\mathbb{F}_n)}$ defined by

$$x = cl((u(\mathbf{0})) - (u(\infty)) - (C_1) + (C_2)).$$

(Note that under the condition on p as above, C_i are defined over \mathbb{Q}_p^{ur}). By the choice of C_i , $x \otimes \overline{\mathbb{F}}_p = 0$. The classes $u(cl(\mathbf{0}) - (\infty)) = cl((u(\mathbf{0})) - (u(\infty)))$ and $cl((C_1) - (C_2))$ are of finite order, see [13] proposition 3.2. Then by the specialization lemma [26] §3 (3.3.2), [15] lemma 1.1, x is the unit section. If $F(N) = \mathbb{Q}$ and $N \neq 37$, then $u(\mathbf{0})$ and $u(\infty)$ are cusps, see corollary 2.9. For the case N = 37, see [16] §5. If $u(\mathbf{0})$ and $u(\infty)$ are not cusps and $N \neq 37$, then $X_0(N)$ must be hyperelliptic and the hyperelliptic involution sends $\mathbf{0}$ to a cusp, see [22] theorem 2.

Now applying (1.17), lemma 2.13, 2.14, 2.15, 2.16, we can prove main theorem.

THEOREM 2.17. For the modular curves $X_0(N)$ with $g_0(N) \ge 2$, Aut $X_0(N) = B_0(N)$, provided $N \ne 37$, 63.

Proof. It is enough to discuss the case $F(N) \neq \mathbb{Q}$, see remark 1.15, corollary 2.9. Suppose that Aut $X_0(N) \neq B_0(N)$. Then there exists an automorphism u of $X_0(N)$ such that $u(\mathbf{0})$ and $u(\infty)$ are not cusps, see corollary 2.4. At first, we treat the cases for $N \neq 2^8, 2^9, 2^2 3^3, 2^3 3^3$. Let l = l(N) be the least prime number not dividing N, and $D = D_l = (l + 1)(u(\mathbf{0})) + (T_l u^{\sigma}(\infty)) (l+1)(u(\infty)) - (l+1)(u(\infty)) - (T_l u^{\sigma}(\mathbf{0})) \ (\neq 0)$ be the divisor of $X_0(N)$ defined in lemma 2.7 for $\sigma = \sigma_i$. Then D is defined over F(N) (corollary 1.11, lemma 2.5), $0 \neq D$ and $l \leq 19$ by lemma 2.7, 2.13. We apply lemma 2.14. For l = 13, 17 and 19, applying lemma 2.14, 2.15 to p = 2, we see that $l \leq 11$. For l = 11, applying the above lemmas to p = 2, we see N = 1 $2 \cdot 3^2 \cdot 5 \cdot 7, 2^3 \cdot 3^2 \cdot 5 \cdot 7, 2^3 \cdot 3^2 \cdot 5 \cdot 7, 2^4 \cdot 3^2 \cdot 5 \cdot 7, 2^5 \cdot 3^2 \cdot 5 \cdot 7, 2^4 \cdot 3 \cdot 5 \cdot 7$ or $2^5 \cdot 3 \cdot 5 \cdot 7$. Further applying lemma 2.14, 2.15 to p = 3 and 5, we see $N \neq 2^4 \cdot 3^2 \cdot 5 \cdot 7, 2^5 \cdot 3^2 \cdot 5^7 \cdot 7, 2^5 \cdot 3 \cdot 5 \cdot 7$. For l = 7, the same argument as above shows that $N = 2 \cdot 3^2 \cdot 5$, $2^2 \cdot 3^2 \cdot 5$, $2^3 \cdot 3^2 \cdot 5$, $2^4 \cdot 3 \cdot 5$, $2^5 \cdot 3 \cdot 5$, $2 \cdot 3^3 \cdot 5$, $2^2 \cdot 3^3 \cdot 5$ or $2 \cdot 3^2 \cdot 5^2$. For l = 5, $N = 2^4 \cdot 3 \cdot 7$, $2^4 \cdot 3 \cdot 11$, $2^4 \cdot 3 \cdot 13$, $2^4 \cdot 3^2 \cdot 7$, $2^2 \cdot 3^2 \cdot 11$, $2 \cdot 3^3 \cdot 7$, $2 \cdot 3^2 \cdot 7$, $2 \cdot 3^2 \cdot 11$, $2 \cdot 3^2 \cdot 13$, $2 \cdot 3^2 \cdot 17$, $2 \cdot 3^2 \cdot 19$, $2 \cdot 3^2 \cdot 23$, $2^7 \cdot 3$, $2^6 \cdot 3$, $2^5 \cdot 3^2$, $2^5 \cdot 3$, $2^4 \cdot 3^2$, $2^4 \cdot 3^2$, $2^4 \cdot 3, 2^3 \cdot 3^2, 2^2 \cdot 3^4, 2^2 \cdot 3^3, 2 \cdot 2^4$ or $2 \cdot 3^3$. For $l = 3, N = 2^6, 2^7, 2^5 \cdot 5, 2^6$ $2^4 \cdot 5, 2^4 \cdot 7, 2^4 \cdot 13 \text{ or } 2 \cdot 5^2$. For $l = 2, N = 3^4, 3^2 \cdot 5, 3^2 \cdot 7, 3^2 \cdot 7, 3^2 \cdot 11$, $3^2 \cdot 13$, $3^2 \cdot 17$, $3 \cdot 5^2$, 5^3 or $5^2 \cdot 7$. For the remaining cases, we apply lemma 2.16. Choose a prime number $p \ge 3$ which satisfies one of the conditions (i), (ii), (iii) in lemma 2.16, and splits in F(N) for $N \neq 2^8$, 2^9 , $2^2 3^3$, $2^3 3^3$, and in k'(N) for $N = 2^8$, 2^9 , $2^2 3^3$, $2^3 3^3$ (see corollary 1.11, remark 1.12, lemma 2.5). By a calculation, we see that there is a prime number $p \ge 3$ as above such that $\mathscr{X}_0(N)(\mathbb{F}_p)$ consists of the cusps (and the supersingular points if p || N), provided $N \ne 2^2 \cdot 3^3$, $3^2 \cdot 7$, $3^2 \cdot 13$, $2 \cdot 5^2$, $3 \cdot 5^2$, $5^2 \cdot 7$, 5^3 . Thus lemma 2.16 gives the result, except for $N = 2^2 \cdot 3^2$, $3^2 \cdot 7$, $3^2 \cdot 13$, $2 \cdot 5^2$, $3 \cdot 5^2$, $3 \cdot 5^2 \cdot 13$, $2 \cdot 5^2$, $3 \cdot 5^2$, $3 \cdot 5^2 \cdot 13$, $2 \cdot 5^2$, $3 \cdot 5^2 \cdot 7$, 5^3 .

