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Introduction

In this paper, we divide complete discrete valuation fields of mixed charac-
teristics (0, p) whose residue fields are not necessarily perfect, into two types
(type-I and type-II; for the definition, see § 1 (1.3)), and show that there is
much différence between the structures of Milnor K-groups and between the
abelian extensions for these two types.

Let K be a complete discrete valuation field and A be the valuation ring
of K with the maximal ideal mA and the residue field F. We do not have a

satisfactory ramification theory of K unless F is perfect. One way to study
the ramification (especially wild ramification) in the imperfect residue field
case, is to use local class field theory of Kato and Parsin and to study Milnor
K-groups Kq (K) for q  1 (cf. [10] or §3; for the definition of Milnor
K-groups, cf. Conventions). For i  1, we denote by Uq (resp. V,) the
subgroup of the q-th Milnor K-group KMq(K) generated by the elements of
the form {1 + a, b1,..., bq-1} such that a E mAi and bj E A* (resp.
bj ~ K*) for 1  j  q - 1. Then, we have Vi+1q ~ Uiq ~ Viq for i  1 (cf.
§2). When F is perfect, the group we consider is KM1(K) = K*, in which case,
Ui1(= VI) corresponds to the i -th upper ramification group of the maximal
abelian extension of K (cf. [ 17], [18]) and it is clear that Ui1/Ui+11 ~ F. By
analogy with the perfect residue case, it seems fundamental to know the

structures of Viq/Vi+1q for i  1. If K is of equal characteristic, the structures
of Vq il vq+ 1 are determined and described in terms of the residue field F (cf.
[1]). But in the case of mixed characteristics, the appearance of them is quite
différent, it depends on whether K is of type-I or type-II for large i.

In the following, we always assume that K is of mixed characteristics with
residue field F. In §2, we will have,

THEOREM 1. Suppose that K is of type-I (resp. type-II and F has a finite p-base
of order q - 1). Let Uq and Viq be the subgroup of Kq"(K) as above. Then, we
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have Uq - hq (resp. Uiq = Vi+1q) for sufficiently large i. In particular, in resp.
case, for sufficiently large i such that (i, p) = 1, we have Viq/Vi+1q = 0.

We remark that if K is of equal characteristic p &#x3E; 0 and F has a finite p-base
of order q - 1 &#x3E; 0, we have Viq ~ Uiq if p|i, and Uiq ~ hq+ 1 if i is prime to
p, hence Viq/Vi+1q ~ 0 for all i (cf. [1]).

By using the above theorem, we will see phenomena about abelian extensions
of K that we do not encounter in the perfect residue field case. For example
(cf. Th. (3.1)),

COROLLARY 2. Let K be of type-II. Then, there is no totally ramified cyclic
extension of degree pn if n is sufficiently large.

Recall that this never happens if the residue field F is perfect. In fact, in that
case, there is a totally ramified 7p-extension of K.

The above Theorem 1 has the following (semi-)global application. Let X
be a proper smooth variety over a local field k which has good reduction.
(Here, a local field means a finite extension of the p-adic number field Qp.)
In §4, we define a kind of idele class group SKtop1 (X) which has an explicit
presentation by Milnor K-groups. This group approximates the abelianized
fundamental group 03C0ab1(X) by class field theory of X. We have a commutative
diagram

where the map labeled N is the norm map (which will be defined in §4) and
the vertical arrows are the reciprocity maps which have dense images. The
next theorem is considered as the local field version of the finiteness of

CH0(Y)deg0 (the degree zero part of the group of zero cycles modulo rational
equivalence) for a proper smooth variety Y over a finite field.

THEOREM 3 (cf. Th. (4.2.2)). The norm map: SKtop1(X) ~ k* has finite kernel.
Further, the natural map: 03C0ab1(X) ~ Gal(kab/k) has finite kernel.

The second statement can also be proved by using the Albanese variety (cf.
[2] Prop. (2.4)), but here, we give a purely class field theoretic proof of this
result. In the case of dim X = 1, Coombes [5] studied the etale coverings of
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X by using a différent definition of SKtop1(X). It is due to him to analyze the
idele class groups by using the "n-adic" filtration.

Conventions

For a ring R, R* denotes the group of all invertible elements in R. For
q  0, the q-th Milnor K-group Kq (R) is defined to be (R* Q9 ... Q9 R*)/J
where J is the subgroup generated by the elements of the form al Q ... Q aq
such that ai + aj = 1 for some i ~ j. The class of a1 ~ ... ~ aq is denoted
by {a1,...,aq}.
For a complete discrete valuation field K of mixed characteristics

(0, p), vK denotes the discrete valuation and ex denotes the absolute rami-
fication index (= vK(p)). A finite extension L/K is called fiercely ramified
if [L : K] - [M:F]insep where M and F are the residue fields of L and K,
respectively.
For a scheme T, 1: (resp. T i ) denotes the set of all points of dimension i

(resp. codimension i ) in T.

§1. Définition of type-1 and type-II

Let K be a complete discrete valuation field of mixed characteristics (0, p)
and A, mA and F be the valuation ring, the maximal ideal and the residue
field, respectively. We denote by S2Â the absolute differential module

(= 03A91A/Z) and 1A is defined to be the completion of 03A91A with respect to the
mA-adic topology. We shall describe the structure of this A-module in order
to define the notion of type-I and type-II.
An A-module M is called pro-free if it is the mA-adic completion of a free

A-module.

