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Introduction

In Part 1 [8] of this paper, we studied the "relative version" of the duality
theorem in Milne [9] [10] for Z/pnZ-sheaves on smooth varieties in charac-
teristic p &#x3E; 0. In this Part II, we obtain relative duality theorems for
varieties which may have singularities.
We introduce some terminologies. Let X be a scheme over Fp. As in Part

I, we call a morphism h: T - X relatively perfect if the diagram

is cartesian, where fjx is the absolute frobenius of X defined by the map
t H tp on the structure sheaf and fjT is that of T. For example, in the case
h is locally of finite type, h is relatively perfect if and only if h is etale. Let
XFRP be the category of schemes over X which are flat and relatively perfect
over X. We regard XFRP as a site with the etale topology. (To avoid the set
theoretic difficulty that XFRp is too big, we introduce universes in the defi-
nition of XFRp in §2). Let Wx be the structure sheaf on XFRP in the evident
sense and assume X is locally noetherian. Then a coherent (9x., -module on
Xzar is naturally extended to an OX-module on XFRp, and we call an OX-module
of such type a coherent (9x-module. Fix n ~ 1, and let D(XFRP , Zlpn Z)
be the derived category of the category of all Z/pn Z-sheaves on XFRp . We
define D0(X) to be the triangulated subcategory of D(XFRP , Zlpnz)
generated by coherent (9x-modules regarded as complexes of Z/pn Z-sheaves
concentrated in degree zero. Then, D0(X) contains Z/piZ for 0 ~ i ~ n as
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is seen from the exact sequence

and thus D0(X) contains many objects rather than coherent (9,-modules.
Now let k be a perfect field of characteristic p &#x3E; 0. For a k-scheme X

locally of finite type, we shall define in (3.1) a complex Kn,X of Z/pn Z-sheaves
on XFRP. We shall prove the following theorems.

THEOREM (0.1). Let X be a k-scheme locally of finite type. Then the functor
DX = R HomZ/pnZ( , Kn,x) sends D0(X) into itself, and the natural homo-
morphism F ~ Dx 0 Dx (F) is an isomorphism for any object F in D0 (X).

THEOREM (0.2). Let f : X - Y be a proper morphism between schemes locally
of finite type over k. Then, Rf* sends Do(X) into D0(Y), and there exists a
functorial isomorphism

for objects F of Do(X).

As the reader will see, the definition of the dualizing complex Kn,X and the
proofs of (0.1) and (0.2) rest on the classical duality theory for coherent
sheaves [4]. However we need the duality theory of Ekedahl [3] and the
results in Part 1 concerning Breen’s theory [2] and relative perfections (cf.
Part 1 §1, §2).

In the introduction of Part I, the author predicted that this Part II would
be devoted to the study of the mixed characteristic case. However he found
later the above generalization of Part 1 and that Part 1 contains an insuf-
ficient point concerning the definition of the trace map (cf. (3.6)). So he is
publishing this generalization and the correction as Part II. The mixed
characteristic case will be studied in Part III.

The influence of the fundamental papers Milne ([9], [10]) on this paper is
clear. See also Gros and Suwa [12] for duality theorems in characteristic p.

In the following, p denotes a fixed prime number. For a site S and a sheaf
of rings A on S, M(S, A) denotes the category of sheaves of A-modules on
S, and D(S, A) denotes the derived category of M(S, A).

§1. Relative perfectness and flatness

The aim of this section is to prove the following result, which is necessary
to show the functoriality of the topos XFRP (cf. (2.1)).
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PROPOSITION (1.1). Let X be a locally noetherian scheme over fp such that for
any x E X, [x(x): 03BA(x)p] is fznite. Then in the category (Sch/X) of all schemes
over X, the full subcategory of X-schemes which are flat and relatively perfect
over X is stable for finite inverse limits in (Sch/X).

One can show easily that the full subcategory of relatively perfect X-schemes
is stable for finite inverse limits in (Sch/X). However, note that the flatness
is usually not stable for finite inverse limits; the equalizer of two morphisms
T’ % T between flat X-schemes is scarcely ever flat over X.
The following result (1.2) of O. Gabber is essential for the proof of (1.1).

PROPOSITION (1.2). Let X be a locally noetherian regular scheme over fp. Then,
a relatively perfect scheme over X is flat over X.