In the following, we give the proofs for N = 50, 75, 125, 175, 108 and 117. Let $\tilde{\mathscr{X}} = \tilde{\mathscr{X}}_0(N) \to \text{Spec } \mathbb{Z}$ be the minimal model of $X_0(N)$. For a prime divisor p of N with p || N, Aut $X_0(N)$ becomes a subgroup of Aut $\tilde{\mathscr{X}} \otimes \overline{\mathbb{F}}_p$. Let Z, Z' be the irreducible components of $\tilde{\mathscr{X}}_0(N) \otimes \mathbb{F}_p(p || N)$, and Aut_Z $\tilde{\mathscr{X}} \otimes \overline{\mathbb{F}}_p$ be the subgroup of Aut $\tilde{\mathscr{X}} \otimes \overline{\mathbb{F}}_p$ consisting the automorphisms which fix Z (, hence fix Z'). We denote also by Z, Z' the proper transforms of Z and Z' under the quadratic transformation $\tilde{\mathscr{X}} \to \mathscr{X} = \mathscr{X}_0(N)$. For the pairs (N, p) = (50, 2), (75, 3), (175, 7), (63, 7) and (117, 13), $X_0(N/p) \simeq \mathbb{P}^1_Q$. For a pair (N, p) as above, if an automorphism u fixes Z and has more than three fixed points on Z, then u = id. For N as above and an automorphism u of $X_0(N)$, u or uw_N fixes Z and Z'. Let $J = J_0(N)$ be the jacobian variety of $X_0(N)$, and u be an automorphism of $X_0(N)$ which fixes Z for (N, p) as above.

Proof for N = 50: Aut_Z $\tilde{\mathscr{X}} \otimes \overline{\mathbb{F}}_p \simeq \mathbb{Z}/2\mathbb{Z}$ and it is generated by the canonical involution w_{25} , see below:

Proof for N = 75: The set of the \mathbb{F}_9 -rational points on $Z (\simeq \mathscr{X}_0(25) \otimes \mathbb{F}_3)$ consists of the \mathbb{F}_3 -rational cusps C_1 , C_2 , non cuspidal \mathbb{F}_3 -rational points C_3 , C_4 , and the supersingular points. Then u acts on the set $\{C_1, C_2, C_3, C_4\}$. For $1 \neq \sigma \in \text{Gal}(\mathbb{Q}(\sqrt{5})/\mathbb{Q}), u^{\sigma}(C_i) = (u(C_i))^{(3)} = u(C_i)$, where $(u(C_i))^{(3)}$ is the image of $u(C_i)$ under the Frobenius map $Z \to Z$. Then $u^{-1}u^{\sigma}$ has more than four fixed points on Z, so that $u^{\sigma} = u$. Then by lemma 2.5, 2.8, ubelongs to the subgroup $B_0(75)$.

