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Introduction

Throughout this paper varieties are defined over a fixed algebraically
closed field of characteristic zero.
A logarithmic Fano threefold is defined to be a pair (V, D) of a

smooth projective threefold V and a reduced divisor D with normal
crossings on V, satisfying the following condition:

-Kv- D is ample.

This is one of the extensions of the notion of Fano threefold.

Biregular classification of Fano threefolds was completed by Iskovs-
kih-Shokurov ([8] or [9], see also [24]) in case B2(V) = 1 or index(V)  2,
and by Mori-Mukai ([16],[17]) in case B2(V)  2. In case B2(V)  2,
there exist at least two extremal rays and the classification of extremal
rational curves, by S. Mori ([15]), plays an essential role.

In [7], S. litaka observed that the classical classification theory of
complete algebraic varieties can be extended to the classification theory
of open algebraic varieties. Inspired by this theory, the author extends
the definition of Fano variety to the case of non-singular pair (V, D ) and
classifies them. The name "logarithmic" is derived from litaka’s theory,
since he makes use of logarithmic differential forms to define many
invariants of this pair.

The purpose of this paper is to classify logarithmic Fano threefolds
(V, D) with non-zero boundaries D (cf. Reid [21], p. 10, Problem 2).

Fundamental tools are Norimatsu vanishing theorem, Tsunoda’s loga-
rithmic cone theorem, Mori’s theory of extremal rational curves on a
threefold and some ampleness criteria for the logarithmic anti-canonical
divisor, which will be explained in section 1.

In section 2 we study some general properties of logarithmic Fano
varieties (V, D ) of arbitrary dimension. In particular, the Picard group of
V is a free Z-module of rank B2(V) (Lemma 2.3) and the boundary D is
strongly connected (Lemma 2.4).

Any component à of D of logarithmic Fano variety (V, D) with
D =1= 0 is also a logarithmic Fano variety with boundary (D-0394) 1 ô. In
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order to determine bounaries of logarithmic Fano threefolds, we classify
logarithmic Del Pezzo surfaces in section 3.

In section 4 we prove the existence of an extremal rational curve ~

with (D·~) &#x3E; 0 as a key lemma. Moreover all the types of ~ are F, E2,
D3, D2 or C2.

Roughly speaking logarithmic Fano threefolds (V, D ) with D ~ 0 are
classified into the following five types:

(i) V is P3, Q2, V1, V2, V3, V4 or V, of [9, 1, Theorem 4.2 (ii) and (iv)]
of index 2. Letting H be an ample generator of Pic(V), we have
-Kv&#x3E; rH, where r is called the index of V. In this case D is a member
of |tH|, with t  r (section 6).

(ii) V is a blowing up of p3 at a smooth conic curve or a blowing up
of another logarithmic Fano threefold (V’, D’) at some points on a
boundary D’. The number of the points is at most 8. Here V’ is P3, Q2 or
E’l, ’2 (section 7).

(iii) V is a Pl-bundle over a smooth surface which is either a Del
Pezzo surface or a geometrically ruled surface 03A3n. One component of D
is a birational section of this bundle and another component, if exists, is
a geometrically ruled surface formed by fibers of this bundle (section 8).

(1v) V is a quadric fibering over Pl with B2(V) = 2. V is embedded in
a P3-bundle over Pl as a smooth divisor. One of the components of D is
a horizontal one of this fibering. (In particular is rational.) Another
component, if exists, is a fiber (section 9, 9.2).

(v) V is a P2-bundle over pI, denoted by ¿al’ a2. D has one or two
horizontal components. Another component, if exists, is a fiber (section
9, 9.1).
We give in section 5 the configurations of boundaries except for type

(i) above, which we classify together with V in section 6.
From sections 6 to 9 we classify logarithmic Fano threefolds according

to the types of extremal rational curves.
As consequences, we obtain the following results:
(1) In [16], Mori and Mukai have shown that for a Fano threefold V,

B2(V)  10 and the equality holds if and if V ~ P1 X S1, where SI is a
Del Pezzo surface of degree 1. For a logarithmic Fano threefold (V, D)
with D ~ 0, B2(V)  10. The equality holds if and only if V is a

Pl-bundle over SI. In contrast with usual Fano threefolds, there is an
infinite series of such (V, D ) (cf. 8.1.4).

(2) From the classification theory, for a Fano threefold V, (-KV)3  64
([16, Corollary 11]). However there is a logarithmic Fano threefold

(V, D ) with (-KV- D)3 arbitrary large.
(3) A logarithmic Fano threefold turns out to be either a rational

threefold (cases ii, iii, iv, and v) or a usual Fano threefold (case i). In
characteristic zero case, these threefolds are simply connected ([4, 3.3],
[20]). Hence for any logarithmic Fano threefold (V, D), V is simply
connected.
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§1. Preliminaries

Let V be a smooth projective variety and D a reduced divisor with
normal crossings on V. We consider here such a pair (V, D ) of V and D,
which we call a non-singular pair (of dimension n = dim V). D is

occasionally called the boundary of this pair. We denote by Kv the
canonical divisor on V.

DEFINITION 1.1: A non-singular pair (V, D ) is called a logarithmic Fano
variety if -KV- D is an ample divisor on V.

Especially we call two dimensional logarithmic Fano varieties logarith-
mic Del Pezzo surfaces and three-dimensional ones logarithmic Fano
threefolds.

First we recall the following vanishing theorem. In this paper we refer
to this theorem as Norimatsu vanishing theorem.

THEOREM 1.2: (Norimatsu [19, Theorem 1]) Let (V, D) be a non-singular
pair and L an ample divisor on V. Then

Next we explain the cone theorem. We define
N1(V)={1-cycle on V}/ OR,
NE(V) = the convex cone in N1(V) generated by curves,
NE(V) = the closure of NE ( Tl ) in N1(V) with respect to

the reql topology.
NEH(V) = {Z ~ NE(V); (H · z)  0}, for H ~ Div(V) ~ Q,

where * denoted numerical equivalence.

The following theorem is an extension of the theorem (1.4) in [15],
where the case D = 0 was treated.

THEOREM 1.3: (Tsunoda [22], [23, p. 508]) Let (V, D) be a non-singular
pair and L an arbitrary ample Q-divisor on V. Then there exist a finite
number of ( may be singular) rational curves t1, ~2,..., er such that
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and

where R + denotes the set oj non-negative real numbers.

We refer to the above theorem as logarithmic cone theorem.

We give here a short presentation of Mori’s theory of the classification
of extremal ratinal curves on a threefold. In general

THEOREM 1.4: (Contraction Theorem). Let (V, D) be a non-singular pair
and let R = R+[~] be an extremal ray of NE(V). Then there exists a
(unique) projective morphism onto a normal projective variety W, say

f : V ~ W, satisfying the following conditions:
(1) f*O v = (2w,

(2) 0 - Pic(W) - Pic(V) ~ Z is exact,

(3) for an irreducible curve C, f(C) is a point if and only if [ C ~ R.
The above morphism is called the contraction of R or ê and denoted by

cont R or conte.

Note that the cone theorem and the contraction theorem holds true in
more general setting (Kawamata, Reid, Shokurov, Jànos Kollar).

Mori determined cont R in case of dim V  3. For details we refer to

[14], [15] or [17]. In this paper we only need the following facts.
For an extremal rational curve t we let 03BC(R) = 03BC(~) = min K v

C); C is an irreducible rational curve with [C] ~ R = R+[~]}. The
following lemma extracts the facts from [17, pp. 107-109].

LEMMA 1.5: Let ê be an extremal rational curve on a threefold V with
it (ê) = ( - K v . l)  2. Then f is one of the following types:

Type F: In this case, V is one of the Fano threefolds with B2(V) = 1,
which are called Fano threefolds of first species ([9]). In this case, 03BC(l)
takes any value between 2 and 4.

Type E2: In this case, W is a smooth threefold and conte: V ~ W is a
blowing up at a smooth point of W. The exceptional divisor E is isomorphic
to p2 and f is a line of p 2with (E. t) = -1. In this case it (e) = 2.

Type D2 : in this case, conte: V - W is a quadric bundle over a smooth
curve W, i.e., and fiber is isomorphic to an irreducible quadric surface in P3
and t is a generatrix. In this case 03BC(~) = 2.

Type D3 : In this case, conte: V - W is a p2 -bundle over a smooth curve
W and f is a line on a fiber. In this case, it (e) = 3.

Type C2 : In this case, conte: V- W is an étale Pl-bundle over a
smooth surface Wand t is a fiber of this bundle. In this case, 03BC(~) = 2.
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Finally we give a numerical criterion of ampleness for the logarithmic
anti-canonical divisor - K v - D.

