Borel’s theorem for C -functions on a non-archimedean valued field
Compositio Mathematica, Tome 55 (1985) no. 3, pp. 289-294.
@article{CM_1985__55_3_289_0,
     author = {Schikhof, W. H.},
     title = {Borel{\textquoteright}s theorem for $C^\infty $-functions on a non-archimedean valued field},
     journal = {Compositio Mathematica},
     pages = {289--294},
     publisher = {Martinus Nijhoff Publishers},
     volume = {55},
     number = {3},
     year = {1985},
     zbl = {0579.26007},
     language = {en},
     url = {http://www.numdam.org/item/CM_1985__55_3_289_0/}
}
TY  - JOUR
AU  - Schikhof, W. H.
TI  - Borel’s theorem for $C^\infty $-functions on a non-archimedean valued field
JO  - Compositio Mathematica
PY  - 1985
SP  - 289
EP  - 294
VL  - 55
IS  - 3
PB  - Martinus Nijhoff Publishers
UR  - http://www.numdam.org/item/CM_1985__55_3_289_0/
LA  - en
ID  - CM_1985__55_3_289_0
ER  - 
%0 Journal Article
%A Schikhof, W. H.
%T Borel’s theorem for $C^\infty $-functions on a non-archimedean valued field
%J Compositio Mathematica
%D 1985
%P 289-294
%V 55
%N 3
%I Martinus Nijhoff Publishers
%U http://www.numdam.org/item/CM_1985__55_3_289_0/
%G en
%F CM_1985__55_3_289_0
Schikhof, W. H. Borel’s theorem for $C^\infty $-functions on a non-archimedean valued field. Compositio Mathematica, Tome 55 (1985) no. 3, pp. 289-294. http://www.numdam.org/item/CM_1985__55_3_289_0/

[1] D. Barsky: Fonctions k-lipschitziennes sur un anneau local et polynômes à valeurs entières. Bull. Soc. Math. Fr. 101, (1973) 397-411. | Numdam | MR | Zbl

[2] W.H. Schikhof: Non-archimedean calculus (Lecture notes). Report 7812, Mathematisch Instituut, Katholieke Universiteit, Nijmegen (1978). | MR | Zbl