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1. Introduction

The equation

was first studied by E. Lucas (in a paper of 1877) for the case k = m = 2.
J. Schâffer [15] proved that for fixed positive k and m, except for a few
exceptional pairs (k, m), the equation (1) has a finite number of solu-
tions in integers x and y.

K. Gyôry, R. Tijdeman, and M. Voorhoeve [9] extended this result by
proving that for fixed integers r, b ~ 0, and k  2, k ~ {3, 5} the

equation

has only finitely many solutions in integers x, y  1 .and z  2, and
upper bounds for x, y and z can be effectively determined. The result in
[9] is actually somewhat stronger.

In [16], Gyôry, Tijdeman and Voorhoeve give a similar, though
ineffective result, in which r is replaced by a polynomial R(x) with
integer coefficients. A recent theorem of B. Brindza [3] makes this result
effective.

In this paper we are going to prove character analogues of the results
concerning equation (2). Let X be a primitive quadratic residue class
character with conductor f = fx. For fixed integers n and b we regard the
equation

We are going to prove the following results.

THEOREM 1: Let X be a primitive quadratic character, and b and n fixed
integers. If b =1= 0 and n is sufficiently large then equation (3) has only
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finitely many solutions in integers x, y  1 and z  2, with effective upper
bounds for x, y, z.

THEOREM 2: Let X be a primitive odd quadratic character with conductor f.
Then equation (3) has finitely many solutions in integers x, y  1 and z  2
( with effective upper bounds for x, y, z) in both the following cases.

(a) f = p ~ 3 (mod 8) is prime, n  3, and n W 0 (mod 4).
(b) n = q or n = q + 1 (n ~ 4), where q is an odd prime such that

X(q)= -1, q ~ f, and q 2 5f1/2 log f.

To prove the theorems, we follow the ideas of Gyôry, Tijdeman, and
voorhoeve in [9] and [16]. In analogy to their application of properties of
Bernoulli polynomials, we are going to use those of generalized Bernoulli
polynomials; Section 2 and 4 deal with these. In Section 3, the main
lemmas are stated and the theorems are proved, and in Sections 5-7 we
derive the necessary auxiliary results on the zeros of generalized Bernoulli
polynomials. In Sections 8 and 9 we study the special case f = 4, in which
case (3) has a particularly simple form. Finally, Section 10 contains a
generalization of Theorem 1.

2. Generalized Bernoulli polynomials

Let X be a primitive residue class character with conductor f. The
complex numbers Bm~, defined by

are called generalized Bernoulli numbers belonging to X . The generalized
Bernoulli polynomials are then defined by

We assume that X is not the principal character, and denote 8 = 8x = 0 if
x is even (i.e. ~(-1) = 1), and 8 = 1 if X is odd (i.e. ~(-1)=-1). The
generalized Bernoulli numbers and polynomials have the following im-
portant properties (see e.g. [10, Sec. 2]).

Bm~ = 0 if m ~ 03B4 (mod 2), (4)

Bm~ ~ 0 if m ~ 03B4 (mod 2) and m  1, (4’)

Bm~(0) = Bm~, (5)
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where k is any positive integer.

3. Proof of the theorems

With (8) and (5) we get

We denote the right hand side of this equation by Qn~(s); hence (3)
reduces to 

If X is a quadratic character then the Bn~ are rational numbers, and the
Qn are polynomials with rational coefficients. Hence we can apply the
following auxiliary results; see [9] and [16], and references therein.

LEMMA 1 ( Schinzel, Tijdeman): Let b be a nonzero integer, and let P(x)
be a polynomial with rational coefficients with at least two distinct zeros.
Then the equation

in integers implies that z  C, where C is an effectively computable constant
depending only on P and b.

The following lemma is a special case of a recent result of B. Brindza
[3], which is an effective version of the theorem of Le Veque that was
used in [16]. It is originally stated only for b = 1, P(x) E Z[x], but we
easily arrive at the more general form by using an argument given in [16,
p. 2].