LEMMA 1.6: ([12, ( ii ) of theorem]). Let (V, D) be a non-singular pair of
dimension 3 and suppose that K ( - K v - D, V)  0. Then - K v - D is

ample if and only if - K v - D is numerically positive, i. e. ( - Kv - D - C)
&#x3E; 0 for all curves C on V.

§2. General properties of logarithmic Fano varieties of arbitrary dimension

LEMMA 2.1: Let (V, D) be a logarithmic Fano variety. Then
( a ) Hl(m(KV+D)) = 0 for any m  1 and i  dim V,
( b ) Hl(-m(KV+D))=0 or any m  0 and i &#x3E; 0,
(c) Pm(V)=h0(mKV)=0 for any m &#x3E; 0, i.e. K(V)= -~, where

03BA(V) denotes the Kodaira dimension of V ( cf . [6, §10]),
( d ) If D ~ 0, then Hl(-D)= 0 for any i  0.

PROOF: (a) follows from Kodaira vanishing theorem;
(b) follows frm Hl(-m(KV+D))=Hl(Kv+D+(m+1)(-Kv-

D )) = 0 by Norimatsu vanishing theorem;
(c) is clear since h0(mKV)h0(m(Kv+D))=0 by (a);
(d) follows from Hl(-D)=Hl(Kv+(-Kv-D))=0 for any i &#x3E; 0.

H0(- D ) = 0 is obvious Q.E.D.

COROLLARY 2.2: ( a ) Alb(V) = 0.
(b) Pic(V) ~ H2(V, Z). In particular, 03C1(V) = B2(V), where 03C1(V) is

the Picard number of V.
(c) ~(v) = 1.

PROOF: (a) is immediate, because H0(03A91v) = H1(Ov) = 0;
(b) follows from the exponential sequence

and the fact that H1(Ov) = H2(Ov) = 0;
(c) is obvious. Q.E.D.

LEMMA 2.3: For a logarithmic Fano variety (V, D), Pic(V) is torsion free.

PROOF: (cf. [8, 4.10]). We suppose that L is a torsion divisor. By
Keliman’s numerical criterion for ampleness, mL - Kv - D is an ample
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divisor for any m  0 ([11]). By Norimatsu vanishing theorem,

for any i &#x3E; 0. Thus we obtain h0( mL ) = X ( mL ).
On the other hand, since L is numerically equivalent to zero, we have

~(mL)=~(Ov)=1. Hence |mL| ~ Ø for all m  1. In particular, |L|1
=A » and this implies that L °°°o 0. Q.E.D.

LEMMA 2.4: ( a ) D is connected, moreover
(a’) Dl ~ Dj ~ Ø, for any i and j (in this case D is called strongly

connected ).
(b) s  dim V, where s is the number of irreducible components of D,

i.e. D = D1 + ··· +DS.

PROOF: (a) By the standard exact sequence

and the fact that H0(- D ) = H’ ( - D ) = 0, we have h0(OD) = h0(OV) = 1.
(a’) We prove by induction on dim V. The assertion is clear, if

dim V = 1. We may assume that D ~ 0. Suppose there exist i and j such
that D, ~ Dj = fi. Since D is connected, after renumbering D,’s, we may
assume that there exist D1, D2 and D3 such that D1 ~ D2 ~ Ø and
Dl ~ D3 ~Ø, but D2 n D3 =,0. Let 0393~= D~| D, for ~~ 1. Then F2
+ - - - +0393s=(D- Dl) 1 Dl is a divisor with normal crossings on D1. Since

is an ample divisor on V, (D1, 03932+ ··· + 0393s) is a logarithmic Fano
variety of dimension dim V-1. By induction hypothesis, F2 ~ r3 ~Ø,
hence D2 n D3 *,0. This is a contradiction. (b) By ( a’), Dl ~··· ~Ds~Ø
if D ~ 0. Since D is a divisor with only normal crossings,

hence n  s. Q.E.D.

§3. Classification of logarithmic Del Pezzo surfaces

In this section we always assume that (V, D ) denotes a logarithmic Del
Pezzo surface.
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LEMMA 3.1: The A-genus of V (cf. [3, Definition 1.4]) with respect to the
ample divisor - Kv - D is as follows:

(a) If D = 0, then 0394(V, -KV) = 1.
(b) If D ~ 0, then 0394(V, -Kv - D ) = 0.

PROOF: By the definition of A-genus.

By Lemma 2.2,

Hence,

by Riemann-Roch Theorem. We have

if D ~ 0, then (-K-D·D) &#x3E; 0 and 0394(V, -K-D)1. This implies
that à(V, - K - D) = 0. Q.E.D.

Now we can classify logarithmic Del Pezzo surfaces (V, D). We may
assume that D ~ 0. Otherwise V is a (classical) Del Pezzo surface. The
structure of Del Pezzo surfaces are well known (see, for example [13]).

Using Fujita’s classification theorem of polarized varieties of à-general
zero ([3, pp. 107-110]), we have (V, - KV - D ) as follows:

(a) (V, -K - D) ~ (p2, H) where H is a line on p2,
( b ) (V, -K - D) ~ ( Pl X Pl, s + f ) where s is a section and f a fiber

of the trivial bundle Pl  P1 ~ pl,

REMARK. When we treat the two dimensional polarized varieties of
0 - genera zero, the case (b) happens to be a special case of (c).

3.1. Case (a). In this case, V ~ P2 and D - 2H, where - means linear
equivalence on V. If D is irreducible, then D is a smooth conic. If D has
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Fig. 2

two irreducible components D, and D2, then both Dl and D2 are lines
on p2 (see Fig. 1).

3.2. Case (b). In this case, V ~ P1 X pl and D ~ f + s. If D is irreducible,
then D is a smooth section linearly equivalent to s + f. If D has two

components, Dl and D2, then Dl is a section s and D2 is a fiber f (see
fig. 2).

3.3. case (c). If V ~ P2, then D ~ H. Hence D is a line (see Fig. 3).
If V ~ P(OP1(a1) ~ OP1(a2)), then is a geometrically ruled surface

and the properties of such surfaces are known (see, for example, [5,
Chap. V]).

Let n=|a1-a2|. Then V ~ P(OP1 ~ OP1(-n)), denoted by ¿n° On
03A3n, we have a unique section à such that (0394)2 = - n and a fiber f.
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Fig. 4

LEMMA 3.2: ([5, p. 380]). Let 03A3n, 0394 and t be as above. Then aà + 03B2~ is
ample if and only if a &#x3E; 0 and 03B2 &#x3E; an.

Since - K v - D - OP(1) is ample - Kv - (2 p(2) + fibers, we have ( - K
- D. t) &#x3E; 0 and (D·~) &#x3E; 0. Hence (D·~) = 1. In this case, one of the
components of D is a section, say D1.

First we suppose that D = Dl . Then Dl can be written as Dj °°°o à + m~,
where m = 0 or m  n. Since -KV-D~0394+(n+2-m)~ is ample, we
have n + 2 - m &#x3E; n by Lemma 3.2.

If m = 0, then D = à and n can take any non-negative integer. Hence,
V ~ 03A3n and D = à (see Fig. 4).

If m  n, then n = 1 or 0. In case n = 0, we may assume m = 1,
because the case m = 0 is the above. Hence, V 10 and D - à + ~. This
case is treated in 3.2. In case n = 1, m = 1 and V is isomorphic to Il and
D - à + ~ (see Fig. 5).

Next we consider the case where D is a sum of a section Dl and a
fiber D2 = f. Then Dl is linearly equivalent to à + mt where m = 0 or
m  n. Since -KV-D~A+(n+1-m)~ is ample, we have n + 1 - m
&#x3E; n.

If m = 0, then - K - D is always ample for any n  0. Hence V ~ 03A3n,
Dl = à and D2 = ~ (see Fig. 4).

If m  n, then n = 0 and m = 0. This case is contained in the above
case.

3.4. Summarizing the above result, a logarithmic Del Pezzo surface is one
of the following:

(i) V ~ P2, D = D1 where Dl is a line.

(ii) F= P2, D = D1 + D2 where each Di is a line.
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(iii) V ~ P2, D = D, where D, is a smooth conic.

(iv) V ~ 03A3n = P(OP1 ~ OP1(-n)), D = D1 where D1 is a section with

(D1)2= -n.
(v) V ~ 03A3n, D = Dl + D2 where Dl is a section with (D1)2 = -n and

D2 is a fiber.
(vi) V ~ 03A31, D = Dl where Dl is a section with ( D1 )2 = 1.
(vii) V ~ 03A30, D = D1 where D1 is a section with (D,)2 = 2.

