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Given two normed spaces X, Y and a real number 1 < K < oo, we say that X

K . .
K-embeds into Y (denoted X — Y) if there is a one to one linear operator,

T:X->T(X)CY with |T|IT| <K.
We are concerned here mostly with the situation where Y is one of the
n 1/r
sequence spaces [ | = {erR"; x| ,= ( Y |x,.|’) <oo}| and X is a
i=1

general m-dimensional subspace of one of the function spaces L,(0, 1)(=
1/p

o= (17 7)™ < o)

The expressions || x||,, || ||, are norms only for r, p > 1. We shall need,
however, to use these expressions also for r or p smaller than 1. We shall
continue to refer to them as norms also in this situation. The notion ‘X
K-embeds into Y’ has meaning, with the same definition, also in this case

eg IT] =sup{ I,
hxll,’

We continue here the investigation of the following question: fixing K, p, r
and m, how small can we take n to be? Following is a sample of some of the
results of this paper:

x€eX, x #O} .

1+
i) ForO<r<p<2, X ‘—:l,", where n < C(p, r, )m'*7/7,

.. 1+e
ii) For 2<r=p <oo, X = I, where n< C(p, m 72,

Changing the small constant, 1 +¢, in (i) with a large one, we get a much
better estimate on the relation between n and m for r < p.
K
iii) For 0 <r<p <2, there exists a K= K(p, r) such that X = /" for n<
C m(log m)*, C absolute.

The proofs here are much simpler than in the related papers [Johnson and
Schechtman, 1982; Pisier, 1983; Schechtman, 1984 /85, 1985].

For 1 =r <p, i) is an important special case of Theorem 1 of [Schechtman,

1985] (except for a missing log factor. What is special here is that the range
space is /] rather than more general spaces).
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The case »=1=p in i) is an improvement of Theorem 2 in [Schechtman,
1985].

We refer the reader to [Milman and Schechtman, 1986] for the background
to the subjects discussed here.

The main results are contained in Theorems 5 and 6. Proposition 4 is the
main tool in proving these theorems. We begin with three lemmas, versions of
which were used also in [Schechtman, 1985]. The first two are versions
of Lemma 1 in [Schechtman, 1985]. Note again that | x|, denotes the

homogeneous ‘norm’ in L,(0,1) or /' also for 0O0<r<1
1 1/r n 1/r

((f |x|’) or ( B ’) . The Banach-Mazur distance, d(X, Y), be-
Y i=1

tween a subspace X of L, and a subspace Y of L, is defined, as for normed

spaces,

1-1
d( X, Y)=inf{ab; a x|, < Tx||,<bllx||,, T:X->Y, T linear}.

onto

LEMMA 1. Let 0 <r<2 and let Z be an m-dimensional subspace of L.(0, 1),
then
a) there exist a probability measure p on [0, 1] and a subspace W of L (pn)
isometric to Z and satisfying
sup{ || Wil lIwll, <1, we W} <em'/?d(Z, I}')

b) d(Z, I') < e 1m@/n=-A/2,

Consequently,

sup{ [ Wl 5 Iwll, <1, we W} <e* m!/".

Proof. As in [Schechtman, 1985], let x,,..., x,, be a basis for Z satisfying

m 12
<b( by a?)

i=1

m 1/2
a_l( Z alz) <
i=1

m
E a;x;
i=1

r

with ab=d(Z, I).
Define

[(z)//( )]

it
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r/2\ 1/r

T is clearly an isometry. Let W= TZ. For w= T(Xa,x;) of norm one, we have

(f (f x?)'ﬂ)m- M)

and T: Z— L (p) by

el

|Z

s

1

m
Z a;Xx;

i=1

m 1/2
i=1

Iw|=

=a, )

r

m 1/2
Lar) <a

m
Z atxi
i=1

and, with g, being independent standard gaussian variables,
m r/2\ 1/r
180
i=1

<b

r

1/r
/(Elg ")

m
Z Xi8i
i=1

Ef—

Ekgﬁijﬁwmuf” (3)

<b/m/(E|g|")"".

To evaluate (E | g, | ")'/" from below, use integration by parts to get

1 r
Elg|"=gEl&l™> —7-

Thus,

1 )l/r

A1/r 1
(E1810" > (57) > %
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Combining this with (1), (2) and (3), we get a).
To prove b), notice that, for w € W,

hwll, < lIwll < w2 wll2 < (e m2 d(Z, 15) 72wl
Consequently,

d(Z, 1) =d(w, 1) < (e m/2 d(Z, 17))" 2.
Rearranging we get b). O

LEMMA 2. Let 2 <r< oo and let Z be a m-dimensional subspace of L,(0, 1).
Then there exist a probability measure u on [0, 1] and a subspace W of L ()
isometric to Z such that

(Wl Iwll,=1, we W} <m'/2
Proof. By Theorem 1 in [Lewis, 1978] there is a probability measure pu (= f’dt

in the notation of [Lewis, 1978]) and a basis (x,)/_,(x,=/,/f) of a space
W C L, (p), isometric to Z (W = f~'Z), such that

m
2 ax,

=1

m 172
b) ( Y xlz) =1.
i=1

a)

=——— forall a;,...,q,€R

2 Vm

Now, for all a,,...,4a,, €R,

m 172
foe) 1

i=1

m
Y apx,
1=1

=Vm <Vm

2

. a

r

m
2 ax,
i=1

m
Z ax,
i=1

The next lemma is a standard large deviation inequality for sums of
indendent random variables. We give a proof for completeness.