Proof for N = 125: Put $J_1 = J_+ = (w + 1)J$ and $J_- = (w - 1)J$, where $w = w_{125}$. Then J_- is isogenous over \mathbb{Q} to a product of two \mathbb{Q} -simple abelian varieties J_2 and J_3 with dim $J_2 = 4$, dim $J_3 = 2$, see [5, 36] table 5. The abelian varieties J_1 and J_3 are simple over \mathbb{C} , and they are isogenous with

each other over $\mathbb{Q}(\sqrt{5})$, see [18] [29]. The abelian variety J_2 is isogenous over $\mathbb{Q}(\sqrt{5})$ to a product of two abelian varieties, loc.cit. Let $V = V_J$, $V_i = V_{J_i}$ be the tangent spaces of J and J_i at the unit sections. Suppose that an automorphism u of $X_0(125)$ is not defined over \mathbb{Q} .

Claim uw = wu: Put $v = wuwu^{-1}$. Then v acts trivially on J_2 , since u acts on J_2 (see above) and w = -1 on J_2 . Suppose $v \neq id$. Let Y be the quotient $X_0(125)/\langle v \rangle$ with genus g_Y , and $(2 \leq)d$ be the degree of v. Then $g_Y \geq 4$ and the Riemann-Hurwitz formula yields d = 2 and $g_Y = 4$. Thus v acts on $V_1 \oplus V_2$ under -1, hence v = -1 on $J_1 + J_2$. Then $v(\neq w)$ is defined over \mathbb{Q} . But the non trivial automorphism of $X_0(125)$ defined over \mathbb{Q} is w, proposition 2.8.

The above claim shows that the action of u is compatible with the decomposition $V = V_1 \oplus V_2 \otimes V_3$, hence with $J = J_1 + J_2 + J_3$. Put $v = u^{\sigma}u^{-1}$ (\neq id.) for $1 \neq \sigma \in$ Gal ($\mathbb{Q}(\sqrt{5})/\mathbb{Q}$). Let Y be the quotient $X_0(125)/\langle v \rangle$ with genus g_Y , and $(2 \leq)d$ be the degree of v. As noted as above, all endomorphisms of J_1 and J_3 are defined over \mathbb{Q} , so that v acts trivially on $J_1 + J_3$. Then the Riemann-Hurwitz formula shows that d = 2 and $g_Y = 4$. Then v = -1 on J_2 , and v is defined over \mathbb{Q} . But $w \neq v$.

Proof for N = 175: Let $\alpha_i, \alpha'_i = \alpha_i^{(7)}$ $(1 \le i \le 8)$ be the supersingular points on $\mathscr{X}_0(175) \otimes \mathbb{F}_7$. Let $E(/\overline{\mathbb{F}}_7)$ be an elliptic curve with modular invariant j(E) = 1728, and A, A' be the independent cyclic subgroups of order 25 which are fixed by Aut $E \simeq \mathbb{Z}/4\mathbb{Z}$. Then $(E, A') \simeq (E/A, E_{25}/A)$, and the pairs (E, A), (E, A') represent the supersingular points, say α_1 and α'_1 , and $w_{25}(\alpha_1) = \alpha'_1, u(\{\alpha_1, \alpha'_1\}) = \{\alpha_1, \alpha'_1\}$, see below. Since u and w_{25} fix the irreducible components Z and Z', v = u or w_{25} fixes α_1, α'_1 and Z. Let T be the subgroup of Aut Z ($\simeq PGL_2$) consisting of automorphisms which fix α_1, α'_1 . Then T is the non split torus. If v does not belong to the subgroup $B_0(175)$, then u is not defined over \mathbb{F}_7 , and the order of v is 16 or divisible by 3, see lemma 2.5, proposition 2.8. In both cases as above, v acts on the set $\{\alpha_i, \alpha'_i\}_{2 \le i \le 8}$. Then v have more than three fixed points on Z. Therefore v = id., and it contradicts to our assumption.

Proof for N = 108: Any automorphism of $X_0(108)$ is defined over the class field k' = k(108)' of $\mathbb{Q}(\sqrt{-3})$, see Remark 1.12. The rational prime 31