REMARK: The logarithmic Del Pezzo surfaces over an algebraically closed
field of positive characteristic are the same as over characteristic zero.
But we will not treat this in this paper.

§4. Extremal rational curves on a logarithmic Fano threefold

We can apply the logarithmic cone theorem (1.3) to a logarithmic Fano
threefold (V, D). Since -KV-D is ample, we can take in 1.3 L =

(-KV-D), with  ~ Q+ small; then NEKV+D+L(V)=0. Hence NE(V)
is a polyhedral cone, i.e.

where the ~1 are extremal rational curves. We may assume that each ~1
satisfies 03BC(~1) = ( - K v . ~1). The next lemma is a key lemma of this paper.

LEMMA 4.1: Let (V, D) be a logarithmic Fano threefold with D =1= 0. Then
there exists an extremal rational curve ~1 on V such that

In particular, ( - KV· ll)  2.

PROOF: Since -KV-D is ample and NE(V)=R+[~1]+ ··· + R+[~r],
we have

where al  0 for all i. Since D is a non-zero effective divisor,

Hence one of (D· ~l)’s must be positive, say (D· ~1) &#x3E; 0. Moreover, we
have ( - KV - D - ~1) &#x3E; 0 and therefore ( - KV· ~1)  2. Q.E.D.

REMARK: If t is an extremal rational curve satisfying the conditions of
Lemma 4.1 for a logarithmic Fano threefold (V, d ) with D ~ 0, then by
Lemma 1.5 e is of type F, E2, D3, D2, or C2.



91

§5. Classif ication of boundaries of logarithmic Fano threefolds

Let (V, D ) be a logarithmic Fano threefold with D ~ 0. In section 4, we
have shown that there is an extremal rational curve e with (-KV·~)&#x3E;
(D·~)&#x3E;0 and the type of e is F, E2, D3, D2 or C2. Here we will
classify the possibilities of D according to the type of f.

5.1. Type E2. In this case, (-KV·~)=2. Hence, (D·~)=1.
First we consider the case where the exceptional divisor E is a

component of D, say D,. Then

Here, fi = Di 1 Dl are the double curves of D lying on D1. Since (D1·~)
= -1, we have ( r2 + ··· + 0393s·~)D1 = 2. Thus r2 + ··· + fs is linarly
equivalent to a conic on D1 ~ p2.

From the classification of logarithmic Del Pezzo surfaces, the possibil-
ities of D in this case are as follows:

(i) D = D1 + D2, where Dl = p2 and D2 ~ 03A32,
(ii) D = D1 + D2 + D3, where D1 = P2, D2;; 03A31 and D3 ~ 03A31 (see Fig.

6).
PROOF: If the double curve r = D2~D1 is a smooth conic on Dl, then we
have

Thus D2 is isomorphic to :¿2 (case (i)).

Fig. 6
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If the double curve r2 + F3 = (D2 + D3)|D, is composed of distinct
two lines, then

and similarly (03933)2D3 = -1. Hence both D2 and D3 are isomorphic to ¿1 1
(case (ii)). Q.E.D.

Next we consider the case where the exceptional divisor E is not a

component of D. In this case, we have

Hence D|E is a line on E ~ P2. The possibilities of D are as follows:
(iii) D = Dl where D1 ~ a Del Pezzo surface and E 1 D is an excep-

tional curves of the first kind on D.

(iv) D = D1 + D2, where D1 ~ Il. We cannot determine D2 im-

mediately but will classify it in 7.4. (see Fig. 6).

5.2. Type C2. Let f : V- W be a Pl -bundle over a smooth projective
surface W induced by f. In this case ( - KV·~) = 2 and thus (D·~) = 1.
This implies that D contains a (birational) section Dl of f, i.e., f|D1:
D1 ~ W is a birational morphism. And the other components DJ satisfy
(DJ·~) = 0; hence, for any j  2, D. is a ruled surface formed by fibers
of f. Note that Dl is a geometrically ruled surface or a Del Pezzo surface
and W is the image of D1. Hence W is either a geometrically ruled
surface or a Del Pezzo surface. If D, contains no exceptional curve of the
first kine, then f|D1: Dj - W is an isomorphism (see section 8).

Letting fi = Dl|D1, we see that the possibilities of D are as follows:
(i) D = Dl where Dl is a Del Pezzo surface.

(ii) D = D1 + D2 where D1 ~ p2.
(iii) D = D1 + D2 + D3 where D1 ~ p2.
(iv) D = D1 + D2 here D1 ~ 03A3n and (03932)2 = - n .
(v) D = D1 + D2 + D3 where Dj * Zn, ( r2 ) 2 = -n and (03933)2 = 0.
(vi) D = D1 + D2 where D1 ~ 03A30 and (03932)2 = 2.
(vii) D = Dl + D2 where D1 ~ 03A31 and ( T2 ) 2 = 1 (see Fig. 7).

5.3. Type D2 or 3. In this case f induces a quadric fibering or a
P2-bundle f : V ~ W over a smooth curve W and B2 ( h ) = 03C1(V) = 2.
CLAIM: W;; pl.

PROOF: By Mori’s theory, we have
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Fig. 7

Hence, H1(W, (9 w) = H1(V, OV) = 0, i.e. genus (W) = 0. Q.E.D.

First we consider the case where f is a quadric fibering. Since

(-KV·~)=2, we have (D·~)=1. This implies that D contains a

horizontal component DI. A general fiber F is isomorphic to Pl X pl.
1-cycles corresponding to P1  pt or pt X Pl on F are numerically
equivalent to ~ on V. Thus Dw := Dl ~f-1(w) is a hyperplane section of
f-1(w) as a quadric surface in p3 (see Fig. 8).

The possibilities of D are as follows:
(i) D = Dl where Dl is a Del Pezzo surface except for P2.
(ii) D = Dl + D2 where D1 ~ 03A30 and D2 ~ 2o (see Fig. 9).
Next we assume that f is a P2-bundle over Pl. Then (-KV· ~)= 3

and (D·~)=2 or 1. The possibilities of D are as follows:
(i) D = Dl where Dl ~ 03A30 or 2i and (DI - ê) = 1.
(ii) D = Dl where D1 ~ a Del Pezzo surface except for P2 and (D1 - t)

= 2.
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Fig. 9

(Note that D1 ~ f-1(w) is a conic in f-1(w) ~ P2. When this conic

degenerates into two lines, they will become two exceptional curves on
Dl.)

(iii) D = D1 + D2 where (D1·~) = (D2’e) = 1.
(iv) D = D1 + D2 where D1 ~ 03A30, D2 = P2 and (D1·~) = 1.
(v) D = D1 + D2 where Dl 10, D2 ~ P2 and (DI ê) = 2.
(vi) D = D1 + D2 + D3 where (D1·~)= (D2·~) = 1 (see Fig. 10).

5.4. Type F. In this case, V is a Fano threefold with B2 = 1. We shall
classify D together with in the next section.

§6. Classif ication of logarithmic Fano threef olds when V are Fano
threef olds with B2 = 1

Let V be a Fano threefold with B2 = 1. Then there exists an ample
divisor H which generates Pic(V). Hence -KV ~ rH for some integer r
and r is called the index of V.

Likewise D can be written as sH for s &#x3E; 0. Since - KV- D is ample,
r &#x3E; s. In particular, we have r  2.
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Fig. 10

Using the classification theory of Fano threefolds with index  2 and
B2 = 1 by Iskovskih, we can classify (V, D ) in the following way:

6.1. r = 4, i.e. V ~ P3. Since - Kv - 4H where H is a hyperplane, D is
linearly equivalent to H, 2 H or 3H.

Hence D is one of the following (see Fig. Il) :
(i) D = D1 where Dl is a smooth cubic surface.

(ii) D = Dl + D2 where D1 is a smooth quadric surface and D2 is a

plane.
(iii) D = Dl + D2 + D3 where each D, is a plane.
(iv) D = Dl where Dl is a smooth quadric surface.
(v) D = D1 + D2 where each Di is a plane.
(vi) D = Dl where Dl is a plane.

6.2. r = 3, i.e. V ~ Q2 c p4 that is a smooth quadric hypersurface in P4.
In this case D - H or 2 H where H is the restriction of a hyperplane of
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Fig. 11

P4 to Q2. Note that each member of |H| is irrducible, since H is a
generator of Pic(Q2).

Hence, D is one of the following (see Fig. 12):
(i) D = D1 where Dl is a smooth quartic surface in P4.
(ii) D = D1 + D2 where each D, is a smooth quadric surface.
(iii) D = D1 where D, is a smooth quadric surface.