LEMMA (1.1). Let I be a p-base of F. For any lifting  of I and any prime
element Te of A, 1A is topologically generated by the elements dn and dt (t ~ ).
More precisely, 1A is a quotient of a pro-free A-module with a base (dn, dt
(t ~ )) by an A-submodule generated by one element of the form a ’ dn +
03A3t ~ bt · dt where a, bt ~ A and a ~ 0. Put m = inf{vK(a)} ~ {vK(bt)|t ~ }.
Then, as an A-module, the torsion part (1A)tors of 1A is of finite length m, and
generated by the element (03C0-ma)d03C0 + 03A3t~(03C0-mbt)dt.

Proof. By [4] IX §2 Th. 1, there exists a Cohen subring Ao of A containing
 (this means that Ao is a complete discrete valuation subring containing 1
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such that p is a prime element of Ao and A0/pA0  A/mA = F). Since Ao is
formally smooth over Z ([7] Chap. 0 Th. (19.8.2)), 03A91A0 ~ 7Llpn is a free

Aolpn-module (loc. cit. Cor. (20.4.1)), and we can take dt (t E 1) as its base,
namely,

Let f(T) be a monic minimal polynomial over Ao of some prime element n
of A. Note that A = A0[T]/(f(T)). The exact sequence

satisfies the Mittag-Leffier condition, so the inverse limit of this sequence is
still exact. Thus, 1A is topologically generated by the elements dn and dt
(t E 1) having the one relation which comes from d(f(t)) = 0. We write this
relation of the form a - dn + 03A3t~bt · dt = 0 in Ûl . Note that a = f’(03C0),
hence a =1- 0. The assertions of Lemma (1.1) follows from these facts.

COROLLARY (1.2). The following conditions are equivalent.
(i) The natural homomorphism (Û’A),.rs ~ 03A91F is the 0-map.
(ii) For a lifting Î of a p-base of F and a prime element n of A, we have a

relation in 1A of the form a dn + LtElbt. dt = 0 such that vK(a) 
vK(bt) for all tEl

DEFINITION (1.3). We call K of type-I if one of the equivalent conditions in
Corollary (1.2) is satisfied. Otherwise, we call K of type-II.

EXAMPLE (1.3.1). If F is perfect, we have 03A91F = 0, therefore, K is of type-I by
(1.2) (i).

EXAMPLE (1.3.2). Suppose that we have a relation in 1A a - dn + EtEÎbt ’ dt =
0 (a =1- 0) for some prime element 03C0 and for some lifting 1 of a p-base. We
put m = inf t~(vK(bt) - vK(a)). Then, L = K(p~03C0) is of type-I if and only
if m  eK + 1. For example, let K = Frac(Zp[T](p)) be the fraction field of
the completion of the local ring of 7Lp[T] at the prime ideal ( p) where T is
a variable. Then K(ppT) is of type-II and K(pp(1 + pT)) is of type-I.

PROPOSITION (1.4). Let Klk be an extension of complete discrete valuation
fields of mixed characteristics whose valuation rings we denote by A and R,
respectively. If A is formally smooth over R, K and k are of the same type.
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Proof. Since A is formally smooth over R, S2Â,R is a pro-free A-module ([7]
Cor. (20.4.11)) and the following sequence is exact and splits (loc. cit. Prop.
(20.7.18)).

Thus, we have (QA)tors = (QR @ A)tors . This shows that a generator of (1R)tors
is still a generator of (1A)tors. On the other hand, let F (resp. F0) be the
residue field of A (resp. R). Since the extension F/Fo is separable, 03A91F0 ~ 03A91F
is injective. So, we obtain the proposition from Corollary (1.2) (i).

COROLLARY (1.5). Suppose that there exists a discrete valuation subfield k of
K such that a prime element of the valuation ring R of k is still a prime element
of A and the residue field of k is perfect. Then, K is of type-I.

Proof. This follows from Proposition (1.4) and Example (1.3.1).

COROLLARY (1.6). If L/K is tamely ramified, K and L are of the same type.

Proof. By Proposition (1.4), we may assume that the residue field F of K is
separably closed. In this case, L is defined by the equation Xi = 03C0K where
i is an integer prime to p and 03C0K is a prime element of A. Then, a solution
1tL of this equation is a prime element of the valuation ring B of L. If in 1A
we have a relation a d03C0K + LtEÏbt . dt = 0, then in Q1 we have ai03C0i-1L · d03C0L +
03A3t~bt · dt = 0. This corollary follows from the fact that 0  vL(i03C0i-1L)  i,
and that VL (a) and VL (bt) (t ~ ) are divisible by i.

PROPOSITION (1.7). Let L/K be a totally ramified (resp. fiercely ramified cf.
Conventions) extension. If K is of type-II (resp. of type-I), L is of type-II (resp.
of type-I).