splits in k', and $\mathscr{X}(\mathbb{F}_{31})$ consists of the cusps C_i $(1 \leq i \leq 18)$ and non cuspidal points x_i ($1 \le i \le 18$). Let u be an automorphism of $X_0(108)$. If u is defined over $\mathbb{Q}(\sqrt{-3})$, applying lemma 2.16 to p = 7, we see that u belongs to $B_0(108)$. Suppose that u is not defined over $\mathbb{Q}(\sqrt{-3})$, and let $1 \neq \sigma \in \text{Gal}(k'/\mathbb{Q}(\sqrt{-3}))$. Applying lemma 2.16 to p = 7, we see that $\# \{ \{u(C_i)\}_i \cap \{C_i\}_i \} \leq 1 \text{ and } \# \{ \{u^{\sigma}(C_i)\}_i \cap \{C_i\}_i \} \leq 1, \text{ see corollary 2.4.}$ Then $\# \{\{u(C_i)\}_i \cap \{u^{\sigma}(C_i)\}_i\} \ge 16$, hence $\# \{\{u^{\sigma}u^{-1}(C_i)\}_i \cap \{C_i\}_i\} \ge 16$. Put $\gamma = u^{\sigma}u^{-1}$ (\neq id.). Then there are cusps P_1 , P'_1 , P_2 , P'_2 such that $\gamma(P_1) \otimes \mathbb{F}_{31} = P'_1 \otimes \mathbb{F}_{31}$ and $\gamma(P_2) \otimes \mathbb{F}_{31} = P'_2 \otimes \mathbb{F}_{31}$. Consider the section $x = cl((\gamma(P_1)) - (\gamma(P_2)) - (P'_1) + (P'_2))$ of the jacobian variety J = $J_0(108)$. Then x is of finite order [13] proposition 3.2, and $x \otimes \mathbb{F}_{31}$ is the unit section. By the specialization lemma [26] §3 (3.3.2), [15] lemma 1.1, x is the unit section, so that $\gamma(P_i)$ are cusps, since $X_0(108)$ is not hyperelliptic [22]. Therefore γ belongs to $B_0(108)$, see corollary 2.4. Let J_C be the abelian subvariety $(/\mathbb{Q})$ of J with complex multiplication, and J_H be the abelian subvariety (/Q) without complex multiplication. Then dim $J_c = 6$ and dim $J_{H} = 4$ [36] table 5. All endomorphisms of J_{H} are defined over $\mathbb{Q}(\sqrt{-3})$ (proposition 1.3), so that $\gamma = \text{id. on } J_H$. Let Y be the quotient $X_0(108)/\langle \gamma \rangle$ with genus $g_{\gamma} \ge 4$, and $(2 \le)d$ be the degree of γ . The Riemann-Hurwitz formula shows that (i) d = 2, $g_Y = 4$, 5 or (ii) d = 3, $g_Y = 4$. Let J_{C_1} (resp. J_{C_2}) be the abelian subvariety (/Q) of J_C associated with the eigen forms of T_l ($l \times 6$) which have same eigen values with the new forms of level 36 and 108 (resp. 27). Then $J_C = J_{C_1} + J_{C_2}$, dim $J_{C_1} = \dim J_{C_2} = 3$, and $\operatorname{End}_{\mathbb{Q}(\sqrt{-3})} J_C \otimes \mathbb{Q} \simeq \operatorname{End} J_{C_1} \otimes \mathbb{Q} \times \operatorname{End} J_{C_2} \otimes \mathbb{Q}$, where $\operatorname{End}_{\mathbb{Q}(\sqrt{-3})}$ is the subring consisting of endomorphisms defined over $\mathbb{Q}(\sqrt{-3})$.

sign of the eigen values of (w, w)	+ +	+	- +		
values of (w_4, w_{27})	1	1	1	1	J_{H}
dimensions of	0	0	1 + 1	1	J_{C_1}
the factors	0	1 + 1	0	1	J_{C_2}

The automorphism γ acts trivially on J_H , w_4 acts on J_{C_1} under -1, and w_{27} acts on J_{C_2} under -1. Then dim ker $(w_m \gamma w_m \gamma^{-1} - 1: J \rightarrow J) \ge 7$ for m = 4 and 27. Then the Riemann-Hurwitz formula shows that $\gamma w_4 = w_4 \gamma$ and $\gamma w_{27} = w_{27} \gamma$. Put $E = (w_{27} - 1)J_{C_1}$, which is an elliptic curve $(/\mathbb{Q})$ with conductor 36, see above. Then γ acts on E under ± 1 . Therefore the second case (ii) as above does not occur. In the first case, dim $(w_m \gamma + 1)J \ge 6$ for m = 4, 27 or 108, see the above table. The same argument as above yields $\gamma = w_m$ for m = 4, 27 or 108. But w_m do not act trivially on J_H , see above, Thus we get a contradiction.

74 M.A. Kenku and F. Momose

For points x_i , $1 \le i \le r$, let $\operatorname{Aut}_{(x_i)} Z$ be the subgroup of Aut Z consisting of automorphisms which fix x_i 's.