6.3. r = 2. In this case, there are 5 different types of Fano threefolds,
namely V1, V2, V3, V4 and V,, and |H| has a smooth member ([8,
Proposition 5.1.], see also [18, p. 57]).

Conversely, for i = 1, 2, 3, 4 or 5, let V = Vl and let D be a smooth
member of |H|. Then (V, D ) is a logarithmic Fano threefold.
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§7. Classif ication of logarithmic Fano threef olds having extremal rational
curves of type E2

We have already detrmined the possibilities of D in 5.1. V will be

classified according to the type of D.

7.1. Case where D is of type (i) in 5.1. We can write

where e, = ê and al  0 for any i. Since we have

we may assume that (D1 · t2) &#x3E; 0.

First we consider the case where (D2·~2)0. In this case t2 also
satisfies the conditions of Lemma 4.1 and we can apply the results of
sections 5 and 6 to determine the type of e2. Assume t2 of type E2. Then
the exceptional divisor E associated to the contraction of ê2 satisfies

E ~ P2 and E|E~OE(-1). E cannot be a component of D, since

D2 y- 2and Dl is the exceptional divisor associated to tl. On the other
hand, in the case of E ~ D, observing the configurations of D in Fig. 6,
we derive a contradiction. If t2 is of type D2 or D3, then we have a
morphism f : V - W onto a smooth curve. Since (Dl. t2) &#x3E; 0, it follows
that f(D1) = W. But this contradicts Dl = P2. Since 03C1(V) ~ 2, t2 cannot
be of type F. Hence the remaining case is the case of type C2. Then t2
induces on V a Pl-bundle structure f : V - W. Since Dl = P2, we have
W ~ P2 by 5.2.

Let c= f*(Dv(D1). Then V ~ P = P(é’) and Dl - C9p(l) (cf. section 8).
From the exact sequence

and the fact D1|D1 ~ - êl, we have

on P2. Since ( * ) splits on P2, we obtain ~ fflp2 ~ OP2(-1), and
Dl - OP(1). Conversely, for V= P«9p2 ~ OP2(-1)), we have a smooth
divisors Dl in 1 fflp(l) 1 by ( * ) and D2 E |2F| 1 crossing normally. By
Lemma 1.6, we easily see that -KV- Dl - D2~ Dl + 2F is ample. Thus
(V, D) is a logarithmic Fano threefold.

Next we consider the case where (D2· e2)  0. Any curve on D2 is

algebraically equivalent to aT + 03B2L, where L is a fiber and F is a
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Fig. 13

minimal section of D2. Since 0393  2~2, ~2 is a fiber of D2 and (D1· t2) = 1.
Let r be - (D2 . t2), that is a positive integer. We have

and

Any effective 1-cycle on D is algebraically equivalent to at’l +,8e’2 for
some non-negative a, 03B2. If (~J· Dl)  0 for some j  3 and i = 1, 2, then

~J c D, or ( c D2. In both cases ~J  afj + 03B2~2 for some a, 03B2  0. Since

~J is extremal, ~J ~ R+[~1 ] or R+[~2]. But this is a contradiction, hence
(Dl·~J)  0. If (Dl·~J)&#x3E;0 for some i and j, then ( satisfies the
condition of Lemma 4.1. Applying the classification of D in sections 5
and 6, we can conclude that ~J= ~1 or ~J= t’2. This is a contradiction.
Hence ( D, . ~J) = 0 for any j  3 and i = 1 or 2.

Thus we have -a1 + a2 &#x3E; 0 and 2 al - ra2 &#x3E; 0. Hence r = 1 and

therefore ê2 is an extremal rational curve of type El ([14, p. 81]).
Let a: V ~ V’ be the contraction of ~2, D’=03C3(D1) and 0393’=03C3(0393)

where r = Dl n D2 (see Fig. 13).

CLAIM: Let (V’, D’) be as above. Then - K v, - D’ is an ample divisor

PROOF. Since a is a surjective morphism, we have

By Kleiman [11], it suffices to show (-K’ - D’ - C’) &#x3E; 0 for any irreduci-
ble curve C’ on V’, where K’ denotes Kv,.
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By adjunction formula,

Let C’ be an irreducible curve on V’. If C’ ~ r’, then there exists an
irreducible curve C on V such that C OE D2 and 03C3*C = C’. In this case,

If C’ = 0393’, then ( - K’ - D’ - 0393’) = ( - KD’· f’)D’ &#x3E; 0, because -KD’ is an
ample divisor on D’ ~ P2.

Hence - K’ - D’ is an ample divisor. Q.E.D.

Thus (V’, D’) is also a logarithmic Fano threefold whose boundary D’
is isomorphic to P2. After observing Fig. 7 and Fig. 11, we see that V’ is
either p3 or a Pl-bundle over P2.

First we consider the case when V’ ~ P3. Then V is obtained from P3
by blowing up a smooth conic curve T’ on a plane D’ and D2 = 03C3-1(0393’)
and Di is the proper transform of D’.

Conversely, for such a V and such D1, D2 with D = Dl + D2, we have,
by adjunction formula, - KV - D - 3D, + D2.

Since - KV - D is effective and

-KV- D is an ample divisor by Lemma 1.6.
Next we consider the case in which V’ is a Pl-bundle over P2. Since

(D’·~’1)=(D1+D2·~1)=1, we have V’ ~ P(OP2 ~ OP2(1)) and D’ ~

f2p(l). V is obtained from V’ by blowing up a smooth conic r’ on D’.
Let D" = f-1(f(0393’)), where f is a Pl-fibering of V. Then we have

where D3 is the proper transform of D". But in this case, we see

(D1 + D2 + D3 - ~3) = 0 where e3 is a fiber of D3. Hence - KV = D is not
an ample divisor in this case, this case cannot occur.

7.2. Case where D is of type (ii) in 5.1. As in 7.1, we have

and

Hence, we may assume that (D· t2) &#x3E; 0.
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Fig. 14

If ( D2 - t2)  0, then e2 is algebraically equivalent to a fiber of D2 . In
this case 12 is also algebraically equivalent to a fiber of D3, and therefore
( D2 - t2) = 0. But this is a contradiction, hence ( D2 - ~2)  0. In a similar
way (D3·~2)  0.

Thus (-K·~2)&#x3E;(D·~2)&#x3E;0 and it follows that (-K·~2)2. The
same argument as in 7.1 shows that 12 induces on Tl a Pl -bundle
structure over p2 with D, as a section. Thus V ~ P( r2p2 E9 OP2(-1)),
D1 ~ r2p(l), D2 ~ F and D3 ~ F. Conversely, consider such and D1,
D2, D3 with D2 * D3. Then letting D = Dl + D2 + D3, (V, D) turns out
to be a logarithmic Fano threefold, since -K-D ~ D1 + 2 F is ample by
Lemma 1.6.

7.3. Case where D is of type (iii) in 5.1. In this case the double curve
E n D is an exceptional curve of the first kind on D and a line on
E;:;p2.

Let E(1),···, E(t) be all exceptional divisors of the type E2 such that
each intersection of EU) with D is a line on E(l) and lies on D as an
exceptional curve of the first kind. Then E(1),···, E(t) are all disjoint
and can be contracted to smooth points. Let a: V ~ V’ be the contrac-
tion of the E(l) and D’:= 03C3(D) (see Fig. 14).

Since a 1 D : D ~ D’ is a contraction of exceptional curves of the first
kind, D’ is also a smooth Del Pezzo surface.

CLAIM. ( h’, D’) is a logarithmic Fano threefold.
PROOF: Let C’ be an irreducible curve on V’. Then there exists a curve C
on V such that a*C = C’ and C OE E(l) for any i = 1,···, t. In particular
NE(V’)=03C3*(NE(V)) is also a polyhedral cone. By the ramification
formula in case of point blowing up, we have
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Then

Hence, - K VI - D’ is an ample divisor by Kleiman’s criterion. Q.E.D.
Thus (V’, D’) is a logarithmic Fano threefold such that D’( = D’1) is a

Del Pezzo surface. And there exists no extremal rational curve of type E2
on V’. By Lemma 4.1, we can find an extremal rational curve ~’ on V’
such that (-KV’· f’) &#x3E; (D’· f’) &#x3E; 0. By assumption, e’ is not of type E2 .
If t’ is of type C2, then is a fiber of a P’-bundle and satsisfies the
relation: (-KV’- D’ . f’) = 1. Let C be the strict transform of C’ which
is a fiber of the fibering and passes through P := a(E). Then

This contradicts the ampleness of -KV- D.

Using the same argument, we can show that e’ is neither of type D2
nor of type D3 with (D’· f’) = 2.