LEMMA 3. Let (d,)?_, be independent random variables with

E|d | <A, Ed =0, |d|,<B, i=1,...,n,
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then

P{|Y d

_c?
4eABn )

it

>C) <2exp(

14

for all C < 2eAn.

Proof. First notice that for all p > 2
E|d;|P<E|d,||d, |27 <AB?™!, i=1,...,n.

Forall A>0andalli=1,...,n

> NE|d|* & N4B+! o NB*

EeMig1+ ) ] <1+ ) T <1+NA4B P
k=2 ) k=2 ’ k=0 °

< exp(A’4B e*?).
Independence implies

E e*-19 < exp(N?ABn e*P).

Consequently, for 0 <A< B},

n
P( Y d,> C) < M4 AC < exp(N2ABne — \C).
i=1

. 1 C
Choosmg A= 5 m

n C2
P Zdi>C)<exp(— )
(l,=1 4eABn

1
(< B for C < 2eAn), we get

The same inequality holds for — Y_ d, and we get the desired result. O
i=1

PROPOSITION 4. Let X be an m-dimensional subspace of L,(2, F, u) for some
probability space (2, F, n) sand some 0 <r < co. Assume

M=sup{||x]lo; xE€X, ||x]||,=1} <oo.
1+e¢
Then, for all >0, X = I for some

n<C(e, rymM’.
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Moreover, for some absolute constant C,

Clogl
C(e, r)< 32rc foro<r<1
rle
and
1
C log—
Cle, r)< —26— forr>1.

€

Proof. For t €[0, 1]" and x € X define x,(¢) = x(¢,). Then x, are independent
random variables and for all ¢ the map

x = (x,(1),..., x,(1))

is linear. Define, for ¢ € [0, 1]”, an operator

T:X-1!
by
1 n
T;X: nl/r lgl_xl(f) el

((e,)r_; is the canonical basis of /]'). Then
ENTx|/=lxIl;

(E denotes expectation with respect to P — the product measure on [0, 1]”).
For x € X with || x|, =1,

1 n
ITx /= 1=— % (1x,(1) 1"~ 1).
1=1

Each of the summands y,=|x,(¢)|"—1 is bounded by M" and satisfies
. . . . 2
E | y;|<?2. Plugging these estimates in Lemma 3, with d,= %, A= - and

r

M
B= pat we get, for 0 <7 < § and an absolute constant § > 0,

P(|ITx||[ = 1] >n) <2e /M (4)

We now distinguish between the two cases 0 <r<1 and 1<r<oo. If
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0 <r<1 choose an n-net, N, in the sphere of X in the metric d(x, y)=
[|x —y]|. One can do that with

m/r
IN| < (1 + __) < e(m/nlog2/m)
n

(the proof is standard, see e.g. [Johnson and Schechtman, 1982] Lemma 2).
Using (4) we get in this case that if

m<c(n)ym/M’ (5)
1
(c(n) = nz/logﬁ), then, for some ¢
I-n<|ITx|l/<1+n

for all x € N. Using a standard successive approximation argument (see e.g.
[Johnson and Schechtman, 1982] Lemma 3) we get that

1-—3q
1-n

2
< I Tl < L1
(1-m)

for all x € X, || x||,= 1. This concludes the proof in the case 0 < r <1 except
for the evaluation of the constant C(e, r). Given 0<r<1 and 0<e<1
choose a 8 such that (1 +8)/"=1+¢ (8= er with absolute constants) then

(1+n)

(1-3n
stants). Then, in the construction above, ||T,|| |7, '||<(1+8)" =1+¢
and by (5) we may choose

(6)

choose an 0 <7n < % such that =148 (n=2~8 with absolute con-

n=C(e, rymM’

where

1 1
log— -
1 2 log -

C("l)"~ n*r - erd

Ce, r)=
The proof for r>1 is very similar. Here we work with an n-net N in the
metric given by the norm. Its size is

IN| < emlog(2/m)

(see e.g. [Figiel, Lindenstrauss and Milman, 1977]) and we get that if

m<c(n)n/M’
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(c(n) = nz/log%) then there exists a ¢ such that