Proof. Let B be the valuation ring of L. This proposition is immediate from
the following claim.
(1.7.1) In each case, the natural homomorphism: (1A)tors ~ B ~ (QB)tors IS

surjective.
For the proof of (1.7.1), we only consider the case when L/K is totally
ramified. The other case can be proved by the same method. Let a dn +
LtEÏbt . dt be a generator of (1A)tors. Since K is of type-II, at least one of bt
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is a unit. Note that since L/K is totally ramified, Q1 is topologically gener-
ated by dnL and dt (t e Î) where 03C0L is a prime element of B (cf. Lemma (1.1)).
Put dn = et. dnL + 03A3t~03B2t · dt in Q1. The elements a and /3t of B are divis-
ible by 03C0L. In fact, vL(03B1) = lengthB(03A91B/A) and by considering the above relation
in 03A91F, we have 03B2t ~ 0 (mod 03C0L). Now, the element a . dn + 03A3t~bt · dt =
aa ’ dnL + LtEl(aPt + bt) ’ dt belongs to (Q1)tors and generates this group
because a/3t -f- bt is a unit when bt is a unit. Thus, we obtain (1.7.1).

Q.E.D.

§2. Milnor K-groups

In this section, we study the structures of Milnor K-groups of complete
discrete valuation fields of mixed characteristics.

Let K, A, F, mA be as in §1. First, we define two filtrations on the q-th
Milnor K-group Kq (K). For i  1, UiKMq(K) (resp. VIKq (K)) is defined to
be the subgroup generated by the elements of the form {a1, ... , aq} such
that al - 1 EmAi,a2’... , aq ~ A* (resp. a1 - 1 ~ miA, a2,..., aq ~ K*).
For an element a (~ 1) of A and a prime element n, we can verify the formula

It follows that

On the subquotients of these groups, for a fixed prime element n, there are
surjective homomorphisms (cf. [10] §1.3 Lemma 6).

Here, (2.1.1) (resp. (2.1.2)) is defined by
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where ~ means a lifting to A. In [1] ] and [3], kernels of these homomor-
phisms are determined in equal characteristic case and for i  eKp/(p - 1)
in mixed characteristic case. In this paper, we cannot determine their

kernels for i &#x3E; eKp/(p - 1), but will see that the appearance of the
subquotients for sufficiently large i is much different from the above known
cases.

THEOREM (2.2). We put lengtha = m.
(i) For q  0, if K is of type-I, ViKMq(K) = UiKMq(K) for i &#x3E; inf (2(m + 1),
m + 1 + expl(p - 1)).

(ii) Suppose that F has a finite p-base of order q - 1. If K is of type-II we
have UiKMq(K) = Vi+1KMq(K) for i &#x3E; inf (2m, m + eKp/(p - 1)).

REMARK (2.3). In the case q = 1 (namely, the case of KM(K) - K*), we
have always U’ = V’ and Uil Ui+1 

= F for i  1. Compared with this, the
group KMq(K) for q  2 is much more complicated and interesting. For
example, assume that K is of type-II and F has a finite p-base of order q - 1.

Then, for i ~ 0 and (i, p) = 1, we have griV = Vi/Vi+1 = o! In fact, if i is
prime to p, V’l U’ is generated by the classes of the elements of the
form {1 + u103C0i, u2, ..., uq-1, 03C0} with u1, ..., uq-1 ~ A*, which is equal
to - i-1{1 + UI ni, u2 , ... , uq-1, - u1}. This shows that VilUi = 0
(i-1 makes sense because Vi/Ui is a p-torsion group.). On the other hand, we
have U’ = V’+1 by the theorem. Hence, Vi/Vi+1 

= 0.

For the proof of the theorem, we need the following two lemmas. We denote
by q-1A the completion of 03A9q-1A(=(q - 1 )-th exterior power of 03A91A over A).

LEMMA (2.4). For a prime element n of A and j  1, there is a surjective homo-
morphism j: q-1A ~ UjKMq(K)/V2jKMq(K) which sends a - dbl 039B ··· A dbq-l 1
to {1 + ab1 ..... bq-103C0j, b1, ..., bq-1} for a ~ A and b1, ..., bq-1 ~ AB{0}.

LEMMA (2.5). For an element c of A such that VK(C) &#x3E; eK/(p - 1), there
exists a homomorphism

such that expc (a - db1 A - - - A dbq-1) = (exp (pcab1 ····· bq-1),
b1, ... , bq-1} for a E A and b1, ... , bq - 1 E AB{0}. Here, U1 KMq(K) means
the completion with respect to the topology defined by the filtration UiKMq (K),
exp is the exponential homomorphism T H 03A3~n=0 Tn/n!. (Recall that for
j &#x3E; eKI(p - 1), exp: mjA ~ A* is well-defined.)
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Proof of lemmas. We use an exact sequence: 0 ~ N ~ A~q  03A9q-1A ~ 0
where 03C8(a ~ b1 ~ ··· ~ bq-1) = adbl 039B ··· 1B dbq-l 1 and N is the sub-
group of A~q generated by the elements of the form
(i) a ~b1b2 ~ c1 Q ... Q9 Cq-2 - ab ~ b2 ~ c1 ~ ··· ~ cq-2 - ab2 ~

bl ~ c1 0 ’ ’ ’ 0 cq-2 and
(ii) a Q9 bl ~ ··· ~ bq-l where bi = bj for some i ~ j.
First, we shall prove Lemma (2.4). This presentation of 03A9q-1A 1 implies the
existence of a homomorphism 03A9q-1A ~ UjKMq(K)/V2j KMq(K) as in (2.4). In
fact, we have {1 + ab03C0j, b} = -{1 + ab03C0j, -a03C0j}, therefore, the appli-
cation A~q ~ UjKMq(K)/V2jKMq(K) which sends a ~ b1 ~ ··· · ~ bq-1 to