LEMMA 2: Let P(x) = aoxN + alxN-1 + ... +an = aoIJ7=I(X - 03B1l)rl be a
polynomial with rational coefficients, and ao =1= 0, al =1= 03B1j for i =1= j. Let

b =1= 0 and m  2 be integers, and denote sj := m/gcd(m, r,). Then the

equation
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has at most finitely many integer solutions ( x, y) ( with effectively computa-
ble upper bounds for x, y) unless {s1,..., sk} is a permutation of one of the
k-tuples {s, 1,...,1} (s  1) or (2, 2, 1,...,11.

In the following sections we are going to prove

LEMMA 3: Let X be a primitive quadratic character with conductor f. Then

Qn~(x) has at least three simple zeros if
(a) n is sufficiently large, or
(b) X, f, and n are as in (a) or (b) of Theorem 2.

Now we are in a position to prove Theorems 1 and 2. We assume that
hypotheses (a) or (b) of Lemma 3 hold. Then Qn~ has two distinct zeros,
and we can aply Lemma 1 to (9). We find that z is bounded; we may
therefore assume it fixed, say z = m. We apply now Lemma 2. Since Q"
has at least three simple zeros, three of the numbers sl, ... , Sk are at least
2 for m  2; so the two exceptional cases cannot occur. Hence equation
(9) with z = m has only a finite number of integer solutions in x and y,
with effectively computable upper bounds for x and y. This completes
the proof.

4. Analytic properties of Bm~(x)

Denote k := [m/2], the integral part of m/2. For m  1 we define the
periodic functions Bm~(x) by means of the following Fourier expansions.
For m ~ 8 (mod 2), set

and for m ~ 8 (mod 2),

where

is the Gaussian sum belonging to X.

B.C. Berndt [1] defined the generalized Bernoulli polynomials Bm~(x) by
putting
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and by analytic continuation; he showed that this definition is equivalent
to the usual one.

The following property exhibits the relationship between the gener-
alized Bernoulli polynomials and their classical counterparts Bn(x).

Furthermore, Berndt [1] proved in analogy to (12): for real x

where -9,,,(x):= Bm(x - [x]).
The following Lemma extends the Fourier expansions (10) and (11).

LEMMA 4: For all x  0 we have

PROOF : First, assume 0  x  f. Let a be an integer, 1  a  f. If
a  f - x then ( a + x)/f  1, and

If a  f - x then 1  (a + x)/f  2, so

By a well-known property of the Bernoulli polynomials, we get

for f - x  a  f. Now we combine this with (13) and (14):
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and with (12) we get

Let x  0 be an arbitrary real number, and write x = kf + y, 0  y  f, k
an integer. Then by (8) we have

and with (15),

because Bm~(x) is periodic with period f. This completes the proof.

Now denote

Then we have

LEMMA 5: Let X be a primitive quadratic character. Then for all m &#x3E; x - 1
&#x3E; 2,

PROOF: We have
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Hence

and this completes the proof.

6. Proof of Lemma 3(a) for n ~ 03B4 (mod 2)

In this case we have, by (4),

It suffices to regard Bm~(x), where we put m := n + 1. First we note
that because of (4) and (5), B03BC~(x) has a zero at x = 0; it is simple
because of (7) and (4’). On account of (6) it suffices to find one other

simple zero. This is achieved through the following three lemmas. We
always assume that X is a primitive quadratic character with conductor f.

LEMMA 6: Let m be such that m ~ 03B4 (mod 2), and denote k := [ m/2].
Suppose that x belongs to

(a) (0, f/2] if k is odd, and to
(b) [ f/2, f] or [3f/2, 2 f ] if k is even.

If m is sufficiently large (i.e. m &#x3E; 2 f - 1) then (-1)03B4Bm~(x) &#x3E; 0.

PROOF: We use a well-known result about Gaussian sums: G(~) = i s f’/2
if X is a quadratic character. We also have X = X. Hence we get with
Lemma 4 and with (11), for all x  0,
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Denote the infinite sum in (16) by Sm(x), and write y = xlf. Then

For 0  y  1 /4 we have

|sin(203C003BDy)|  2 irvy; sin(203C0y)  4y.

Hence

for m  5 and 0  y  1 /4. In the same way we can see that Sm(x) &#x3E; 0
for f/4  x  f/2. Now (16) together with Lemma 5 gives assertion (a).
To verify (b), we observe that Sm(x)  0 if x is in the given intervals, and
then we compare (16) with Lemma 5 again.