Suppose that V’ is a Fano threefold with index 2. Since - K v, - D’(~
D’) is ample, we have

If - K v - D is ample, then - K - 2 D is alsoample. Thus V may be a
Fano threefold with index 2 and B2(V)  2.

By the classification of Fano threefolds, V is

But these threefolds cannot be obtained by blowing up another Fano
threefold with index 2; hence this is not the case.

In the remaining cases, V’ is P3, Q2 or a P2-bundle over Pl with
(D’·~’)=1. We can see that (V, D) is obtained from one of the

following (V’, D’), by blowing up points on D’ such that the proper
transform D of D’ is a Del Pezzo surface.

(i) V, p3 and D’ = a plane or a smooth quadric surface.
(ii) V’ ~ Q2 and D’ ~ a smooth quadric surface.
(iii) h’ = a P2-bundle over Pl and D’ = a Del Pezzo surface with

(D’· ~’) = 1 where f’ is a line on a fiber = P2 (see 9.1).
Conversely, V and D obtained in the above way satisfies the condi-

tions of logarithmic Fano threefold by Lemma 1.6.
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Fig. 15

7.4. Case where D is of type (iv) in 5.1. As in 7.3, E can be blown down
to a smooth point P. Let a : V - V’ be the contraction of E, D’ := a(D1)
and D’2:=03C3(D2). Then (V’, D’), where D’=D’1+D’2, is a logarithmic
Fano threefold. By Lemma 4.1, there is an extremal rational curve ~’
with

The same argument as in 7.3 shows that f’ is not of type C2. Since
D’ = P2, e’ cannot be of type D2.

If V’ is a Fano threefold with B2 = 1, then V’ is P3 from the

configuration of D’. In this case V ~ P(OP2 ~ OP2(-1)) and D2 is

isomorphic to P2, because D2 is disjoint from E and is a section of

Pl-bundle structure on V. Dl is the proper transform of a plane passing
through P in P3. Conversely, V with D = Dl + D2 obtained in the above
manner is a logarithmic Fano threefold.

If V’ is a p2-bundle over Pl, then D’ is a fiber. From the configura-
tion of D and the result in 9.1.4 below, we see V’ ~ 03A30, 03B1, D’1 ~ F and
D’2 ~ H - aF. In this case we obtain - Kv - D ~ Dl + D2 + 03C3*(03B1D’1),
which is ample if a &#x3E; 0. Hence such a (V, D) is a logarithmic Fano
threefold.

If ~’ is of type E2. Then the exceptional divisor E’ associated with
intersects D2 at the exceptional curve of the first kind. Note that E’ is
disjoint from E. Hence, D’ = 2y and E’ can be blown down to a smooth
point. Let a’: V’ - V" be the contraction of E’. Then D" = 03C3’(D’) is a
sum of two copies of P2. Hence, V" ~ p3 and D" is a sum of two copies
of planes (see Fig. 15). Let C be the strict transform of the line which
passes through both P and P’ = o’(E’) . Then we can see that (- K v - D
·C) = 0. Hence, this case doesn’t occur.

§8. Classif ication of logarithmic Fano threef olds having extremal rational
curves of type C2

Let (V, D) be a logarithmic Fano threefold having an extremal rational
cure f of type C2. As we have seen in 5.2, ~ induces on V a P’-bundle
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structure f: V ~ W with a birational section D, c D. Let  be f*OV(D1),
cl := c1() and c2:= C2(e). Then  is a vector bundle of rank 2 on W
associated with f, i.e. V ~ P = P() and O(D1) ~ OP(1).

The restriction of f to D1, denoted g: Dl - W, is a birational

morphism. If D, has no exceptional curves of the first kind, then g is an
isomorphism and D1 becomes a section, i.e. D1 defines a section of é
without zeros.

Let Y1 ... YS be all fibers f lying on D1. By the Hirsch formula (cf. [5,
p. 429]), we have in A(V)

with s = c2. This also holds in A( Dl ). Since Dl is a rational surface, we
have on Dl

with s = C2.
Now we classify (V, D ) according to the type of D in 5.2.

8.1. Case in which D is of type ( i ) in 5.2. Then D = D1, that is a Del
Pezzo surface. The birational morphsm g: D1 ~ W is a succession of
blowing ups with center at P1,···, Pc2 where Pl =f(03B3l). Note that the P,
are in general position, since the P, are isolated simple zeros of a section
of é defined by D1.

If C2 = 0, then g is an isomorphism and Dl induces a subbundle of é.
If C2 &#x3E; 0, then let T: W’ - W be a blowing up with center at Pl’s, a:

V’= FX wW’ ~ V and D’ be the proper transform of D by a. Then W’
is isomorphic to D and f’:=f wW’: V’ ~ W’ is a Pl -bundle over W’,
where D’ is a section (see Fig. 16).
In this case, a is a succession of blowing ups with center at 03B3l =f-1(Pl)
for i= 1,..., c2. Let El = 03C3-1(03B3l), which is isomorphic to Pl X Pl . Then
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Fig. 17

where g’ = r ·f’|1 D’: D’ - W is a birational morphism which coincides
with the birational morphism g: D - w. We may identify D’ with W’ by
f’ 1 D" g’ with 7" and D’ with D by 03C3|1 D’, respectively. Let ’ =f*OV’(D’).
Then by ( * *), we have the following exact sequence on W’ = D’:

r, = D’I E is a smooth section with (0393l)2 = 2 on El ~ P1 X P1 for any

i=1,···,c2, since (0393l)2Et=D’2·Et=(03C3*D·0393t)-(E·0393t)=1-(-1)=2
(see Fig. 17).
The restriction to 03B3l c W’ of the above sequence induces

This doesn’t split, since otherwise (03932l)El = 0. Thus ’ gives rise to a
non-zero element of 

Moreover, ’|03B3l = OP1(1) ~ OP1(1) in Ext1(O03B3l(2), O03B3l) ~ k.
We shall examine according to the type of W.

8.1.1. Case where W = p2. Let L be a line on W passing through only
one of Pl’s, say rB. Then VL=f-1(L) is a geometrically ruled surface. By
the ampleness of - K v - D,
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is also ample, where LI is the proper transform of L on D by g: D ~ w.
Hence (VL, LI) is a logarithmic Del Pezzo surface. By section 3, (L1)2VL
 2.

Since g* L - LI + Yl and deg c1 = (CI. L) = (D. g*L), we have

Let L’ be a line on W’ passing through two of Pl’s, say Pl and P2, and
let VL’ =f-1(L’). Then g*L ~ L’1 + 03B31 + Y2 where L’1 is the proper trans-
form of L’on D by g.

Since L + YI + Y2 --- L + 03B31, we have

Recalling deg c1  4, we have (L’1)2VL’  0 and obtain the following
Table 1.

(1) Case in which deg cl = 4. Let fl: VI ~ WI be a Pl-bundle over
W1 ~ 03A31, obtained from by blowing up 03B31. From Table 1, TlM = f-11(M)
is isomorphic to 2o for all fibers M on Il. Hence VI is isomorphic to a
trivial bundle, i.e., V1=03A31 P1. This implies that V ~ P2  P1. Let

H = P2  pt and F = line X P’. Since (H . F . D) = 2, we have D ~ H +
2 F. On the other hand, -KV ~ 2H + 2F. It follows that

Hence, c2 = 9 - 5 = 4. This implies that C is isomorphic to OP2(2) ~
(2p2(2) and D ~ (2p(l) on P(&#x26;).

Conversely, let V = P1 X P2, then (2p(l) is very ample and hence we
can choose a smooth member D of |OP(1)|. The ampleness of - KV - D
- D - F - H + F is clear, and the above ( P2 X Pl, D) is a logarithmic
Fano threefold.

(2) Case in which deg cl = 3. First we note that

for a Pl-bundle V ~ P() over W with cl = c1(). In this case

is an ample divisor. Hence, -KV ~ 2 D is also ample. Thus V is a Fano
threefold with index 2 and B2  2. By [9, 1, 4.2], V is isomorphic to either
V7 = P(OP2 ~ OP2(-1)) or V6 = P(0398P2).

If V ~ V7, then ~OP2(1) ~ OP2(2) and D - C9p(l) on P(). Since
(-KD)2D = (D)3 = 2, D is a Del Pezzo surface of degree 7.
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Table 1.

Conversely, for V=P(OP2(1) ~ OP2(2)) ~ V7, |OP(1)| 1 is a very ample
linear system and therefore there is a smooth member D in |1(9p(l) | and
-KV- D - D is ample. Hence the above (V7, D ) is a logarithmic Fano
threefold.

If V ~ h6, then we can choose a smooth member D in |-1/2· KV|.
Since (-KD)2D=(D3)=6, D is a Del Pezzo surface of degree 6. We
obtain a logarithmic Fano threefold (V6, D ).