{1 + ab1 ····· bq-103C0j, b1, ..., bq-1}, is a homomorphism. It is trivial that
its kernel contains N. Its surjectivity is clear by the definition of the homomor-
phism. Finally, since the target group is annihilated by some power of p,
we may replace 03A9q-1A by S2Â-1. This completes the proof of Lemma (2.4).
By the same method as above, for the proof of Lemma (2.5), it suffices to

show that the application A ~ U1KM2(K) which is defined by x H
{exp ( pcx), x} is a homomorphism, namely, additive.
We use the formula exp (T) = 03A0m1(1 - Tm)-03BC(m)/m (cf. [6] Chap.III §1)

where J1 is the Môbius function. Let P be the set of all natural numbers prime
to p. We put E(T) = IlmEP(1 - Tm)-03BC(m)/m e Z(p) [[T]]. Then, by the formula
above, we have

Therefore,

Here, the multiplication by m-1 makes sense since UIKq (K) is naturally
considered as a 7Lp-module. We may assume K contains a primitive p-th root
of unity C. Indeed, this follows from the fact that there is a norm homo-
morphism N: KMq(K(03B6)) ~ KMq(K) such that N ~ i = [K(03B6): K] where

i:KMq(K) ~ KMq(K(03B6)) is the natural map. We shall calculate the second
term. From 1 - (cx)pm = 03A0p-1i=0(1 - (cx03B6i)m), we obtain
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It follows that

Thus, we have only to show the following lemma.

LEMMA (2.5.1). The application A - A*/(A*)P which sends x to the class of
E(cx) is a homomorphism.

Proof. In Q[[T]], we have exp(T) = E(T) (mod deg p), hence, the total
degree of E(Tl + T2 ) - E(T1)E(T2) in Q[[T1, T2]], a posteriori, in Z(p)[[T1, T2]]
is not less than p. This shows that E(c(x + y)) - E(cx)E(cy) (mod cP).
Since 1 + mA’ c (A*)P for j &#x3E; eKp/(p - 1), this completes the proof of
Lemma (2.5.1). Q.E.D.

We now proceed to the proof of Theorem (2.2). Let K be of type-I. We shall
show that ViKMq(K) = UiKMq(K) for i &#x3E; 2(m + 1). By Lemma (1.1),
we have in 1A a · d03C0 + 03A3t~bt · dt = 0 such that m = vx(a)  vK(bl).
By the homomorphism Qj where j = i - m - 1, this relation induces in

KMq(K)/V2j KMq(K) {1 + ac1 ..... cq-203C0i-m, c1, ..., cq-2, 03C0} = -03A3t~{1 +
tbtc1 ..... cq-203C0i-m-1, c1, ..., cq-2, t} with c1, ..., Cq-2 E AB{0}. This
shows that ViKMq(K) ~ UiKMq(K) + V2jKMq(K). But V2jKMq(K) is con-

tained in UiKMq(K) because 2j = 2(i - m - 1) &#x3E; i . Thus, we have

ViKMq(K) = UiKMq(K). For i &#x3E; m + 1 + eKp/(p - 1), using the homo-
morphism expc (cf. Lemma (2.5)) where vK(c) = i - eK - m - 1 instead

of j, we have ViKMq(K) = UiKMq(K). Thus (i) has been proved.
Next, we proceed to the proof of (ii). Let K be of type-II and (ti)1iq-1

be a lifting of a p-base of F and i &#x3E; 2m. By the same method as above, the
relation on n and ti in 1A implies by ot-m in Lemma (2.4) that the elements
of the form {1 + cni, tl, ..., tq-1} belong to Vi+1KMq(K) + V2(i-m)KMq (K) =
Vi+1KMq(K). On the other hand, by (2.1.2), UiKMq(K)/Vi+1KMq(K) is gener-
ated by the elements of this form. Hence, we have UiKMq(K) = Vi+1 KMq(K).
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Using exp, in Lemma (2.5), we have UiKMq(K) = Vi+1KMq(K) for i &#x3E; m +

eKp/(p - 1). Q.E.D.

§3. Cyclic extensions of complète discrète valuation fields

We use the same notation as in § 1 and §2. In this section, we prove the
following two theorems by using Theorem (2.2) in §2. We put ôi =
inf (2(m + 1), m + 1 + eKp/(p - 1)) and 03B42 = inf (2m, m + eKPI(p - 1))
where m = lengthA(1A)tors. Recall that for i &#x3E; 03B41, ViKMq(K) = UiKMq(K)
(resp. for i &#x3E; 03B42, UiKMq(K) = Vi+1KMq(K)) when K is of type-I (resp.
type-II) and F has a finite p-base of order q - 1.

THEOREM (3.1). Let L/K be a cyclic extension of degree pn. If K is of type-II
(resp. type-I) and L/K is totally (resp. fiercely) ramified, we have n  03B42(n  JI).