LEMMA 7: Let m = 5 (mod 2) be sufficiently large. Then Bm~(x) =1= 0 for
f/3  x  2 f/3.

PROOF: With X = x and G(~) = i03B4f, (10) and Lemma 4 give

Denote the infinite sum in (17) by Tm(x). Using the fact that cos a 
-1/2 if 203C0/3  a  403C0/3, we get with y := x/f ,

for m  4. On the other hand,
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hence

if m is sufficiently large.

LEMMA 8: If m ~ 8 (mod 2) is sufficiently large then Bm~(x) has exactly
one simple zero

(i) between fl3 and f/2 if k is even,
(ii) between f/2 and 2 f/3 if k is odd.

PROOF: We use (16) to find estimates for Bx(fl3) and Bm~(2f/3). We
have

for m  4, and similarly Sm(2fj3)  - 3/4, while on the other hand, for
x  2 f/3

As in the proof of Lemma 7 we see that for x = f/3 and x = 2f/3

if m is sufficiently large. Hence, with (16),

if m is sufficiently large. If we compare this with Lemma 6, we get the
existence of (an odd number of) zeros in the given intervals. Now assume
that Bm~(x) has more than one zero or a multiple zero in the interval
[f/3, f/2] (resp. [ f/2, 2f/3]). Then by (7), Bm-1~(x) would have a zero
in the interval [f/3, 2f/3], which however contradicts Lemma 7.
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6. Proof of Lemma 3(a) for n ~ 8 (mod 2)

In this case Bn+1~ ~ 0, by (4’). It sufficies to study

It is now clear that Pn~(x) has a double zero at x = 0. We shall see that
there is also a sufficient number of simple zeros.

LEMMA 9: Let n ~ 8 (mod 2) and k := [(n + 1)/2] ~ 8 (mod 2). If n is

sufficiently large then Pn~(x) has exactly one simple zero in each of the
intervals [ f/2, f ] and [3f/2, 2f].

PROOF: Set m = n + 1 again. With (17) we get

For x = jf, j = 0, 1,..., the first term of the right-hand side of (18)
vanishes, and with Lemma 5 we have therefore, if m &#x3E; 2 f - 1,

Denote the infinite sum in (18) by Um(x). Then for j = 1, 3,... and

m  4,

Hence

if m is sufficiently large, just as in the proof of Lemma 7. If we compare
this with (19), we find that for k ~ 8 (mod 2) there is at least one zero in
each of the intervals [ f/2, f ] and [3f/2, 2f]. By definition and by (7),
the derivative of Pn~(x) is ( n + 1)Bn~(x). We note that [ n/2] is always
even under the restrictions of the hypothesis of Lemma 9. Now we apply



393

Lemma 6(b), and we find that Pn~(x) has exactly one simple zero in each
of the two given intervals.

LEMMA 10: Let n ~ 03B4 (mod 2) and k:= [( n + 1)j2] == 8 (mod 2). If n is
sufficiently large then Pn~(z) has exactly two simple complex conjugate
zeros in the disk ( z: 1 z - f |  11.

The last two lemmas, together with (6), complete the proof of Lemma
3(a). To prove Lemma 10, we use the following criterion (see [7]).

LEMMA 11: Let g(z) = c0 + c1z + ··· + cnzn, cn ~ 0. If

then g(z) has exactly i zeros in the interior of the unit circle, and none on
the unit circle.

We apply this lemma with g(z) = Pn~(z + f ) and i = 2. With (8) and
(5) we get

and therefore, using a Taylor expansion and (7),

It suffices to show

or



394

where we have taken (4) into account. Now the first term of the right
hand side of (20) is less than

With (5) and (10) we get, taking into account |G(~)| = f,

Now for a  2,

hence

while from (12), (5), and B1(x) = x - 2 it follows that

Hence
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On the other hand,

So finally, (20) holds if

which holds for all f  3 and if n is sufficiently large. Hence by Lemma
11 there are two simple zeros or a double zero of Pn~(z) inside the circle
about f with radius 1.
We note now that the infinite sum Um(x) in (18) vanishes at x = 0,

and that its derivative is -203C0Sn(x)/f, with Sn(x) as in the proof of
Lemma 6. There we have shown that Sn(x)&#x3E;0 if n~03B4 (mod 2) and
0  x  f/2 ; hence Um ( x ) is decreasing for 0  x  f/2. The fact that it is
an even and periodic function now implies Um(x)0 for all x, with

equality only at x = jf for all integers j. With Lemma 5 we finally get
(-1)kPn~(x) &#x3E; 0 for 0  x  n + 2 because k = 8 (mod 2). This means
that for nf the two zeros from above cannot be real; they are a pair of
distinct complex conjugates because Pn~(x) has real coefficients.