(3) Case in which deg cl = 2. Since (D. 03B3) = 1, (D. L1) = 1 and (D.
L’1) = 0, D is a semi-positive divisor. In particular, 0  (D3) = c21 - c2;
hence, c2  4. Since -K ~ (-K - D)+D ~ 2D + F is an ample divisor,
V is a Fano threefold with index 1 such that V has a P’-bundle structure
over P2.

It follows from a result of Dëmin [1, Theorem 1] that there are five
types of such Fano threefolds.
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If é is decomposable, then

and

or

and

These are logarithmic Fano threefolds.
If  is unstable, then deg c, = c2 = 2. V is isomorphic to the blow up

of a quadric Q2 with center at a line. A smooth member D in |OP(1)| is
a Del Pezzo surface of degree 2, since (-KD)2D = (D· F)2·D = 7. Con-
versely, by the same method as in Lemma 8.1 below, we obtain a smooth
mmber D in ) |OP(1)|, where e is an unstable vector bundle of rank 2 on
p2 with deg c, = C2 = 2. In this manner we obtain a logarithmic Fano
threefold.

If é is stable, then V ~ V30 c Pl’ or V ~ V38 c p21 (for notations, see
[1]). If V ~ V30, then deg c1 = 2 and c2 = 4. In this case (-KD)2D = ( D +
F) 2 - D = 5.. If V ~ V38, then deg c = 2 and c2 = 3. In this case we see
(- KD)t =(D+F)2·D=6. Here we obtain two logarithmic Fano
threefolds.

(4) Case in which deg cl = 1. In this case we choose a point Po on W
such that any line Lo through Po contains at most one zero of D. Since
Lo - L + y, we have

Hence, hLo is isomorphic to 03A31 for any Lo. Let % - V be a blowing up
with center at 03B30=f-1(P0). Then V0 is a Pl-bundle over W0 ~ 03A31,
denoted fo: Vo - Wo . By Table 1, VM = f-1(M) is isomorphic to 11 1 for
any fiber M on Wo.

In general, the exceptional curve of the first kind on a surface is stable
under deformations ([10]). Thus, there is a section Ho composed of
exceptional curves of the first kind on VM ~ Il. It is easy to see that

H0|H0 ~ -0394-M, where à is a section with (0394)2 = -1. Hence Vo *
P(O03A31 ~ O03A31(-0394 - M )). This implies that V ~ P(OP2 ~ OP2(-1)). Since
deg cl = 1, we see (9p2 ~ (9p2(1) and D - (9p(l) on P(é) and we
obtained a logarithmic Fano threefold. In this case c2 = 0.

(5) Case in which deg c1  0. The following lemma is due to T. Fujita.

LEMMA 8.1: If c1  0 and 0  c2  8, then there exist a vector bundle e of
rank 2 on p2 and a smooth divisor D on V = P(é) such that
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(i) CI ( ¿) = cl and C2(é) = c2,
(ii) D ~ OP()(1),
(iii) D is a Del Pezzo surface with (KD)2D = 9 - c2 .

PROOF : If C2 = 0, then d’ can be chosen as

where n = -c1  0 and D is a unique member of |OP(1)|.
We may assume that c2 &#x3E; 0. Let T: S ~ P2 be a succession of blowing

ups with center at c2 points, P1,···,Pc2, on p2 such that S is a Del
Pezzo surface. Let 03B3l = -1(Pl) be the exceptional curve on D and h be
the total transform of a line on P2.

It is suficient to find an element é’ of

such that the restriction 03B5’|03B3l is isomorphic to OP2(1) ~ OP2(1) for any
.

The extension

corresponds to a section D’ of é’ such that

where we identify D’ with S and denote T*cl by Ci. Then there exists a
vector bundle é on p2 such that

This means that V’ ~ P( lff’) is contractible along each divisor E l =

P(’|03B3l) ~ P1 ~ P1 and V’ is transformed into P(é). Let a : V’ - V

denote the contraction. Since rl = E l ~ D’ is a section of E l with respect
to the Pl-fibering

we see o 1 D’: D’ ~ D is an isomorphism. It is clear that V and D satisfy
the desired conditions.

Note that
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We have the following two exact sequences:

and

where  denotes the removal of y,. Since - CI is semi-positive, both

and

vanish. It follows that the sequence

is exact for any i = 1,..., C2. Hence we can find the desired ol. Q.E.D.

In this case, i.e. in the case of deg c1  0, we have the following

CLAIM: Let V and D be as in Lemma 8.1. Then - K v - D is an ample
divisor.

PROOF: By the formula in p. 105 [25] we have

Since 3 - deg cl &#x3E; 0, - Kv - D is effective and therefore we can apply
Lemma 1.6.

Let C be an irreducible curve. If (D· C)  0, then C is contained in
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D. Since D is a Del Pezzo surface, we have

If (D· C)  0, then ( D + (3 - cI)F. C) &#x3E; 0 is clear. Q.E.D.

8.1.2. Case in which W ~ Pl X Pl. Let L and M be two fibers of W.
Then cl - aL + 03B2M where a and 03B2 are integers. In this case we have

on D. We can choose L and M passing through none of P1,···, PC2. Let
VL=f-1(L) and VM=f-1(M).

Since (-KV- D)|VL ~ -KVL- g*L is ample, we have

In a similar way, we have

If L passes through one of the zero points of a birational section D,
then g*L - LI + yl on D with (LI)1 = -1 (see Fig. 18).
Let VL1=f-1(f(L1)). Then -KV-D|VL1 ~ -KVL1-L1-03B31 is ample
and therefore (L1)2VL1  0. In this case we .have 

and

Hence (L1)t . LI = 03B2 - 2. In a similar way (M1)2VM1 = a - 2 where g*M ~
M1 + 03B32 with (M1)2D = -1.
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Table 2.

Thus we have the following Table 2.
Now we examine each case, separately.

(1 ) Case where ci - 2 L + 2M. From Table 2, it is easy to see that
V ~ P1  P1  P1 and D ~ H + VL + VM where H is a section with

H 1 H - 0. Hence we have

and C2 = 2. Conversely, the above ( Pl X Pl X Pl, D) is a logarithmic
Fano threefold.

(2) Case where c1 ~ 2L + M. In this case we have V ~ P( m"2,o ~
O03A30(-M)) and D ~ H + VL + VM where H is a section composed of the
exceptional curve of the first kind on each VL ~ 03A31 or TILI ~ 03A31. Since
H 1 H -- - M, we have

Hence we have c2 = 1 and we can write

Conversely, V with D obtained in this way is a logarithmic Fano
threefold.

(3) Case where cl - 2L. Since both VL and VM are siomorphic to 2o,
we have V * Pl x Pl X Pl and D - H + VL where H is a section with
H|H ~ 0. Since (-KD)2D =(H + VL + 2VM)2·(H+VL)=8, we have c2
= 0. Hence is isomorphic to P«9,,,(L) ~ (9y,,(L» and D - (9p(l).

Conversely, V with D obtained in this manner is a logarithmic Fano
threefold.

(4) Case where cl - L + M. There is a section Hl formed by the
exceptional curve on VM ~ LI. Since H1· VL is a section on VL ~ 11, we
have H1|H1 ~ -L-M or -L+03B1M where a à 1 .
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Suppose first that Hl 1 Hl - - L + aM. It is easy to see that

on V ~ P(él) and therefore el 0 O03A30( L - 03B1M).
Since c1()=-L+03B1M+2(L-03B1M)=L-03B1M, this case cannot

occur when 03B1  1.
Next we consider the case when H1|H1 ~ - L - M. Then we have

Since D - Hl + TlL + VM on V ~ P(1), we have O03A30 ~ O03A30.
Conversely, for V = P(O03A30 ~ O03A30) with DEI |OP(1)|, (V, D) is a loga-

rithmic Fano threefold.

(5) Case where c1 ~ L. As in (4), there is a section Hl formed by the
exceptional curve onvm f-n-- Il. In this case H1 H, 1 is linearly equivalent to
either - L or - L + 2 M.

If H1|H1 ~ -L, then we have f*OV(H1) ~ O03A30 ~ O03A30(-L), because
Ext1(O03A30(-L), O03A30) = H1(O03A30(L)) = 0. 

Suppose that H1|H1 ~ - L + 2 M. Then

where ¿VI = f*OV(H1). Since (-KD)2D = 7, we have c2 = 1. Since 1|L ~
OP1(1) ~ OP1(1) and

is surjective, 1 is not decomposable. Hence =f*OV(D) ~ 1 ~ r2"2:.o(L
- M) is not decomposable.