REMARK (3 .1.1 ). The assertion for type-I in Theorem (3.1) is already known.
In [16] and [8], for any cyclic extension L of K with residue field M, it was
proved that [M : F]insep is smaller than some constant dependent only on K.
But the proofs of their theorems are completely different from ours, and our
proof of type-I case and type-II case proceeds in parallel, so here, we treat
type-I case together with type-II case to emphasize a symmetry between
them.

REMARK (3.1.2). Let K be a complete discrete valuation field of equal
characteristic. In this case, we fix a discrete valuation sub-field k c K such
that K/k is separable (not necessarily algebraic) and the residue field of k is
perfect. Then, we can define the notion of type-I and type-II over k. Namely,
K is called of type-I over k if the natural homomorphism: (1A/R)tors ~ fl, F is
the 0-map where A and R are the valuation rings of K and k, respectively.
Otherwise, K is called of type-II. Theorem (3.1) still holds if we make
an additional assumption. Let L/K be a totally (resp. fiercely) ramified
cyclic extension and assume that K is of type-II (resp. type-I) and that there
exists an element g of R such that dg generates Q1 as an R-module and
g E NLIK(L *). Then, the degree of L/K cannot be greater than some constant
dependent only on K and k.

Next theorem is similar to (3.1), but says that it is difficult to extend a fiercely
(resp. totally) ramified cyclic extension of a field of type-I (resp. type-II) to
any cyclic extension of larger degree. For a cyclic extension L/K of degree
p with Galois group G, we define the ramification number s(LIK) to be
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infx~L*vL(s(x)x-1 - 1) where s is a generator of G. In the terminology of
[18], if L/Kis totally (resp. fiercely) ramified, s(LI K) = i - 1 (resp. i) where
i = inf {j|Gj = 0}.

THEOREM (3.2). Let M/Kbe a cyclic extension of degree p such that s(MIK) &#x3E;

eM/p(p - 1). If K is of type-I (resp. type-II) and MIK is fiercely ramified
(resp. totally ramified), there is no cyclic extension LIK of degree pn such that
LIK contains MIK and n &#x3E; [J1IeK] + 1 (resp. [J2IeK] + 1).

REMARK (3.2.1). Let K be a complete discrete valuation field containing a
primitive p-th root of unity and MIK be an extension defined by the equation
Xp = a. Let U’(K*lp) be the filtration on K*lp induced from UiKM1(K).
Then, S(MIK) &#x3E; eM/p(p - 1) if and only if a ~ UeK(K*/p).

REMARK (3.2.2). Let L/K be a cyclic extension of degree a power of p which
does not contain unramified extensions. If [L : K] is sufficiently large, there
exist intermediate fields K’ and K’1 such that [K’1: K’] = p and s(K’1/K’) &#x3E;

eKÍlp(p - 1) (cf. [8] Lemma (4-1)). So, Theorem (3.2) also contains the fact
that there is no fiercely (resp. totally) ramified cyclic extension of a field of
type-I (resp. type-II) having a large degree.

For the proof of the theorems, we do not use local class field theory of Kato
and Parsin directly, but the idea of the proof deeply depends on their theory.
We will use the notation in [10] and [11], which we explain rapidly. For a
field k of characteristic ~ p, we denote by Hqpn(k) the Galois cohomology
group Hq(k, Z/pn(q - 1)) where (q - 1) means the Tate twist. If k is of
characteristic p &#x3E; 0, we define

where Wn03A9k is the De Rham-Witt complex [9] and F is the operator of De
Rham-Witt complex as usual (cf. [9] p. 569). Note that there is an isomor-
phism H1pn(k) = Hl (k, 7Llpn) (cf. [18] p. 163).
When char(k) ~ p (resp. char(k) = p), by composing the cohomological

symbol: KMq(k) ~ Hq(k, Z/pn(q)) (resp. the differential symbol: KMq(k) ~
Wn03A9qk) (cf. [11], [3]), the product structure of Galois cohomology (resp. De
Rham-Witt complex) defines a pairing

Hspn(k) ~ KMq(k) ~ Hs+qpn(k).
Now, we return to the situation of theorems. Since A is a direct limit of
complete discrete valuation rings A; whose residue fields are of finite tran-
scendence degree over Fp, a relation in 1A comes from one of S2Â, for some
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i. So we may assume that A and Ai are of the same type and lengthA(1A)tors =
lengthAl(1Al)tors. Thus, we may assume F has a finite p-base. Put [F:Fp] =
pq-1  00. Consider the pairing

This group Hq+1pn (K) is rather "small". Let i be the composite of two
canonical homomorphisms Wn(F) ~ H1pn(F) ~ H1pn(K). We fix a prime
element 03C0 and define a homomorphism iq: Wn03A9q-1F ~ Hq+1pn (K) such that
iq(a. dlogbl A ... 1B d log bq-1) = 03C8(i(a) ~ {1, ..., q-1, 03C0}) where i
is a lifting to A. This homomorphism is independent of the choice of n and
induces an isomorphism Hqpn (F)  Hq 1 (K) ([11] Th. 3). Therefore, we have:

LEMMA (3.3.2). For any prime element n and any lifting of a p-base (ti)1iq-1,
there exists a surjective homomorphism Wn(F) ~ Hq+1pn (K) which sends a to
03C8(i(a) ~ {t1, ..., tq-1, 03C0}).