7. Proof of Lemma 3(b)

In [5], the author has shown that the polynomials Qn~(x), divided by the
obvious factors x, respectively x 2, are irreducible if X is odd and f and n
satisfy the conditions given in (a) or (b) of Theorem 2. Hence if n is even
then Qn~(x) has n - 2 simple zeros, and if n is odd then Qn~(x) has n
simple zeros. This proves Lemma 3(b).

8. A spécial case

The quadratic character with conductor f = 4 is given by ~(1)=1,
~(3)=-1, x(0) = ~(2) = 0. Hence (3) takes the form

THEOREM 3 : Let b ~ 0 and n  3, n ~ (4, 51 be integers. Then (21) has at
most finitely many solutions in integers x, y  1 and z  2, with effectively
computable upper bounds for x, y and z.
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To prove this, we first need the following lemmas.

LEMMA 12: If X is the quadratic character with conductor f = 4, and if
n ~ 2 (mod 4) then (Bn+1~(x) - Bn+1~)~-2 has no real and no purely
imaginary zeros.

PROOF: It follows from the last part of the proof of Lemma 10 that

Pn~(x)  0 for 0  x  n + 2. Now we claim that Pn~(x) has no zeros
x  n + 2; this would prove the first assertion of Lemma 12. We are

going to show a bit more. If we use (17) to get

where

then we have

If we now put x = ia, with a a nonzero real number then each summand
in the last expression is positive, and Pn~(i03B1) cannot vanish; this proves
the second assertion of the lemma. We introduce now the new variable

z = -x2; the polynomial (-1)k+1x-2Pn~(x) can therefore be regarded as
a polynomial in z with positive coefficients, and we can apply the
theorem of Kakeya and Enestrôm (see [14, III. 23]). The quotients of
consecutive coefficients are

It is easy to verify that {S(j + 1)/S(j)} is a decreasing sequence; hence
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{qJ} is decreasing and therefore for all j = 0, 1,..., n/2 - 2 we have

It is known that S(3) = 03C03/32, S(l) = 03C0/4 (one can obtain this also with
(22) and (27) below), so qo = (n - 1)n/2. With the theorem of Kakeya
and Enestrôm and after returning to the variable x we find that all the
zeros of Pn~(x) lie inside a circle with centre at the origin and radius
(n(n - 1)j2)1/2. This proves the claim which concludes the proof of
Lemma 12 (this proof also works for f = 3 and f = 7, but fails for higher
conductors since the maximum modulus of the zeros depends on f ).

The following lemma is based on a conjecture of L. Carlitz [4], saying
that I E2n 1 is never a square for n &#x3E; 1, where E2n are the Euler numbers.
Carlitz proved his conjecture for all 2n ~ 2 (mod 8), and for a few more
classes. We are going to show slightly more. For basic properties of E2n,
see [13, Ch. 2]; a table up to 2n = 120 is contained in [11].

LEMMA 13: |E2n| is not a square for 2 n &#x3E; 2, 2n ~ 2 (mod 144).

PROOF: Following Carlitz [4], we use the well-known Kummer con-
gruence

Em == Em+p-l (mod p), (23)

where p is a prime and m  2 (see e.g. [8, p. 36]). We recall that

( -1)nE2n &#x3E; 0. First we have 

but - 3 is not a quadratic residue modulo 17, so |E16k + 10| cannot be a
square. Now only the case 2n~2 (mod 16) remains open. We observe
that

these, too, are quadratic non-residues, and they show that |E2n| cannot
be a square for 2 n ~ 34, 50, 82, 98, 130 (mod 144). Carlitz showed that
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|E24k+18| is not a square, which takes care of the remaining cases
2n ~ 18, 66, 114 (mod 144). (Remark: it is easy to show with the same

method that Lemma 13 holds for all 2n ~ 2 (mod 5040), or even more;
however, as Carlitz remarked in [4], it seems doubtful that the general
conjecture can be proved this way).