Conversely, for V = P() and DEI OP(1)| as above, the ampleness of
-KV-D~H1+2VL+VM on V ~ P(1) follows from Lemma 1.6;
hence we obtain two logarithmic Fano threefolds.

(6) Case where c1 ~ - nL - mM where n  0 and m  0. In this case
- cl is a semi-positive divisor on 03A30. As in Lemma 8.1, we can construct
a vector bundle é with a birational section D such that c1()~ -nL-
mM, c2 = 8 - (KD)2D and D is smooth.

If c1=0, then we see -Kv-D ~ D + 2VL + 2VM. Since (-KV-D)2
. D1 = 4 - c2 &#x3E; 0. we have c2  3 in this case.

Conversely, for such V and D, we can verify that -KV - D is ample
by Lemma 1.6. Hence V ~ P03A30() with D ~ OP(1), where - cl is semi-

positive, is a logarithmic Fano threefold.
If c1 ~ 0, then 0  c2  7.
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Table 3.

If CI = 0, then 0  c2  3.

8.1.3. Case in which W ~ 03A31. We can use the same methods as in 8.1.2 to
obtain the following Table 3.
We obtain the following four types of logarithmic Fano threefolds

where we always assume that D - (2 p(l).
Case where

Case where

Case where

Case where

semi-positive.

8.1.4. Case in which W is a Del Pezzo surface except for p2, 03A30 or 03A31.
Note that NE(W) is a polyhedral cone generated by the exceptional
curves of the first kind L on W

Since f is an isomorphism around g-1(L),

is an ample divisor. Hence we have

This implies that - cl is semi-positive.

LEMMA 8.2: Let V be a Pl-bundle P() over a Del Pezzo surface W such
that - cl is semi-positive. Suppose that there exists a smooth member D in
1 (f) p(l) 1, which is a Del Pezzo surface.
Then - KV- D is an ample divisor.
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PROOF: Since -KV-D~D+f*(-KW-c1) and -KW-c1 is ample,
we have k(-KV- D, V) à 0. It is easy to see that

for any irreducible curve C on V (cf. Claim in 8.1.1). Hence, - KV- D is
ample by Lemma 1.6. Q.E.D.

Using the same method as in 8.1.1, we can prove the existence of a
vector bundle  over W such that -c1 is semi-positive and |OP(1)|
contains a Del Pezzo surface D.

Summarizing this, we have

where -c1() is semi-positive and C2 = (-KW)2W- (-KD)2D.
In particular if C2 = 0, then OW ~ OW(-0393) with a semi-positive

divisor r on W.

Conversely, for such V with D, we obtain a logarithmic Fano three-
fold.

8.2. Case in which D is of type (ii) and (iii) in 5.2. Since D - Dl consists
of fibers of Pl-bundle, D - D, is a semi-positive divisor. Thus

is an ample divisor.
Hence, V should be among those of V in 8.1.1. In addition, -KV-

D1-(D-D1) is ample.
Thus we have logarithmic Fano threefolds (V, D ) as follows:

such that

and

such that

8.3. Case in which D is of type (iv) in 5.2. In this case g: D1 ~ W is an
isomorphism. Let M be a fiber and 0394 a section with (0394)2D1 = -n on
D1 ~ 03A3n. Since ( - KV - D)|VM ~ - KVM - M - y is ample, we have

where VM=f-1(f(M)). Let k=-(M)2VM. Since D2=V0394=f-1(f(0394))
and -KV-D|V0394 ~ -KV0394-0394 are ample, the types of (V0394, 0394) must be
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one of 3 types (see Fig. 19):
(i) V0394 ~ 03A30, (0394)2V0394 = 2,
(ii) V0394 ~ 03A31, (0394)2V0394 = 1,

(iii) V0394 ~ 03A3m, (0394)2V0394 = -m where m  0.
We obtain the following 3 types of logarithmic Fano threefolds.

Case ( i ). It is easy to see that

Hence c1 ~ -k0394 + (2-kn)M, where we identify D1 with W. Since

-Kv-D1-D1 + (2+k)V0394+(k+kn)VM, we have

This implies that k = n = 0. Hence

where Hl is a section with H1|H1 ~ 0.

Case (ii). In this case.

As in (1) we can see that n = k = 0. Hence we have

Case (iii). In this case,
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where m  0 and k  0. By the same reason as in (ii), we have n = k = 0.
Hence V ~ Pl X Pl X pl .

8.4. Case in which D is of type (v) in 5.2. In this case, we see

where -k = (M)2D3  0 and - m = (0394)2D2  0. Since

we have n = k = 0. Hence, we have a logarithmic Fano threefold V ~

P( (2"2.0 ~ O03A30(-mM)) with D 
= D1 + D2 + D3, where D1 ~ |OP(1)|, D2

=f-1(f(0394)) and D3=f-1(f(M)).

8.5. Case in which D is of type (vi) in 5.2. Since we have

where a  0 and b  0, we obtain a logarithmic Fano threefold V ~

P(O03A30 ~ O03A30(-al-bM)) with D = D1 + D2, where D1 ~ OP(1) and D2
~ |VL + VM|.

8.6. Case in which D is of type (vii) in 5.2. We choose V among those of
V in 8.1.1, where W is p2 or 03A31 and we obtain the following two
logarithmic Fano threefolds.

Case where W ~ 03A31: V ~ P(O03A31 ~ O03A31(-a0394+(-a-b)M)) with D =
Dl + D2, where D1 ~ |OP(1)| and D2 = VA-

Case where W ~ P2: V ~ P( Wp2 (1) ~ r2p2(1)) with D = Dl + D2, where
D1 ~ |1(9p(l) | and D2 is a fiber over a line which doesn’t contain a fiber
of DI.

§9. Classif ication of logarithmic Fano threefolds having extremal rational
curves of type D2 or D3

9.1. Case in which ê is of type D3. The case in which ê is of type D2 will
be classified using the similar arguments as in the case of type D3. So we
shall first consider the case of type D3.

By a theorem of Grothendieck, v is written as 03A3a1, a2 = P(O1P ~
OP1(a1) ~ OP1(a2)) where 0  a1  a2 are integers. Let H be a tauto-
logical divisor and F a fiber of Y- a,, a2.

The following facts are easily shown.
(1) Bs|H| 1 =,O, hence we may assume H is smooth (Bertini).
(2) «H + /3F is ample if and only if a &#x3E; 0 and /3 &#x3E; 0.
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9.1.1. Case where D is of type ( i ) in Fig. 10 in 5.3. In this case, we write
D = Dl -- H + dF for some d. Since |(H|D1)| ~ |H||D1 is base point
free, there exists a smooth curve r in |(H|D1)|. Since 

r turns out to be a section of D, as a ruled surface.
First we treat the case where D1 ~ 2o. r - à + nL for some n  0.

Since

we have al + a2 + d = 2n  0. By ampleness of -KV- D1 ~ 2 H + (2 -
a1-a2-d)F, we have a1 + a2 +d 1. Hence n=0 and a, +a2+d=0.
Since

and

we have d+a20. It follows that a1=d+a2=0. Hence we have a
logarithmic Fano threefold V ~ 03A30,a2 with D = Dl e H - a 2 F 1. .

Next we consider the case where D1 ~ 2y. Since (0393)2D1=-1+2n=a1
+ a 2 + d, we have n = 1. There are two cases:

Case (1). a = 0 and a2 + d = 1. Taking f * of the exact sequence:

we have the following exact sequence:

where F= f*OD1(H).
By assumption, F can be written as OP1(a) ~ (9pi (a + 1) for some integer
a. Since f*OV(H) = OP1 ~ OP1(a1) ~ OP1(a2), we have an exact sequence:
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Comparing the above sequences, we have a = 0. Since

( * ) is not splitting and therefore a2 = 0 and d = 1. Hence we have a
logarithmic Fano threefold V ~ p2 X Pl with D = D1 ~ |H + F|.

Case (2). al = 1 and d = -a2  -1. By the same arguments as in
case (1), we have a logarithmic Fano threefold V ~ 03A31,a2 with D = Dl E
IH-a2FI. 

9.1.2. Case where D is of type (ii) in Fig. 10 in 5.3. In this case, we write
D - 2 H + dF for some d. Since

is ample, we have al + a + d  1. In particular d  1.
If d = 1, then al = a 2 = 0; hence V ~ P1 X P2. Since -KV - D1 ~ H

+ F, we have

Hence, Di is obtained from Pl X Pl by blowing up 3 points.
Conversely, for such V with D = D1, (V, D) is a logarithmic Fano

threefold. If d= 0, then (a,, a2) = (0, 1) or (0, 0).