Concerning Hq+pn 1 (K), we also use the fact that the exact sequence 0 ~ 7LI
pn-1(q) ~ Z/pn(q) ~ Z/p(q) ~ 0 induces an exact sequence ([11] Lemma 8)

Let x E H1pn(K) be a character of order pn . By the pairing (3.3.1), x defines a
homomorphism ~~: KMq(K) ~ Hq+1pn (K).
For a finite extension L/K, there is a norm map NL/K:KMq(L) ~ Kf(K).

We will use the following properties:
(i) NLIK’S compatible with the corestriction map in Galois cohomology by

the cohomological symbol.
(ii) NL/K(U1KMq(L)) ~ U1KMq(K) and NL/K(Vei KMq(L)) c ViKMq(K) for

i &#x3E; 0 where e is the ramification index of L over K (for the proof, cf.
[10] §1.2 Lemma 3, [12] Prop. 2).

By the property (i) above, we have NLIKK:(L) c Ker ~~ where LIK is the
extension corresponding to x.
We will need two more lemmas. A finite extension L/K is called purely

wildly ramified if any subextension of L/K is wildly ramified.

LEMMA (3.3.4). Let x E H1pn (K) be a character such that the extension attached
to x is purely wildly ramified. Then, the homomorphism ~~: KMq(K) ~ Hq+ 1 (K)
defined by X as above is surjective. More precisely, ~~(U1KMq(K)) = Hq+1pn(K).
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Proof of the lemma. Let M/K be the subextension of degree p. The following
diagram is commutative.

Here, the bottom row is an exact sequence (3.3.3) and the corestriction map
CorM/K: Hq+1pn-1(M) ~ Hq+1pn-1(K) is surjective because the cohomological dimen-
sion of K  q + 1 ([11] Th. 2). Considering NM/K(U1 KMq(M)) ~ U1KMq(K),
this lemma is reduced to the case n = 1. In this case, the lemma follows from

Lemma (3.3.2) and [10] §3 Lemma 15. Q.E.D.

LEMMA (3.3.5). Let x and qJx be as above. If the extension attached to X is totally
(resp. fiercely) ramified, the images of ViKMq(K) and UiKMq(K) (resp.
UiKMq(K) and Vi+1KMq(K)) by the homomorphism qJx coincide , for i  1.

Proof of the lemma. Let LIK be the extension corresponding to x. It suffices
to show the following claim.

If ~ is totally ramified, the above is clear because we can take a prime element
03C0 which is a norm from L, and ViKMq(K)/UiKMq(K) is generated by the
elements of the form {1 + ani, ci ..., cq-2, nl with a, cl , ..., cq-2 ~ A* (cf.
(2.1.1 )). In the fiercely ramified case, we prove (3.3.6) by induction on the
degree of L/K. Let M/K be the subextension of degree p. Then, we can take
a lifting of a p-base (ti)1iq-1 such that t1 = NM/K(t’) where t’ E M*. As
above, UiKMq(K)/Vi+1KMq(K) is generated by the elements of the form

{1 + a03C0i, t1,...., tq-1} with a ~ A (cf. (2.1.2)). Since {1 + ani,t’,t2’ ..., tq-1}
is in Vi+1KMq(M) + NLImKqm(L) by induction on [L:K], the claim follows
from the fact that NM/K(Vi+1KMq(M)) c Vi+lKq m(K).

For the proof of the theorems, we may replace F by a separable extension
which preserves a p-base. So, we may assume that Hp (F) - Hq+1p(K) ~ 0
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(For example, replace F by F(~n1{Tp-n}) where T is a variable.). The exact
sequence (3.3.3) shows that Hq+1pn (K) has an element of order pn.

Proof of Theorem (3.1). Let L/K be as in Theorem (3.1) and X be the character
corresponding to L/K. Since the argument proceeds in parallel, we only con-
sider the case when L/K is totally ramified and K is of type-II. By Lemma
(3.3.4), we obtain a surjective homomorphism ~~: U1KMq(K) ~ Hq+1pn(K).
On the other hand, by Theorem (2.2) and Lemma (3.3.5), we know that

the images of UiKMq(K) for i &#x3E; J2 by ~~ all coincide. Since UiKMq(K) c
pnKq (K) for sufficiently large i, this implies that ~~ induces a surjective
homomorphism U1KMq(K)/U03B42+1KMq(K) ~ Hq+1pn (K). The fact that

UiKMq(K)/Ui+1KMq(K) is annihilated by p for all i  1 and the target group
has an element of order pn, implies the inequality 03B42  n. Q.E.D.

Proof of Theorem (3.2). As above, we may assume that [F: Fp] = pq-1  00

and Hq+1p (K) ~ 0. Let 03C8 be a character corresponding to M/K and consider
the homomorphism ~03C8: KMq(K)/NM/KKMq(M) ~ Hq+1p(K). We put t =

FMIK - s(M/K) where FMIK is the degree of the residue extension of M/K. If
M/K is fiercely ramified (resp. totally ramified), we have ~03C8 (VtKMq(K)) =
Hq+1p(K) and ~03C8(UtKMq(K)) = 0 (resp. ~03C8(UtKMq(K)) = Hq+1p(K) and
~03C8(Vt+1KMq(K)) = 0) (cf. [10] §3.3 Proofs of Prop. 2 and Th. 1).