Proof for N = 117: Let α_i , $\alpha'_i = \alpha_i^{(13)}$ $(1 \le i \le 6)$ be the supersingular points on $\mathscr{X}_0(117) \otimes \mathbb{F}_{13}$. The subgroup $B_0(117) \cap \operatorname{Aut}_Z \widetilde{\mathscr{X}} \otimes \mathbb{F}_{13}$ acts transitively on the set $\{\alpha_i, \alpha'_i\}_{1\le i\le 6}$. There are two pairs of the supersingular points, say $\{\alpha_1, \alpha'_1\}$ and $\{\alpha_2, \alpha'_2\}$, such that $\alpha'_1 = w_9(\alpha_1)$ and $\alpha'_2 = w_9(\alpha_9)$. For any $u \in \operatorname{Aut} \mathscr{X}_0(117) \cap \operatorname{Aut}_Z \widetilde{\mathscr{X}} \otimes \mathbb{F}_{13}$, there is an automorphism $\gamma \in B_0(117)$ such that $v = u\gamma$ fixes Z, α_1 and α'_1 . Note that any automorphism of $\mathscr{X}_0(117)$ is defined over $\mathbb{Q}(\sqrt{-3})$ cf. lemma 2.5. The subgroup $T = \operatorname{Aut}_{(\alpha_1,\alpha'_1)} Z$ is the non split torus, and v belongs to $T(\mathbb{F}_{13}) \simeq \mathbb{Z}/14\mathbb{Z}$. If the order of v is divisible by 7, then v^2 acts on the set $\{\alpha_i, \alpha'_i\}_{2\le i\le 6}$, and it has the other fixed points α_i, α'_i for an integer $i \ge 2$. Therefore $v^2 = id$. The automorphisms $w_{13}vw_{13}v$ and w_9vw_9v fix Z and α_1, α'_1 , since $w_{13}(\alpha_i) = \alpha'_i$. If $v \ne id$., then $T \cap \operatorname{Aut} \mathscr{X}_0(117) = \langle v \rangle$, see above. Therefore v commutes with w_9 and w_{13} . For $1 \ne \sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{-3})/\mathbb{Q})$ and m = 9, 13, $v^{\sigma}w_m =$ $(vw_m)^{\sigma} = w_m v^{\sigma}$. For $\varepsilon, \varepsilon' = \pm$, put $J_{\varepsilon,\varepsilon'} = (w_9 + \varepsilon 1)(w_{13} + \varepsilon'1)J$. Then we have the following table cf. [36] table 5.

$$(\varepsilon, \varepsilon') + + + - - + - -$$

dim $J_{\varepsilon, \varepsilon'}$ 2 1 + 2 2 + 2 1 + 1
dim $(J_{\varepsilon, \varepsilon'})^{\text{new}}$ 0 2 2 1

The old part J^{old} of J is isogenous to $J_0(39) \times J_0(39)$ [1], so that the \mathbb{Q} -simple factors of J^{old} have multiplicative reduction at the rational prime 3 and 13 [4], and the ring of endomorphisms of such a factor is generated by Hecke operators [18] [29]. Let $\gamma_j = \begin{pmatrix} 1 & j/3 \\ 0 & 1 \end{pmatrix} \mod \Gamma_0(117)$, which commutes with w_{13} . Then the twisting operator $\eta = \gamma_1 - \gamma_2$ acts on $(w_{13} + 1)J = J_{++} + J_{-+}$ [35] §4, [18, 29]. Since $\eta(J_{++})$ does not have multiplicative reduction at the rational prime 3 [18, 29], J_{-+} is isogenous over \mathbb{Q} to the product $J_{++} \times \eta(J_{++})$. Put $J_{+-} = A_{+-} + E_{+-}$ for \mathbb{Q} -rational abelian subvariety A_{+-} of dimension two and an elliptic curve E_{+-} . Then we see that η acts on A_{+-} (see above table) and that A_{+-} is isogenous to a product to two elliptic curves. We here note that any abelian subvariety of J has multiplicutive reduction at 13 [4] (above table). Now consider the automorphisms u and v. If v = id, the u belongs to $B_0(117)$. Suppose $v \neq id$.

Claim: The action of v on $J_{++} + J_{+-}$ is Q-rational: As noted as above, v acts Q-rationally on J_{++} and E_{+-} , so that v acts on J_{++} and E_{+-} under ± 1 . Denote also by v the involution of $X_{+} = X_0(117)/\langle w_9 \rangle$ (Note that v

commutes with w_9). Let $\mathscr{X}_+ \to \operatorname{Spec} \mathbb{Z}$ be the minimal model of X_+ , and $\beta_i = \operatorname{image} \operatorname{of} \{\alpha_i, \alpha'_i\}$ (i = 1, 2) be the \mathbb{F}_{13} -rational supersingular points of $\mathscr{X}_+ \otimes \mathbb{F}_{13}$. The other supersingular points on $\mathscr{X}_+ \otimes \mathbb{F}_{13}$ are not defined over \mathbb{F}_{13} . By lemma 2.5, v is defined over $\mathbb{Q}(\sqrt{-3})$, so that $v \otimes \mathbb{F}_{13}$ is defined over \mathbb{F}_{13} . As v fixes β_1 , so that v fixes also β_2 , and does not fix the other supersingular points. Let Σ be the dual graph of the special fibre $\mathscr{X}_+ \otimes \mathbb{F}_{13}$. Then $\mathrm{H}^1(\Sigma, \mathbb{Z}) \otimes \mathbb{G}_m$ is canonically isogenous to the connected component of $J_{+/\mathbb{Z}} \otimes \mathbb{F}_{13}$ of the unit section, where J_+ is the jacobian variety of X_+ [4] VI, [25] §8 (8.1). Denote also by v the involution of $\mathscr{X}_+ \otimes \mathbb{Z}_{13}$ induced by v. The action of v on $\mathrm{H}^1(\Sigma, \mathbb{Z})$ is represented by the matrix