For the proof, see [8] (5.2).

LEMMA (1.3). Let X be a scheme over fp and let Y be a closed subscheme of
X defined locally by a nilpotent ideal on X. Then the restriction T H T x x Y
induces an equivalence between the category of relatively perfect schemes over
X (resp. the category offlat and relatively perfect schemes over X) and that
over Y.

Proof. The problem is local, and hence we may assume that Y is defined
by a nilpotent idéal. Then for a sufficiently large n &#x3E;_ 1, the iteration

ô i : X - X of ôx factors as X  Y  X, and the base change by g defines
the quasi-inverse of the functor T ~ T x x Y.

(1.4) Now we prove (1.1). We may assume that X = Spec (A) for a local
ring A. By taking the completion of A, we may assume that A = B/I where
B = F[[T1, ... , Tn]] for some field F over fp such that [F: FP]  00 and
for some n ~ 0, and where I is an ideal of B. It is sufficient to consider thé
inverse limit of a finite diagram consisting of affine schemes {Spec (R(03BB))}03BB
over A which are flat and relatively perfect over A. For n  1, let Spec (R(03BB)n)
be the flat and relatively perfect scheme over B/I" corresponding to

Spec (R(03BB)) over A via the equivalence (1.3). Let R(03BB)~ = lim R(03BB)n. Then Spec
(R(03BB)~) is relatively perfect over B as is seen easily by using the fact B - B;
t ~ tp is finite flat. Furthermore by [1] Appendix B (B2.2), Spec
(R(03BB)  Spec (R(03BB)~) 0B A. Since finite inverse limits of relatively perfect
schemes are relatively perfect, the inverse limit T of the induced diagram
{Spec (R(03BB)~)}03BB is relatively perfect over B. Hence by the result of Gabber
(1.2), Tis flat over B. So T QB A is flat over A, but this scheme is the inverse
limit of {Spec (R(03BB)}03BB.
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Question (1.5). The author does not know whether every relatively perfect
morphism T - X with X locally noetherian is flat.

§2. The site XFRP

We fix universes U and V such that N EUE V ([ 11 ] Ex. I) . Let X be a
U-scheme over Fp, and assume that X satisfies the following condition (S).

(S) X is locally noetherian and [K(X): 03BA(x)p]  ~ for any x E X.
We denote by XFRP the category of all U-schemes over X which are flat

and relatively perfect over X. We regard XFRP as a site endowed with the etale
topology. That is, a covering in XFRP is a family of etale morphisms
{f03BB: T03BB ~ T}03BB such that T = ~03BBf03BB(T03BB). Let XFRP be the topos of all V-
sheaves on XFRP-

In the rest of this paper, schemes, rings, and fields are assumed to be
elements of U unless the contrary is explicitly stated.
We give some lemmas concerning XFRP and FRP.

LEMMA (2.1). Let X and Y be schemes over Fp satisfying the above condition
(S), and let f : X ~ Y be a morphism. Then, the functor f* : FRP ~ YFRP
defined by f*(F)(T) = F(T x y X) for T E Ob( YFRP) has an exact left
adjoint f *, and defines a morphism of topoi (f*,f*): FRP ~ FRP. (Here we
call a functor exact if it commutes with finite inverse limits and finite direct
limits.)

This is a consequence of (1.1). The point is that the exactness of the adjoint
functor f * follows from (1.1) ([ 11 ] IV, 4.7).
We omit the proof of the following easy lemma.

LEMMA (2.2). Let X, Y and f be as in (2.1) and assume that f is a closed

immersion. Then,
(1) f*: FRP ~ YFRP is exact.
(2) For any object F of FRP, the canonical morphism F ~ f *f* F is an

isomorphism.
(3) For any ring A and for any objects F, G of D(XFRP, A), the canonical

morphism

is an isomorphism.
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REMARK (2.3). For X and Y as in (2.2), (2.2) shows that ’FRP is identified with
a subtopos ([ 11 ] Ex. IV, 9) of YFRP’ However it is not true in general that this
subtopos is the complement ([ 11 Ex. IV, 9) of the open subtopos UFRp of
FFRP where U = Y - X.