(1+9)° }IQ (1+n)’

TIIT < < .
IZIT, "<l(1—3n) =3

Taking n of order ¢ we get the desired result. O

THEOREM 5.
a) For 0 <r<p <2 any m-dimensional subspace X of L,(0, 1) (1 + €)-embeds
into I for some

n<K(e, r)ym*0/»,

b) For 0<r<1 any m-dimensional normed subspace X of L(0,1) (1 + ¢)-
embeds into I} for some

n<K(e, r)ym*r.

c) For 2<r<oo any m-dimensional subspace X of L.(0,1) (1 + €)-embeds
into [ for some

n< K(e)m!+/?,

The constants K(e, r) in a) and b) are dominated by 10C(e, r) of Proposition
4. The constant in c) depends only on .

1
Proof. Since L,(0,1) = L,(0,1), 0 <r<p <2, we may assume in all three

cases that X C L,(0, 1). By Lemmas 1 and 2, we may assume in addition that,
putting

M=sup{ | x|l.; x€X, [ x|, =1},

M<e¥?m? ina)
M<em inb)

M < m/? in ¢).
Now apply Proposition 4. O

Remarks

i) In a) and b) nothing is known about lower bounds (i.e. the case may be
that n can be chosen proportional to m). In c) there is a lower bound:
n>k(e, rym'”? (see [Bennett et al, 1977] or [Milman and Schechtman,
1986)).
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ii) Following the proofs of Proposition 4 and Theorem 5, one can easily
prove:
Let F be a finite set in L., 1<r<2, |F|=m. Then for each ¢ >0 and
n > c(e)m log m there exists a function f: F — f(F) C I with

—1
”f”Ltp“f ||Llp<]‘+€

1712, = sup L) Z/W)

, ¢(€) depends only on €.
v Xy (c) dep Y

This should be compared with a result of [Ball, 1984]: For e =0, n must be of
order at least m? (and n = m? is always enough).

We suspect that the right order of n (for (1 + €)-Lipschitz embeddings) is
some power of log m.

THEOREM 6

a) Given 0 < q <p <2 there exists a K= K(q, p) such that any m-dimensional
subspace X of L,(0,1) K-embeds into I for some n< C m(log m)3
log(log m), C absolute.

b) For any 0 <r<gq<1, any m-dimensional normed subspace X of L,(0, 1)
K(q)-embeds into 1} for some n < C m(log m)3log(log m), C absolute and
K(q) depends only on q (and not on r).

Proof. In both cases X can be considered as a subspace of L (0, 1) for any
0 < s < r. Thus, by Theorem 5, X 2-embeds into /! for

1
C log—
n< ——=m!*C¢/P) in q)
$3
and
1
C log—
n< ———m!** in b).
3
. | .
The choice s = P in a) and s = —— in b) gives that X 2-embeds into /”
log m log m s

for
n< C(p)(log m)’(log(log m))m

for some constant C( p), depending only on p, in a), and for
n < C(log m)*(log(log m))m

for some absolute constant C in b).
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Now apply one of Maurey’s factorization theorems, Theorem 2 of [Maurey,
1974], to get an embedding of X into /7 via a change of measure. One should
notice that s does not affect the constants. O

There are several problems which suggest themselves naturally. We shall
mention explicitly only one with a possible way of attack (toward a negative
solution).

PROBLEM 7. Is there a function C(€), € >0 such that any m-dimensional
subspace X of L,(0,1) (1 + €)-embeds into I} for some n < C(e)m?

Denote by R(Y) the K-convexity constant of Y [Maurey and Pisier, 1976],
that is, the norm of the projection R ® I in L,(Y), where R is the orthogonal
projection onto the span of the Rademacher functions. As is well known
R(X)< C /log m for any m-dimensional subspace X of L,(0, 1). Inspecting
the proof of this fact one easily gets an estimate on C

R(X)< (V2 +0o(1))/log m, dim X=m— co. (7)
In particular,
R(I") < (V2 +0(1))/log m, m— . (8)

We are mainly interested in whether the numerical constants in (7) and (8) are
the same or different. Indeed if for some a« > 1 and € >0

limsup| sup R(x)/R(I")[=1+e

m— o0 dim X=m

then for some m there exists an m-dimensional subspace X of L, which does
not 1 + € embed into /]"".

PROBLEM 8. What are the best numerical constants in (7) and (8)?
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Added in proof: J. Bourgain, J. Lindenstrauss and V.D. Milman (private
communication) improved recently the results of this paper. They proved that
for an m-dimensional subspace, X, of L,,

1+e

Xolp for n<C(p,e)m ifl<p<2

1l+e

X for n<C(e)m(logm)’ if p=1

1
X:fl]’)" for n<C(p, e)m?/**¢ if2<p<oo.

Their proof is based on the results and method developed here.