 $\left(\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right)$

The jacobian variety J_+ is canonically isomorphic to $(w_9 + 1)J$, since the double covering $X_0(117) \rightarrow X_+$ has ramification points. Then $(v + 1)(w_9 + 1)J$ is of dimension three. As noted as above, v acts on J_{++} , A_{+-} and E_{+-} , and it acts under ± 1 on J_{++} and E_{+-} . If v = -1 on J_{++} , then v = id. on $J_{+-} = A_{+-} + E_{+-}$ (see above representation). Then vacts Q-rationally on $(w_9 + 1)J = J_{++} + J_{+-}$. Now consider the case v = id. on J_{++} . If v acts trivially on E_{+-} , then v acts on A_{+-} under -1, and its action is Q-rational. Now suppose that v = -1 on E_{+-} . Then $(v + 1)A_{+-}$ is an elliptic curve. The involution vw_{13} acts trivially on $J_{++} + E_{+-}$, and $(vw_{13} + 1)A_{+-}$ is an elliptic curve. Then the Riemann– Hurwitz formula gives a contradiction.

The above claim shows that v acts Q-rationally on $X_+ = X_0(117)/\langle w_9 \rangle$. Let C_i , $w_9(C_i)$ $(1 \le i \le 4)$ be the cusps on $X_0(117)$, and $D_i =$ image of $\{C_i, w_9(C_i)\}$ be the (Q-rational) cusps on X_+ . As $\mathscr{X}_+(\mathbb{F}_5)$ consists of the cusps $D_i \otimes \mathbb{F}_5$ cf. [4] VI 3.2, so that v sends the set $\{D_i \otimes \mathbb{F}_5\}_i$ to itself. Then v sends the set $\{C_i \otimes \mathbb{F}_5\}_i$ to itself. Therefore by the lemma 2.16, we see that v, hence u also, belongs to $B_0(117)$.

We add a result on Aut $X_0(63)$ below. It seems that Aut $X_0(63)$ will be determined by using the defining equation of $X_0(63)$ with an explicit representation of $B_0(63)$.

PROPOSITION 2.18. The index of $B_0(63)$ in Aut $X_0(63)$ is one or two. If Aut $X_0(63) \neq B_0(63)$, then there exists an automorphism u such that $u^2 = w_9, w_7 u = w_7 u$. The representation of Aut $X_0(63)$ on the tangent space of $J_0(63)$ is as follows:

$$\begin{pmatrix} 1 & 1/3 \\ 0 & 1 \end{pmatrix} \mod \Gamma_0(63) = \begin{pmatrix} 0 & 0 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 0 \\ \end{pmatrix},$$

$$\begin{pmatrix} u \\ u \\ w_9 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ \end{pmatrix}, w_7 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix}.$$

Proof. The modular curve $Z \simeq \mathscr{X}_0(9) \otimes \mathbb{F}_7$ is defined by the equation

$$j - 1728 = \frac{\{(t^2 - 3)(t^2 - 2t + 3)(t^2 + t + 3)\}^2}{t(t^2 + 3t + 3)}$$

with $w_9 * (t) = 3/t$ [6] IV §2. The cusps are defined by C_{∞} : t = 0, C_0 : $t = \infty$, C_1 : t = 1, C_2 : t = 3. Let γ_{∞} be the automorphism of $X_0(63)$ represented by the matrix $\begin{pmatrix} 1 & 1/3 \\ 0 & 1 \end{pmatrix}$ (or $\begin{pmatrix} 1 & -1/3 \\ 0 & 1 \end{pmatrix}$). Then $\gamma_{\infty} * (t) = t/(t + 4)$, since $\gamma_{\infty}(C_{\infty}) = C_{\infty}, \gamma_{\infty}(C_0) = C_1$ and $\gamma_{\infty}(C_1) = C_2$. Let $\alpha_i, \alpha'_i = \alpha_i^{(7)}$ be the supersingular points on Z defined by α_1 : $t = 2\sqrt{-1}, \alpha_2 = \gamma_{\infty}(\alpha_1)$ and $\alpha_3 = \gamma_{\alpha}(\alpha_2)$. Then w_9 fixes α_1 and α'_1 , and exchanges α_i with α'_i for i = 2, 3. On $\mathscr{X} \otimes \mathbb{F}_7 = \mathscr{X}_0(63) \otimes \mathbb{F}_7$, w_7 exchanges α_i with α'_i for i = 1, 2, 3. The automorphism groups of the objects associating to the points α_i , α'_i are all $\{\pm 1\}$, so that $\mathscr{X} \otimes \mathbb{Z}_7 \to \operatorname{Spec} \mathbb{Z}_7$ is the minimal model of $X_0(63) \otimes \mathbb{Q}_7$, see [4] VI §6. For any $u \in \operatorname{Aut} X_0(63) \cap \operatorname{Aut} Z$, there exists an element $\gamma \in B_0(63)$ such that $v = \gamma u$ fixes Z, Z', α_1 and α'_1 . The subgroup $T = \operatorname{Aut}_{(\alpha_1, \alpha_1)} Z$ is the non split torus, and w_9 belongs to $T(\mathbb{F}_7) \simeq \mathbb{Z}/8\mathbb{Z}$. Note that for any automorphisms g of $X_0(63)$, $g \otimes \mathbb{F}_7$ is defined over \mathbb{F}_7 , see lemma 2.5. The automorphism v acts on the set $\{\alpha_2, \alpha'_2, \alpha_3, \alpha'_3\}$, and it has no fixed point on this set if $v \neq id$. Therefore the order of v divides 4. If v is of order four, then for w = v or v^{-1} , w * (t) = (2t + 4)/(-t + 2), $w(\alpha_2) = \alpha_3, w(\alpha_3) = \alpha'_2$ and $v^2 = w_9$. Let Σ be the dual graph of the special fibre $\mathscr{X} \otimes \mathbb{F}_7$, and e_{2i-1} , e_{2i} $(1 \le i \le 3)$ be the paths which are associated with the points α_i and α'_i with the orientation from Z to Z'. The representation of the automorphisms on $H^1(\Sigma, \mathbb{Z})$ for the basis $x_i = e_{i+1} - e_1$ $(1 \le i \le 5)$ is as follows:

$$\begin{pmatrix} v \text{ or } v^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, v^2 = w_9 \end{pmatrix} w_9 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix},$$
$$w_7 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}, \quad \gamma_{\infty} = \begin{pmatrix} 0 & -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \end{pmatrix}.$$

Then $w_7 v = v w_7$. Put $J_{\varepsilon,\varepsilon'} = (w_9 + \varepsilon 1)(w_7 + \varepsilon' 1)J$ for $\varepsilon, \varepsilon' = \pm$. Then we have the following table [36] table 5.

 $(\varepsilon, \varepsilon')$ + + + - - + - dim $J_{\varepsilon,\varepsilon'}$ 1 2 1 + 1 0 dim $(J_{\varepsilon,\varepsilon'})^{\text{new}}$ 0 2 1 0 The abelian subvariety J_{+-} is isogenous over $\mathbb{Q}(\sqrt{-3})$ to a product of two elliptic curves. Note that any abelian subvariety of $J = J_0(63)$ has multiplicutive reduction at the rational prime 7. Changing the basis (from $\{x_i\}_{1 \le i \le 5}$ to $\{x'_i = 2x_1 + \sum_{i=2}^5 x_i, x'_2 = x_2 + x_3, x'_3 = x_4 + x_5, x'_4 = x_2 - x_3, x'_5 = x_4 - x_5\}$), we get the representation as in this proposition.

REMARK 2.19. Let $\Gamma = \Gamma(3) \cap \Gamma_0(7)$ be the modular group, and X_{Γ} be the modular curve $/\mathbb{Q}(\sqrt{-3})$ associated with Γ :

$$\Gamma = \left\{ \begin{pmatrix} a & d \\ c & d \end{pmatrix} \in \Gamma_0(7) | a - 1 \equiv b \equiv c \equiv d - 1 \equiv 0 \mod 3 \right\}.$$

Then X_{Γ} is isomorphic to $X_0(63)$ over $\mathbb{Q}(\sqrt{-3})$, since $\Gamma_0(63) = \langle g^{-1}\Gamma g, \pm 1 \rangle$ for $g = \begin{pmatrix} 3a & b \\ 21c & 3d \end{pmatrix}$ for integers a, b, c, d with 3ad - 7bc = 1. Let $B = B_{\Gamma}$ be the subgroup of Aut X_{Γ} generated by 2×2 matrices, and H be the subgroup generated by the elements $g \in \Gamma_0(7)$ with $g \equiv \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$ or $\begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$ mod 3. Then H is a normal subgroup of Aut X_{Γ} isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$ cf. proposition 2.18. Let $Y = X_{\Gamma}/H$ be the modular group $(, \to X_0(1))$, which is of genus two. Then the function field of Y is generated by the functions x and y with the relations:

$$yx^3 = y^2 + 13y + 49$$
, and $\sqrt[3]{j} = x(y^2 + 5y + 1)$

see [6] IV §2. Using the minimal model of Y over the base \mathbb{Z}_7 , by the similar argument as in the proof of the proposition 2.18, we see that the index of the subgroup B/H in Aut Y is two. Further we see that exists an automorphism g of Y which is not represented by any 2 \times 2 matrix defined by

$$g*(x) = -3/x, g*(y) = \lambda \frac{y-\overline{\lambda}}{y-\overline{\lambda}},$$

for λ , $\overline{\lambda}$ with $\lambda + \overline{\lambda} = -13$, $\lambda \overline{\lambda} = 49$, see loc. cit.. Further if $B_0(63) \neq Aut X_0(63)$, then Aut $Y = \{Aut X_0(63)\}/H$.