(2.4) For a scheme X over Fp satisfying (S) and for n  1, we denote by
Wn(OX) the sheaf on XFRP defined by

where Wn(OTzar) is the sheaf of Witt vectors of length n on Tzar. We prove two
lemmas concerning Wn(OX)-modules.

LEMMA (2.5). The module theoretic inverse image functor

is exact.

This follows from the flatness of Wn(OX) over Wn(OXzar) which is proved in [7]
Lemma 2.

We denote the above functor and the induced functor

LEMMA (2.6). Let X and Y be schemes over Fp satisfying (S), and let f X ~ Y
be a morphism. Then for n ~ 1 and for a quasi-coherent Wn(OXzar)-module M
on Xzar, the canonical morphisms

are isomorphisms. Here g* on the left (resp. right) side denotes the direct image
functor Xzar ~ Yzar (resp. FRP ~ FRP).

Proof. For a scheme T over Fp, let Wn(T) be the scheme (Tzar, Wn(OTzar)).
Then, for any relatively perfect scheme T over Y, the canonical morphism
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is an isomorphism by [7] Lemma 2. By using this fact, (2.6) follows from [4]
II (5.6).

§3. The dualizing functor

Let k be a perfect field of characteristic p &#x3E; 0, and fix n  1. For a

k-scheme X locally of finite type, we define and study the "dualizing com-
plex" Kn,x of Z/pnZ-modules on XFRP.

(3 .1 ) Let gn : Wn(X) ~ Spec Wn(k) be the canonical morphism, where Wn(X)
is the scheme (Xzar, Wn(OXzar)), and let g0394n(Wn(k)) be the dualizing complex on
W (X ) in the theory of coherent sheaves ([4] Ch. VI §3). Here it is important
that g0394n(Wn (k)) is a complex, not merely an object of the derived category.
Let Rn,x = (g0394n(Wn(k)))FRP. The absolute frobenius X: X ~ X is finite and
hence induces the trace morphism

([4] VI §4, VII (2.1)). By (2.6), this induces

On the other hand, for any sheaf F on XFRP, we have a canonical iso-
morphism i: (X)* F  F by

( T e Ob (XFRP)) where the last isomorphism is given by the isomorphism
T  T  XX  X induced by (YT. Let

be the composite TrX ~ 03C4-1. Note that r does not preserve the Wn(OX)-
module structures and we have C(F(a)t) = aC(t) for a local section a of
Wn(OX) and for a local section t of Rn,x, where F denotes the homomorphism
Wn(OX) ~ Wn(OX); (ao, ..., an-1) ~ (aô , ... , apn-1).
Now we define Kn,x to be the "mapping fiber" of the Z/pn Z-homo-

morphism
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So the degree i part (Kn,X)(i) of Kn,x is (Rn,X)(i) C (Rn,X)(i-1), and the dif-
ferential of this complex is given by

where 03B4 denotes the differential of the complex Rn,X.
We denote the functor

by Dx. On the other hand, we denote by D’X the dualizing functor for
coherent sheaves

The triangle

induces a natural morphism

for a bounded complex of coherent (9x.,-modules M.

(3.2) Let f : X ~ Y be a proper morphism between schemes locally of finite
type over k. Then we obtain a canonical trace morphism

as follows. The trace map of [4] VI §4 for the proper morphism
Wn(X) ~ Wn(Y) gives a commutative diagram

This defines
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Since f*Kn,X  Rf*Kn,X in the derived category, (3.2.3) induces the mor-
phism (3.2.1).

(3.3) For a smooth scheme X over k, let Wn03A9X be the De Rham-Witt
complex on XFRP’ and let vn(r)X (r ~ 0) be the subsheaf of Wn03A9rX generated
by local sections of the form d log (al ) ... d log (ar) (al , ... , a, e (OX)x).
(See [8] §4.)