LEMMA 14: Let X be the quadratic character with conductor 4, n  3.
(a) If n is odd, n ~ 5, then Qn~(x) has only simple zeros.
(b) If n = 16 or n = 2 (mod 4) then Qn~(x) has at least four simple zeros.

PROOF: If n is odd then by (4) we have Bn+1~ = 0, since 8 = 1. It is easy
to establish the following connection to the Euler polynomials (see [1, p.
425]).

and therefore for odd n

Brillhart [2] showed that the only Euler polynomial with a multiple zero
is Es(x); this together with (25), proves (a). Thus for even n, Pn~(x) has
only zeros of multiplicity at most 2.

If n = 2 (mod 4), it suffices to regard the polynomial Pn~(x), as

defined in Section 6. It has a double zero at x = 0, and the remaining
zeros occur in quadruplets, by (6) and Lemma 12. If n ~ 6 (mod 8) then
there is an odd number of these quadruplets, so at least one of them has
to consist of simple zeros only, for n ~ 6. But also, it is easy to compute
(e.g. via (24)) that 2P6~(x)=-7x2(x4 - 15x2 - 75), which clearly has
four simple zeros. This proves (b) for n = 6 (mod 8).

If n = 2 (mod 8) then there is an even number of quadruplets of zeros.
Since multiplicity can be at most two, then Pn~(x) has to be a square (up
to a constant factor) if it has no simple zeros. By definition of Pn~(x) and
Bn+1~(x) we have

where we have used the well-known relation (see e.g. [8])
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If the polynomial on the right-hand side of (26) were a square then in
particular its value for x = 1 had to be a square. But by the recursion
formula for Euler numbers (see e.g. [13, p. 25]) we have

However, by Lemma 13 we know that - En is never a square if n = 0 or
4 (mod 6), which leads to a contradiction in these cases. Another

necessary condition for the right-hand side of (26) to be a square, is that
its constant coefficient is a square. However, from (23) it follows that

En _ 2 ~ 2 (mod 3) for all even n ; for n = 2 (mod 6) we have therefore

which is not a quadratic residue modulo 3. Hence Pn~(x) can never be a
constant multiple of a square; this proves (b) for n ~ 2 (mod 8).

Finally, to deal with n = 16, we adapt the proof of Lemma 9; (19) still
holds for n = 16, i.e. we have P16~(4)  0 and P16~(8)  0. If we can show
that there is some y, 4  y  8, with P16~(y) &#x3E; 0 then we are done because
there have to be at least four zeros (taking (6) into account) of odd
multiplicities; but they are necessarily simple zeros because the derivative
of P16~(x) has only simple zeros. We regard

and

As in the proof of Lemma 9, and using Stirling’s formula, we get
therefore

which completes the proof for n = 16, and therefore the proof of Lemma
14.
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PROOF oF THEOREM 3. First, let n = 0 (mod 4); then Theorem 1 applies
for all sufficiently large n, a lower bound of which can be found as
follows. In the proof of Lemma 9 we see that n = m - 1 has to be such
that m &#x3E; 7 and

By using Stirling’s formula for an estimate of n !, we find that the above
inequality holds if

which is true for all n  25. For n = 8, 12, 20 and 24, Theorem 3 is a

consequence of Theorem 2(b).
For the remaining cases n = 16 and n  3 with n ~ 5, n ~ 0 (mod 4),

we proceed as in Section 3. By Lemma 14, Qn~(x) has at least four simple
zeros (three for n = 3); hence we apply first Lemma 1 to get an upper
bound for x, and then Lemma 2. This completes the proof of Theorem 3.

9. Exceptional values for n

We study the cases not covered by Theorem 3, and show that they are
indeed exceptions.

A : n = 1 is trivial. Let n = 2; we have E2(x) = x(x-1), and with (24)
and the definition of Qn~(x) we see that (21) becomes

For each z and for infinitely many choices of b this equation has
infinitely many solutions in x and y.