References

- 1. A.O.L. Atkin and J. Lehner, Hecke operators on $\Gamma_0(m)$, Math. Ann. 1985 (1970) 134–160.
- 2. Z.I. Borevich and I.R. Safarevich, *Number Theory*, Academic Press, New York and London (1966).

- 3. P. Deligne, Formes modulaires et représentation *l*-adiques, Sém. Bourbaki 1968/69, exposé n°355, *Lecture Notes in Math.* 189 (1971).
- P. Deligne and M. Rapoport, Schémas de modules des courbes elliptiques, Vol. II of the Proceedings of the International Summer School on Modular Functions, Antwerp 1972, Lecture Notes in Math. 349.
- 5. K. Doi and M. Yamauchi, On the Hecke operators for $\Gamma_0(N)$ and class fields over quadratic fields, J. Math. Soc. Japan 25 (1973) 629-643.
- 6. R. Fricke, Die Elliptischen Functionen und ihre Anwendungen, Leipzig-Berlin, Teubner 1922.
- 7. M.A. Kenku, The modular curve $X_0(39)$ and rational isogeny, *Math. Proc. Cambridge Philos. Soc.* 85 (1979) 21–23.
- M.A. Kenku, The modular curves X₀(65) and X₀(91) and rational isogeny, Math. Proc. Cambridge Philos. 87 (1980) 15-20.
- 9. M.A. Kenku, The modular curve $X_0(169)$ and rational isogeny, J. London Math. Soc. (2), 22 (1981) 239–244.
- M.A. Kenku, On the modular curves X₀(125), X₁(25) and X₁(49), J. London Math. Soc. (2), 23 (1981) 415–427.
- 11. M.A. Kenku, Rational torsion points on elliptic curves defined over quadratic fields, to appear.
- 12. S. Lang, Elliptic Functions. Addison-Wesley, Reading Math.
- Y. Manin, Parabolic points and zeta functions of modular forms, Math. USSR-Izvestija, Vol. 6, No. 1 (1972) 19–64.
- 14. B. Mazur, Modular curves and the Eisenstein ideals, Publ. Math. I.H.E.S. 47 (1977).
- 15. B. Mazur, Rational isogenies of prime degree, Inv. Math. 44 (1978) 129-162.
- 16. B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Inv. Math. 25 (1974) 1-61.
- 17. J.F. Mestre, Points rationnels de la courbe modulaire $X_0(169)$, Ann. Inst. Fourier, Grenoble 30, 2 (1980) 17–27.
- F. Momose, On the *l*-adic representations attached to modular forms, *J. Facult. Sci. Univ. Tokyo*, Vol. 28, No. 1 (1981) 89–109.
- 19. F. Momose, Rational points on the modular curves $X_{split}(p)$, Comp. Math. 52 (1984) 115–137.
- F. Momose, Rational points on the modular curves X₀(p^r), J. Facult. Sci. Univ. Tokyo, 33 (1986) 585-631.
- F. Momose, p-torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. Vol. 96 (1984), 139–165.
- 22. A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974) 449-462.
- 23. A. Ogg, Über die Automorphismengruppe von $X_0(N)$, Math. Ann. 228 (1977) 279–292.
- F. Oort and J. Tate, Group schemes of prime order, Ann. Scient. Ec. Norm. Sup. série 4, 3 (1970), 1–21.
- 25. M. Raynaud, Spécialisation du fonctor de Picard, Publ. Math. I.H.E.S. 38 (1970) 27-76.
- M. Raynaud, Schémas en groupes de type (p, ..., p) Bull. Soc. Math. France 102 (1974) 241–280.
- K.A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. Math. 101 (1975) 555-562.
- 28. K.A. Ribet, On *l*-adic representations attached to modular forms, *Inv. Math.* 28 (1975) 245–275.
- 29. K.A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, *Math.* Ann. 253 (1980) 43-62.
- 30. J.B. Rossor and L. Schoenfeld, Approximate formula for some functions of prime numbers, *Illinois J. Math.* Vol. 6 (1962) 64–94.

80 M.A. Kenku and F. Momose

- J.P. Serre, Propriétés galoissiennes des points d'ordre fini des courbes elliptiques, Inv. Math. 15 (1972) 259-331.
- 32. J.P. Serre and J. Tate, Good reduction of abelian varieties, Ann. Math. 88 (1968) 429-517.
- 33. G. Shimura, Introduction to the Arithmetic theory of Automorphic functions, *Publ. Math. Soc.* No. 11, Tokyo-Princeton 1970.
- 34. G. Shimura, On elliptic curves with complex multiplication as factors of the jacobians of modular function fields, *Nagoya Math. J* 43 (1971) 199–208.
- 35. G. Shimura, On the factors of jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973) 525-544.
- 36. Modular functions of one variable IV, Lecture Notes in Math. 476.