PROPOSITION (3.4). Let X be a smooth scheme over k purely of dimension r.
Then, there exists a canonical quasi-isomorphism of complexes

Proof. This is deduced from the duality theory of Ekedahl ([3]) who showed
that there exists a canonical quasi-isomorphism of complexes of Wn(OXzar)-
modules

Since there exists an exact sequence

where C is the Cartier operator ([8] §4, [6] Ch. III), (3.4) follows from the
quasi-isomorphism (3.4.1) if we prove that (3.4.1) is compatible with the
actions of C. To see this, the problem being etale local, we may assume that
X is the projective r-space Prk. Then, both the Cartier operator C and the
operator on Wn03A9rXzar induced by C of g0394n(Wn(k)) are elements of

where the equalities follow from the fact that Wn03A9rXzar is a dualizing complex.
Hence, it suffices to show that the isomorphism between free W(k)-modules
of rank one
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is compatible with the actions of C. On H’(X, W03A9rXzar) the Cartier operator
C is inverse to the operator F ([5] 1, 2) as is seen from the definition of it. On
the other hand, it is easily seen that via the trace map i’: lim H0(X,
g0394n(Wn(k))) ~ W(k), the operator C on g0394n (Wn(k)) corresponds to the inverse
of F: W(k) - W(k). Since the isomorphism ’ ~  is compatible with the
actions of F, this completes the proof of (3.4).

For a smooth k-scheme X purely of dimension r, the functor R Homz/pnz
( , vn(r)X) was studied in Part 1. In particular, we have by Part 1 (6.1),

PROPOSITION (3.5). Let X be a smooth k-scheme. Then, the homomorphism
D’X(M)FRP ~ DX(MFRP) [1] (3.1.1) is an isomorph ism for any coherent OXzar -
module M.

In (4.3), we shall see that this proposition is generalized to singular varieties.

REMARK (3.6).* In Part 1 §5, for a proper morphism f: X ~ Y between
smooth schemes X and Y over k purely of dimension r and s, respectively,
1 defined the trace map

However the argument there is not sufficient. The argument was to induce

(3.6.1) from a commutative diagram

However in the derived category, a square does not determine a morphism
between mapping fibers. By the definition of the trace map of this Part II,
the right definition of (3.6.1) is given as

by using complexes. The results of Part 1 survive by this correction. For
example Part 1 (6.1 ) quoted above survives, but in fact, this result is proved
in Part 1 without using the trace map.

* See: Note added in proof (p. 270).
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§4. Proofs of the duality theorems

In this section, we prove Theorems (0.1) and (0.2) in the Introduction. Let
k be a perfect field of characteristic p &#x3E; 0.

LEMMA (4.1). Let Z be a smooth scheme over k and let i : X ~ Z be a closed

immersion. Then the homomorphism

in the derived category defined by the trace map i*Kn,X ~ Kn,z (3.2) is an

isomorphism.

Proof : In D(ZFRP, Z/pnZ), we have isomorphisms

From this we obtain a commutative diagram

where tF is the transpose of F: i* Wn(OX) ~ i* Wn(OX); (ao,... an-1) H
(ap0, ... , apn-1). Now (4.1) follows from (4.1.1) and the distinguished triangles

PROPOSITION (4.2). Let X be a k-scheme locally offinite type, and let Xred be
the reduced part of X. Then the canonical homomorphism Kn,x ~ Kn,Xred is an
isomorphism in D(XFRP, Z/pnZ). Here we identify (Xred)FRP with XFRP by (1.3).
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Proof. The problem is local and hence we may assume that there is a

closed immersion i: X ~ Z for a smooth k-scheme Z. Then, (4.1) shows

i*Kn,X  i*Kn,Xred. This proves (4.2) by (2.2)(2).
The theorems (0.1) and (0.2) are reduced to the classical duality theory for

coherent sheaves [4] by the following (4.3). (We use the trace map (3.2.1) to
define Rf* ~ DX(F) ~ DYoRf*(F) of (0.2).)

PROPOSITION (4.3). The statement of (3.5) holds if we drop the smooth assump-
tion on X and assume only that X is locally of finite type over k.

Proof. The problem being local, we may assume that there is a closed

immersion i: X ~ Z for Z smooth. By (2.2)(2), it is sufficient to prove

for any cohérent W,,«9x.,)-module M. But we have
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Note added in proof (see p. 267): A right definition of the trace map is already given in M. Gros
"Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique" for
smooth varieties (for the usual etale site, not for XFRP) (Bull. Soc. Math. France 1985).

Correction to Part 1 (added in proof ): In Lemma (5.3.2), add the assumption that a is a
non-zero-divisor of A.
The author thanks Professor W. Messing for pointing out the mistake. This Lemma (5.3.2)

is in the proof of a result of O. Gabber, but this mistake is due to the author.


