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Given two normed spaces X, Y and a real number 1  K  cc, we say that X
K

K-embeds into Y (denoted X - Y) if there is a one to one linear operator,

We are concerned here mostly with the situation where Y is one of the

sequence spaces l r = x ~ Rn; x | r = 03A3 1 Xi 1 r  ~ }) and X is a
general m-dimensional subspace of one of the function spaces Lp(O, 1)(=

The expressions 11 x 11 r, Il f 11 p are norms only for r, p  1. We shall need,
however, to use these expressions also for r or p smaller than 1. We shall
continue to refer to them as norms also in this situation. The notion ‘X
K-embeds into Y’ has meaning, with the same definition, also in this case

We continue here the investigation of the following question: fixing K, p, r
and m, how small can we take n to be? Following is a sample of some of the
results of this paper:

r

Changing the small constant, 1 + e, in (i) with a large one, we get a much
better estimate on the relation between n and m for r  p.

iii) For 0  r  p  2, there exists a K = K( p, r) such that XK ln for n 
C m(log m)4, C absolute.

The proofs here are much simpler than in the related papers [Johnson and
Schechtman, 1982; Pisier, 1983; Schechtman, 1984/85, 1985].

For 1 = r  p, i) is an important special case of Theorem 1 of [Schechtman,
1985] (except for a missing log factor. What is special here is that the range
space is In rather than more general spaces).
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The case r = 1 = p in i) is an improvement of Theorem 2 in [Schechtman,
1985].
We refer the reader to [Milman and Schechtman, 1986] for the background

to the subjects discussed here.
The main results are contained in Theorems 5 and 6. Proposition 4 is the

main tool in proving these theorems. We begin with three lemmas, versions of
which were used also in [Schechtman, 1985]. The first two are versions
of Lemma 1 in [Schechtman, 1985]. Note again that Il x Il r denotes the

homogeneous ’norm’ in Lr(0,1) or 1" r also for 0  r  1

1 r or y |xi|r The Banach-Mazur distance, d(X, Y), be-

tween a subspace X of Lr and a subspace Y of LS is defined, as for normed
spaces,

LEMMA 1. Let 0  r  2 and let Z be an m-dimensional subspace of Lr(0, 1),
then

a) there exist a probability measure it on [0, 1] and a subspace W of Lr(03BC)
isometric to Z and satisfying

Consequently,

Proof. As in [Schechtman,

with ab = d(Z, lm2).
Define
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and

T is clearly an isometry. Let W = TZ. For w = T(Eaixi) of norm one, we have

Now,

and, with gi being independent standard gaussian variables,

To evaluate (E | gl |r)1/r from below, use integration by parts to get

Thus,
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Combining this with (1), (2) and (3), we get a).
To prove b), notice that, for w ~ W,

Consequently,

Rearranging we get b). 0

LEMMA 2. Let 2  r  oc and let Z be a m-dimensional subspace of Lr(O, 1).
Then there exist a probability measure it on [0, 1] and a subspace W of Lr(03BC)
isometric to Z such that

Proof. By Theorem 1 in [Lewis, 1978] there is a probability measure jn (=frdt
in the notation of [Lewis, 1978]) and a basis (xl)ml=1(xl=fl/f) of a space
W c Lr(03BC), isometric to Z (W=f-1Z), such that

Now, for all al, ... , am ~ R,

The next lemma is a standard large deviation inequality for sums of

indendent random variables. We give a proof for completeness.

LEMMA 3. Let (dl)nl=1 be independent random variables with
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then

for all C  2 eAn .

Proof. First notice that for all p  2

For all X à 0 and all i = 1,..., n

Independence implies

Consequently, for 0  03BB  B-1,

Choosing

n

The same inequality holds for - L di and we get the desired result. ~

PROPOSITION 4. Let X be an m-dimensional subspace of Lr(03A9, F, IL) for some
probability space (03A9, -f7, IL) sand some 0  r  00. Assume

Then, for all E &#x3E; 0, X  lnr for some



164

Moreover, for some absolute constant C,

and

Proof. For t ~ [0, 1] n and x ~ X define xl(t) = x( tl ). Then xl are independent
random variables and for all t the map

is linear. Define, for t E [0, 1]n, an operator

by

((el)nl=1 is the canonical basis of lnr). Then

(E denotes expectation with respect to P - the product measure on [0, 1]n).
For x ~ X with ~x~r=1,

Each of the summands yl = |xl(t)|r-1 is bounded by M r and satisfies

E |yi|  2. Plugging these estimates in Lemma 3, with dl = yl m, A = 2 and
r

B = Mr n, we get, for 0  q  3 and an absolute constant 8 &#x3E; 0,

We now distinguish between the two cases 0  r  1 and 1  r  ~, If
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0  r  1 choose an ~-net, N, in the sphere of X in the metric d( x, y) =
IIx - y Il:. One can do that with