Let x E Hp + 1 (K ) be a character such that the cyclic extension L attached
to x, contains M. The commutative diagram

implies that pn-1~~(Vt) ~ 0 and pn-1~~(Ut) = 0 (resp. pn-1~~(Ut) ~ 0
and pn-1~~(Vt+1) = 0). Since the assumption on s(MIK) implies t &#x3E; eKI
( p - 1), we have pn-1Ut = Ut+eK(n-1) and pn-1 Vt = VI + eK(n - 1).
Let K be of type-I (resp. type-II). By Theorem (2.2), we have Vi = us

(resp. Il’ = Vi+1) for i &#x3E; JI (resp. J2). Therefore, t + eK(n - 1) cannot be
greater than ô, (resp. 03B42). Hence, eK(n - 1)  03B41 (resp. Ô2), which implies
n  [JlleK] + 1 (resp. [03B42 /eK] + 1).

§4. A global application

(4.1) In this section, we prove Theorem 3 in Introduction as a (semi-)-
global application of Theorem (2.2) (i) which asserts Ui = Vi for sufficiently
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large i in the case of type-I. We will use the class field theory of varieties over
a local field. We cannot find an adequate reference for it, but it is not our
aim to explain the construction of class field theory, so we omit the details
of the proof concerning the construction, for example, of the reciprocity
laws and the residue theorems etc. The proofs are essentially the same as in
the case of the class field theory of schemes of finite type over Z in [14].

Let k be a complete discrete valuation field of mixed characteristics (0, p).
We denote by R the valuation ring of k and assume that its residue field F
is perfect. Let X be a proper smooth scheme over R which is geometrically
connected and purely of relative dimension d, and let X = X Q9 R k and
y = X OR F. In the following, 03C0 always denotes a prime element of R.
Let KMq(Ox) be the sheaf of Milnor K-groups for q  1. (For a scheme T,

the sheaf of Milnor K-groups Kq«9T) is defined to be the sheaf associated
to the presheaf U H KMq(0393(U, OT)).) For i  0, a sheaf KMq (Ox, ni) on X is
defined to be Ker (KMq (Ox) ~ KMq (Ox/03C0i)). The objects we consider in this
section are the following groups. For q  1, we define I;OP(X, X) or simply
Itopq (X) by

where the cohomology group at the right hand side is the Zariski cohomology
with support on Y. There exists a natural filtration on Iq°p (X ) induced by the
definition. Namely, we define Ui Iq°p for i  0 as follows.

This group has an explicit presentation by Milnor K-groups, and can be
considered as an idele class group, which we explain briefly.

Let F be a sheaf on JGZar . Then, the spectral sequence

yields the following exact sequence

because Hd+1x (X, g-) = 0 for x E Yp with p  d. For a scheme T of dimen-
sion r, we define a P-chain to be a sequence P = ( po , ... , pr) of points of
T such that pi E T and {p0} ce ... ~ {pr}. Applying the localizing sequences
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repeatedly, we have a surjective homomorphism ~P(F)pd+1/(F)pd ~
Hd+1x(X, F) where P runs over the P-chains of X of the form P =
(x, p1,..., pd+1). Let K be the function field of X and for a P-chain
P = (p0,..., pd+1) ofX, we denote by Kp the field K which is regarded as
a discrete valuation field by the discrete valuation defined by Pd. Let ~ be the
generic point of Y. By the fact described above, we have a surjective
homomorphism

Here, P’ (resp. P) runs over the P-chains such that p’d ~ ~ (resp. pd = 11),
and for a discrete valuation field L with valuation ring A, UiKMq(L) for i  1

is defined as in §2 and U0KMq(L) is the image of KMq (A) ~ Kqm(L). P-chains
with pd = ~ are regarded as P-chains of Y, so we sometimes identify them.
The kernel of (4.1.4) can be described using the term Q-chain as in [14]. (In
[14], the henselian topology was used but the argument proceeds similarly
in the case of Zariski topology.). We can define another filtration ViItopq on
Itopq(X) which is induced by (4.1.4) from Cp Vi KMq (KP) where P runs over
all P-chains of Y.
For a P-chain P of Y, the fixed prime element and i  1, there are two

surjective homomorphisms (cf. (2.1.1) and (2.1.2))

where Fp is the residue field of Kp (hence, the function field of Y). The above
homomorphisms induce two global surjective homomorphisms.

This can be verified by using the explicit presentation of both groups as in
[14] Lemma (1.6.3). (Cf. a similar homomorphism is constructed in [5]
Th. (2.9).) 

PROPOSITION (4.1.9). For i sufficiently large (for example, i &#x3E; 2(m + 1)
where m = lengthR(Q1)), (4.1.8) is the 0-map. Further, if the absolute ramifi-
cation index ek is smaller than p - 1, (4.1.8) is the 0-map for any i  1.
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Proof. By definition of (4.1.8), it suffices to show that (4.1.6) is the 0-map for
i &#x3E; 2(m + 1). Since X is smooth over R, the claim follows from Corollary
(1.5) and Theorem (2.2) (cf. the proof of Th. (1.4)). For the second assertion,
if ek  p - 1, we have p · Ui = Ui+ek and p · Vi = Vi+ek for i  1. Since

we can take r and j such that i = rek + j, r  0, and 0  j  p, the claim

reduces to the case 0  i  p. In this case, it is trivial that V’ = U’ (cf.
Remark (2.3)). Q.E.D.