B: Let n=4, z=2. We have E4(x)=x(x-1)(x2-x-1), and (21)
therefore becomes

This equation has solutions if

is solvable, where d := - b. Let d be odd and not a perfect square. By the
theory of Pell’s equation (see e.g. [12, Ch. 8]), u 2 - 2dv2 = 1 has infinitely
many solutions, say (uj, vj), j = 1, 2, ... Now it is easy to verify that if
(xo, zo) is a solution of (28) then there are infinitely many more
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solutions (xj, zj), j = 1, 2, ... , given by xj = x0uj + 1 2dz0vJ, zj = z0uj +
4xovJ. x. is indeed an integer since v. has to be even if it is to be a

solution of u 2 - 2dv2 = 1. Once we have found a solution (xj, zj) of (28)
with z. &#x3E; 1, we can regard the new equation 8x2 - (dz2j)z2 = 3 which has
(xj, 1) as a solution. As an example, we take d = 5; (1, 1) is then a

solution of (28), and (19, 6) is a solution of U2 - 2dv2 = 1. Then (28) has
also the solution ( xl, zl ) = (34, 43), and therefore it has an infinite class
of solutions also for d = 5 ’ 432, and so on. This shows that there is an
infinite number of choices of b for which (21) (with z = 2) has infinitely
many solutions in x and y.

C: Let n = 5, z = 2. Then E5(x) = ( x - 1 2)(x2 - x - 1 ) 2, and (25) shows
that (21) becomes

Now it is obvious that for any b  0 this equation has infinitely many
solutions: take x = - 2 bt 2, t = 1, 2, ...

D: Finally, let n = 4 or 5 and z  3. Then the Qn~(x) have three distinct
zeros of multiplicities at most two. As in Section 3, we first apply Lemma
1. To apply Lemma 2, we observe that for z = m  3 we have sl  2 for
i = 1, 2, 3; therefore the two exceptional cases cannot occur. Hence (21)
has at most finitely many solutions in x, y  1, z  3 for n = 4 or 5, with
effective upper bounds for x, y, z.

10. A generalization

In analogy to the result in [16] which was mentioned in the introduction,
we can show the following.

THEOREM 4: Let X and b be as in Theorem 1, and let {Rn(x)} be a

sequence of polynomials with integer coefficients, satisfying for any x

If n is sufficiently large then

has only finitely many solutions in integers x, y  1 and z  2 if n ~ 03B4
(mod 2), resp. z  3 if n ~ 8 (mod 2), with effective upper bounds for x, y,
z.

PROOF: An adaptation of the lemmas in Sections 5 and 6 would give us
explicit lower bounds for n, depending on f and {Rn}. Here we use a
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different (but conceptionally similar) method which, however, fails to

provide bounds for n.
We can rewrite (28) as

where

We regard Pn~(x):=Bn+1~(x)-Bn+1~+(n+1)Rn(x/f). In [6] it was

shown that for entire functions S(x) the sequences of functions

after normalization converge uniformly on compact subsets of C to

sin(27Txjl) if Bn+1~ = 0, and to cos(03C0x/f)-1 if Bn+1~ ~ 0. It is clear

from the proofs in [6] that S( x ) can be replaced by a sequence of
functions Sn(x), with |Sn(x)|(203C0/f)n/n!~0 as n - oc, for all x.

Because of (28), (n + 1)Rn(x/f) satisfies this condition. Now a well-
known theorem of Hurwitz implies that the zeros of sin(2qrx/f), resp.
cos(203C0x/f)-1 are limit points of the zeros of Pn~(x). Therefore, if n is

sufficiently large, Pn~(x) and Qn~(x) will have at least three simple zeros
in the case B~n+1 = 0 (i.e. n ~ 03B4 (mod 2) by (4)), and at least three zeros of
multiplicity at most 2 in the case where Bn+1~ ~ 0 (i.e. n ~ 8 (mod 2)). We
now arrive at Theorem 4 using Lemmas 1 and 2 as before in Sections 3
and 9.D.

COROLLARY: Theorem 4 holds for the equation

where x is not necessarily a multiple of f.

PROOF : For j = 0, 1, ..., f - 1, we define polynomials

Now (30) can be rewritten as f equations

( j = 0, 1, ... , f - 1). Because of
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the polynomials rnj()+Rn(f+j) satisfy (28), and therefore by Theo-
rem 4 each equation (31) has only finitely many solutions in x, y, z. But

this means that (30) has only finitely many solutions in x, y, z.
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