(the proof is standard, see e.g. [Johnson and Schechtman, 1982] Lemma 2).
Using (4) we get in this case that if

then, for some t

for all x e N. Using a standard successive approximation argument (see e.g.
[Johnson and Schechtman, 1982] Lemma 3) we get that

for all x ~ X, ~ x Il r = 1. This concludes the proof in the case 0  r  1 except
for the evaluation of the constant C(E, r). Given 0  r  1 and 0  ~  1
choose a 8 such that (1 + 03B4)1/r = 1 + ~ (03B4 ~ ~r with absolute constants) then

choose an 0  ~  1 3 such that (1+~)2 (1-3~) = 1 + 03B4 (~~03B4 with absolute con-

stants). Then, in the construction above, ~Tt~~T-1t~  (1 + 03B4)1/r = 1 + E
and by (5) we may choose

where

The proof for r &#x3E; 1 is very similar. Here we work with an q-net N in the
metric given by the norm. Its size is

(see e.g. [Figiel, Lindenstrauss and Milman, 1977]) and we get that if
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then there exists a t such that

Taking q of order E we get the desired result. D

THEoREM 5.

a) For 0  r  p  2 any m-dimensional subspace X of Lp(0, 1) (1 + ~)-embeds
into 1; for some 

b) For 0  r  1 any m-dimensional normed subspace X of Lr(O, 1) (1 +,E)-
embeds into lnr for some

n) For 2  r  oc any m-dimensional subspace X of Lr(O, 1) (1 + ~)-embeds
into 1; for some

The constants K(,E, r) in a) and b) are dominated by 10C(f, r) of Proposition
4. The constant in c) depends only on E.

1

Proof. Since Lp(0, 1) Lr(0, 1), 0  r  p  2, we may assume in all three

cases that X C Lr(ol 1). By Lemmas 1 and 2, we may assume in addition that,
putting

Now apply Proposition 4. 0

Remarks

i) In a) and b) nothing is known about lower bounds (i.e. the case may be
that n can be chosen proportional to m ). In c) there is a lower bound:
n  k (~, r)mr/2 (see [Bennett et al., 1977] or [Milman and Schechtman,
1986]).
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ii) Following the proofs of Proposition 4 and Theorem 5, one can easily
prove:
Let F be a finite set in Lr, 1  r  2, 1 F = m. Then for each f &#x3E; 0 and

n  c(~)m log m there exists a function f : F ~ f(F) c 1; with

depends only on ~.

This should be compared with a result of [Ball, 1984] : For e = 0, n must be of
order at least m2 (and n ~ m2 is always enough).
We suspect that the right order of n (for (1 + ~)-Lipschitz embeddings) is

some power of log m.

THEOREM 6

a ) Given 0  q  p  2 there exists a K = K ( q, p ) such that any m-dimensional
subspace X of Lp(0, 1) K-embeds into 1; for some n  C m(log m)3
log(log m), C absolute.

b ) For any 0  r  q  1, any m-dimensional normed subspace X of Lr(0, 1)
K(q)-embeds into 1; for some n  C m (log m)3log(log m), C absolute and
K( q ) depends only on q ( and not on r).

Proof In both cases X can be considered as a subspace of LS(0, 1) for any
0  s  r. Thus, by Theorem 5, X 2-embeds into lns for

and

The choice s = p log m in a) and s = 1 log m in b) gives that X 2-embeds into ln
for

for some constant C( p ), depending only on p, in a), and for

for some absolute constant C in b).
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Now apply one of Maurey’s factorization theorems, Theorem 2 of [Maurey,
1974], to get an embedding of X into l q via a change of measure. One should
notice that s does not affect the constants. D

There are several problems which suggest themselves naturally. We shall
mention explicitly only one with a possible way of attack (toward a negative
solution).

PROBLEM 7. Is there a function C(~), E &#x3E; 0 such that any m-dimensional

subspace X of L1(0, 1) (1 + ~)-embeds into If for some n  C(e )m?

Denote by R(Y) the K-convexity constant of Y [Maurey and Pisier, 1976],
that is, the norm of the projection R~ I in L2(Y), where R is the orthogonal
projection onto the span of the Rademacher functions. As is well known

R(X)  C log m for any m-dimensional subspace X of Ll(o, 1). Inspecting
the proof of this fact one easily gets an estimate on C

In particular,

We are mainly interested in whether the numerical constants in (7) and (8) are
the same or different. Indeed if for some a &#x3E; 1 and E &#x3E; 0

then for some m there exists an m-dimensional subspace X of Li which does
not 1 + E embed into li a.

PROBLEM 8. What are the best numerical constants in (7) and (8)?
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Added in proof: J. Bourgain, J. Lindenstrauss and V.D. Milman (private
communication) improved recently the results of this paper. They proved that
for an m-dimensional subspace, X, of Lp,

Their proof is based on the results and method developed here.