Next, we consider gr°Iq°p = Itopq(X)/U1Itopq(X). By (4.1.2), we have

g? Itop = Hd+1Y(X, KMq(Ox, n)). From the exact sequence:

taking cohomology groups, we obtain an exact sequence

We shall compute the group Hd+1Y(X, KMq(Ox)).
We have the following isomorphisms ([13] Th. 2)

where 03BA(x) is the residue field at x and we define KMm(03BA(x)) = 0 if m  0.
By (4.1.3), we have an exact sequence 

In particular, we obtain

(the group of zero cycles modulo rational equivalence).

(4.2) We define SKtop1(X) = Itopd+1(X). This group is more useful than the
group SKM1(X) which is defined to be Hd (X, KMd+1(OX)), when we consider
the arithmetic of X. Let k be a local field (which means a finite extension of
Qp). By using this group SKtop1(X), we can construct the class field theory of
X. In fact, we can construct the reciprocity map: SKtop1(X) ~ n1b(X) by
using the "explicit" presentation of SKtop1(X) (cf. (4.1.4)) and patching the
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reciprocity maps of higher dimensional local fields (cf. [10]) as in the case of
arithmetical schemes (cf. [14]). This reciprocity map has dense image. Indeed,
the quotient of 03C0ab1(X) by the closure of the image of this homomorphism
corresponds to the abelian covering in which any closed point of X splits
completely. Such a covering is necessarily trivial because 03C0ab1(X) = 03C0ab1(Y)
and we already know that over a smooth scheme over a finite field, such a
covering is trivial (cf. [15], [14]).
Again by using the "explicit" presentation of SKtop1(X), we can construct

the norm map N: SKtop1(X) ~ k*, which is obtained by patching the residue
homomorphisms (cf. [12]). This time, the residue theorem affirms the well-
definedness of N. Then, we have the following commutative diagram

where the vertical arrows are the reciprocity maps.

THEOREM (4.2.2). Let k be a finite extension of the p-adic number field Op , and
X, X, Y be as above. Then, the kernel of the norm map N: SKtop1(K) ~ k* is
finite.

Proof The filtration UiKM1(k) on k* is denoted by Uk as usual. Since the
residue preserves the filtration (cf. [12]), N also. To be precise,
N(ViSAtop1) c Uk for i  1. Hence, we can consider gri(N): ViSKtop1/
Vi+1SKtop1 ~ Uik/Ui+1k.

(4.2.3) For gr0SKtop1 = SKtop1(X)/U1 SKtop1, we have the following diagram
which is commutative by definition of the homomorphisms.

In this diagram, the top row is exact by (4.1.10) and (4.1.12), and the bottom
row is a well-known exact sequence. The left vertical arrow is bijective by the
generalized Moore’s exact sequence (cf. [14], in which the henselian topology
is used but we can replace it by the Zariski topology in the proof of
bijectivity). The right vertical arrow is the degree map of Chow group, and
the class field theory of Y tells us that its kernel is finite (cf. [14] Th. (6.1)).
Thus, gr’(N) has finite kernel.



255

(4.2.4) Next, we consider gri SKfop = Vi SKtop1/Vi+1 SKtop1 for i  1. We

already know its finiteness by (4.1.7) and (4.1.8) because Hq(Y, 03A9rY) is finite.
Moreover, we have the following commutative diagram.

In this diagram, Q is the map in (4.1.7) and Hd(Y, 03A9dY) ~ F is the trace map
of Serre duality, which is an isomorphism. On the other hand, by Proposition
(4.1.9), if i is sufficiently large,  is surjective. Hence, Q and gri(N) are
bijective for i ~ 0.

Since the filtration V’ S11§°P is separated, the theorem follows from (4.2.3)
and (4.2.4). Q.E.D.

Proof. This follows from Proposition (4.1.9) and the proof of Theorem
(4.2.2).

The fact that the reciprocity maps in (4.2.1) have dense images implies the
following corollaries.

COROLLARY (4.2.6). The kernel of the natural homomorphism: 03C0ab1(X) ~
Gal (kab/k) is finite.

COROLLARY (4.2.7). Every abelian etale covering of X comes from an abelian
extension of k and an abelian etale covering of Y if ek  p - l.

REMARK (4.2.8). This result (4.2.7) was essentially proved by Coombes [5] in
the case of dim X = 1 (cf. [5] the proof of (3.6), and (2.11), (2.12)). Our
method of proof of (4.2.7) is essentially the same as his.

(4.3) Finally, we give a remark concerning the case q = d. We define
CHtop0(X) = Itopd(X). On the other hand, let Albx be the Albanese variety of
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X. By analogy with N: SKl°p (X) ~ k*, 1 expect that there exists a canonical
homomorphism having finite kernel

which induces on CH0(X)deg 0 the classical Albanese mapping.
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