Case ( i ) : a, = a2 = 0. In this case,

Hence, we have a logarithmic Fano threefold V ~ P1 X P2 with D = Di
~ P1  P1.

Case (ii): a, = 0  a2 = 1. In this case,

Hence, Dl is a 2 point blowing up of Pl X Pl and V ~ 03A30,1. For such V
with D = D1, (V, D ) is a logarithmic Fano threefold. 

In order to study the case of d  0, we construct a curve C in the
following may (due to T. Fujita).
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Let C be a section of 03A3a1,a2 defined by the following exact sequence:

Let H, be a divisor corresponding to the following exact sequence:

and H2 a divisor defined by the following exact sequence:

Then we have C = H1 · H2. Since H1 ~ H - a 1 F and H2 - H - a2F, we
have

Hence, H|c ~ (9pi.
Note that the inclusion C c Hl is determined by the following exact

sequence:

The similar result holds for C ~ H2 if we replace a, with a 2. The
normal bundle of C in 03A3a1, a2 is

We continue to examine the case in which d  0. Let C be the above
curve. Then (!)(D) 1 c;: O(H + dF)|C ~ OP1(d), 1.e., (D· C ) = d  0. This

implies that C is contained in D. From the standard exact sequence:

we have al + d  0. In particular, 0  a1  1. Next we take H2 as above.
Then DI H2 is a non-zero effective divisor. Since

we have 2a1 + d  0. Hence al = 1. In this case, we have either d = - 2
and a2  2, or d= -1 and a  1.
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If d= -1, then a2=11 since -KV-D1 ~ H + (2 - a2)F is an ample
divisor. But in this case 12H - F | contains no irreducible member. This
case doesn’t occur.

If d= -2, then -KV-D1 ~ H+(3-a2)F is ample. By the same
reason as above, we have a 2 = 2 and therefore V ~ 03A31,2. On the other
hand, since C is contained in D, we have

That is, (-KD1·C)D1 = 1 and therefore C is an exceptional curve on D1.
Since ( - KD, )2 = 8, Dl is 03A31. On the other hand, H|D1 is a smooth curve
on 03A31 with (H|D1)2 = 4. But this is a contradiction.

As a consequence, the case where d  0 doesn’t occur.

9.1.3. Case where D is of type (iii) in Fig. 10 in 5.3. In this case, we write

Dl - H + d 1 F where Dl ~ 03A3k1 for some d 1
and

D2 ~ H + d2F where D2 ~ 03A3k1 1 for some d 2 .

Letting r = Dl - D2, we classify D = D1 + D2 into the following 6 sub-
cases :

Note that by the ampleness of

we have a1 + a2 + -d1 + d2  1.
Let AI be a section of D, with (Ai)2 - - kl and Ll be a fiber on D,

for i = 1, 2.
We shall examine the above 6 cases:

Case ( i ). We may assume that k = n 1 and d2  dl. From the exact
sequence on Dl:

where n1  0, we have f*OD1(D2) ~ OP1 ~ OP1(-n1). On the other hand,
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from the exact sequence on V:

we have the following exact sequence on Pl:

Since

we have  ~ OP1(-d2) ~ OP1(-d1) ~ OP1(-n1-d2). By the fact that

-n1 - d2  -d2  -d1, we have al = -d2, a2 = -dl and d2 = dl. The
ampleness of - Kv - Dl - D2 is verified by virtue of Lemma 1.6. Hene
we have a logarithmic Fano threefold V ~ :¿al’ a2 with D = Dl + D2,
where D1 ~ H - a 2 F and D2 ~ H - a 2 F and both al and a are arbitrary
non-negative integers with a1  a 2 .

Case (ii). We may assume that k1 = n, and k2 = 1. Then we have
f*C9D1(D2);;;; OP1 ~ C9pl( - n1) and f*C9D2(D1);;;; OP1 ~ C9pl(l). There are two
exact sequence:

and

then the first sequence splits. Thus

Hence, d2 = -n1 and a 1 - d2  a 2 = - dl. From the second sequence,
we have d = 1 and therefore a2  0. But this contradicts a2  0.

If d1  d2, then the second sequence splits. By the same argument as
above, we have

Hence, di = 0. By the second sequence, we have d2 = -n1-1. It follows
that a1 = 1 and a2 = 1 + ni. Hence, we have the following logarithmic
Fano threefold F= 03A31, a2 with D = D1 + D2 such that Dl - H and D2 ~
H - a2F.
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Case (iii). By the symmetry, we may suppose that d1  d2. Using the
similar argument as above, we have d1 = d2 = 0. Hence we have a

logarithmic Fano threefold (V, D) such that V ~ 03A30,1 with Dj - H and
D2 ~ H.

Case (iv). In this case we have a logarithmic Fano threefold V ~ 03A30,a2
with a2  1 and D=D1 + D2 where D1 ~ H + F and D2- H - a2F.

Case ( v ). In this case, we obtain a logarithmic Fano threefold (V, D)
such that V ~ 03A30,0 ~ Pl X p2 with Dj - H + F and D2 ~ H.

Case ( vi ). In this case, we have a following logarithmic Fano threefold
V ~ 03A31,1 with D1 ~ H and D2 ~ H.

9.1.4. Case in which D is of type (iv), (v) or (vi) in Fig. 10 in 5.3. In this
case, - K v - D1 ~ -KV - D + F is also ample. Hence, (V, D ) are among
those in the cases between 9.1.1 and 9.1.3. Thus, we have the following 3
logarithmic Fano threefolds (V, D):

9.2. Case in which f is of type D2. We see V is embedded in a P3-bundle
associated with the vector bundle :=f*OV(D1) over pl. Let X=P()
and L ~ |OP(1)| on X. We can write X=03A3a1,a2,a3 ~ P(OP1 OP1(a1) ~
OP1(a2) ~ OP1(a3)), where 0  a1  a2  a3. Let H be a tautological
divisor on 03A3a1,a2,a3. Then V and D1 can be written as V - 2H + dF on X
and D1 ~ L|V where L - H + eF for some d and e.

Note that the situation in this case is quite similar to that in 9.1.2.
Let C be a section defined by the following exact sequence:

Then (H·C)=0.
First assume that d  0. Then C is contained in V. By the surjectivity

of Nclx , NV/X|1 c, we have a, + d  0. (We note that if e  0, then we
have al + e  0.) On the other hand, we have a3 + e  0, because L is
effectie. Since (-KV-D·C)&#x3E;0, we have 2-a1-a2-a3-d-e&#x3E;0
(resp. 1-a1-a2-a3- d - e &#x3E; 0), if D = Dl (resp. D = Dl + D2 where
D2 is a fiber). But these imply contradiction. Consequently, we have
d  0.
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Since

and e  -a3, we have d = 2, 1 or 0.

If d = 2, then a 1 = a2 = a3 = e = 0 and (-KD1)2 = 2. Hence X ~ P1 X
P2, V ~ 2(H + F) and D = D1 ~ H|V.

Conversely, for such and D, (V, D ) is a logarithmic Fano threefold.

If d = 1, then by using the above formulae, we obtain the following
types of logarithmic Fano threefolds:

(1) X ~ P1 XP3, V - 2 H + F with D = D1 ~ H + eF|V where e=0,
1 or 2.

In this case Dl is a Del Pezzo surface of degree 8, 3 or 1.
(2) X ~ 03A30,0,1, V ~ 2H + F with D = D1 ~ H + eF|V, where e = 0 or

1.

The degree of a Del Pezzo surface Dl is 3 or 1.

In the above 3 cases, Di is a Del Pezzo surface of degree 1.
(6) Among the above cases where e &#x3E; 0, we have another boundary

D2 - F 1 v. There are 5 such types.
Note that in the above cases V is a very ample divisor on X. Hence

B2 (V) = B2 ( X ) = 2 by the Lefschetz hyperplane section theorem.
If d = 0, we can calculate the possible values of (a,, a2, a3) by using

the above formulae.
The case where a1 = a2 = a3 = 0 is excluded, since otherwise V is

realized as a Pl-bundle over Pl X Pl and therefore B2 = 3.
Hence we may assume that al + a 2 + a3 &#x3E; 0. Since 12H | is base point

free, we can choose a smooth member V in |2H|. Note that by Kodaira
Vanishing we have H1(OX( - V» = 0 for i  4. This implies that h0(OV)
= 1 and therefore is irreducible. For such V with D = DIor Dl + D2
where D2 = F|V, -KV- D is ample by Lemma 1.6. Thus, we have the
following logarithmic Fano threefolds:
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(8) Among the above cases where e &#x3E; 0, we have another boundary
D2 - F|V. There are 3 such types.
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