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1. Introduction

This paper investigates decompositions of boundaryless manifolds into
closed, connected, codimension one submanifolds. It was inspired by
recent work of V.T. Liem [22], with a related but distinct emphasis:
typically the hypotheses in Liem’s results require that the decomposition
elements have the shape of a codimension one sphere. It can be construed
as an outgrowth of the same spirit leading to the studies by D.S. Coram
[11] and by Coram and P.F. Duvall [13] of decompositions of S3 into
simple closed curves. For example, in that spirit, because of the severe
limitations on the decomposition elements within the source manifold M,
one expects to discover a good deal of information about the decomposi-
tion space, M/G. We prove that M/G is a 1-manifold, possible with
boundary.
A unifying theme is the question asking: which manifolds M admit

such decompositions? The obvious examples that come to mind are the
locally trivial fiber bundles over E1 or S’. Twisted line bundles over
closed (n - 1)-manifolds provide other examples; twisted I-bundles over
two (n - l)-manifolds Ni and N2 can be glued together along their

boundaries, when homeomorphic, to produce still others. L.S. Husch [20]
has described yet another, exhibiting a decomposition G of an n-mani-
fold M into closed (n - l)-manifolds, all embedded in M as bicollared
subsets, such that the decomposition space is equivalent to SI but where
the decomposition map 03C0: M ~ M/G is not homotopic to a locally
trivial fiber map; this manifold M is built from a non-trivial h-cobor-
dism W having homeomorphic boundary components by identifying
these two ends.

At first glance the decompositions under consideration may appear to
provide partitions of M similar to those associated with foliations.

(Recall that a k-dimensional foliation of an n-manifold M is a partition
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!F of M into k-dimensional submanifolds such that each x E M has a

neighborhood U equivalent to En = Ek  En-k, where every level corre-
sponding to Ek X (point} belongs to some element of F.) Such ap-
pearances are rather ephemeral, for the differences are more pronounced
than the similarities. First, upper semicontinuity necessitates that all the
decomposition elements be compact; the more interesting foliations, for
the most part, have non-compact leaves. Second, upper semicontinuity
forces setwise convergence (in) to go of a sequence of decomposition
elements ( gi 1 for which some sequence of points xi ~ g, converges to a
point xo e go E G; foliations have no comparable feature - in fact,
individual leaves can be dense in M. Third, given a foliation F of M
into k-manifolds, one knows that locally the leaves are aligned with the
levels Ek X (point) ~ Ek  En-k in some atlas of E n-charts covering M;
the elements of the decompositions studied here need not be locally flatly
embedded in M, and even when they happen to be, they need not line up
in any way parallel to other elements nearby. -

The theorems here frequently supply structural data about the source
manifold M involving the allied concepts of "standard structures" and
’standard decompositions". The standard ( n-dimensional) structures are
of two types: (i) twisted I-bundles WT over (arbitrary) closed, connected
(n - l)-manifolds, and (ii) near-product h-cobordisms W (the term

"near-product" means that, if Bo and B, denote the components of aW,
then W - Bi ~ Bj X [0, 1) for i ~ j). Each type of standard structure W
admits certain natural (non-unique) standard decompositions 9 into
closed (n - l)-manifolds, each locally flatly embedded in W, such that
Wlg is topologically [0, 1]. An n-manifold M is said to have a standard
formation {Wi} provided it has a locally finite cover {Wi}, where each W
is a standard structure and where W ~ Wj~ (i~j) implies W ~ W is a
boundary component of each. Given any standard formation {Wi} for
M, and given some standard decomposition Yi for each W , one obtains a
standard decomposition Y for M by setting y = U iyi.

The first Structure Theorem, Theorem 4.4, attests that if M admits a
(upper semicontinuous) decomposition G into closed (n - 1)-manifolds
locally flatly embedded in M, then it also admits a standard formation
{Wi} and associated standard decomposition 9. Furthermore, in some
sense Y serves as a reasonable approximation to G.

However, when elements of G are allowed to be wildly embedded in
M, then M can take on drastically different forms. For instance, Exam-
ple 5.5 depicts a decomposition G of an n-manifold M (n  6) for which
M/G is El and the fundamental group of M at infinity is infinitely
generated. In contrast to what occurs when decompositions elements are
locally flat, this example has an infinite number of (pairwise) homotopi-
cally inequivalent elements.

Nevertheless, the decomposition G of Example 5.5 has the important
property that each inclusion g ~ M induces homology isomorphisms.
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This holds whenever M/G is El (Lemma 6.2). It suggests the general
structure theorem (Theorem 6.6): any manifold M admitting a decom-
position into codimension one closed submanifolds has a formation
{i}, where the W ’s are compact manifolds with boundary that satisfy
homological analogues of the homotopy restrictions imposed upon the
objects of a standard formation.

As a consequence, we can specify (Corollary 7.4) the 3-manifolds M3
that admit decompositions into closed 2-manifolds, by showing first that
every such M3 also has a standard formation and associated standard
decomposition 9.

Finally, we investigate some special cases in which decomposition
elements are known to possess some homotopy-theoretic compatibility,
which is significant to view of the aforementioned Example 5.5. Accord-
ing to Corollary 8.4, if ~(Mn/GA) = ~ and each g E GA has Abelian
fundamental group, then all the elements of GA are homotopy equiv-
alent ; as a result, for n  5, (whether or not ~(Mn/GA) = ~) M n has a
standard decomposition 9 approximating GA (Theorem 8.7). The same
conclusion is valid if G is a decomposition of Mn (n &#x3E; 5) such that each
inclusion g ~ M induces an isomorphism of fundamental groups (Theo-
rem 8.8).

2. Définitions, conventions, and preliminary results

By an n-manifold, we mean a separable metric space modelled on
Euclidean n-space En. Accordingly, an n-manifold has no boundary. If
we wish to consider the possibility of boundary, we shall say so explicitly,
referring to an n-manifold with boundary Q (a separable metric space
modelled on the n-cell In), and we denote its boundary as a Q.

One should always regard the manifolds, with or without boundary,
discussed herein as connected spaces. In particular, the source manifold
M (or, Mn ) appearing densely throughout is presumed to be connected.

The symbol G is reserved to denote a decomposition of the source
n-manifold M" into closed (i.e., compact), connected, (n - 1)-manifolds.
Usually we presume G to be upper semicontinuous (abbreviated as usc),
except in Section 3, where in some instances we assume only that G is a
partition (but then prove it to be usc). We use the symbol 03C0 (and,
sometimes, p ) to denote the natural decomposition map of M to the
decomposition space, M/G. Of course, G is usc iff 03C0 is a closed

mapping.
By an ( n-dimensional) h-cobordism W we mean a compact n-manifold

W having two boundary components, Bo and Bl, such that each
inclusion Bi ~ W ( i = 0, 1) is a homotopy equivalence. (Note that W is
not required to be simply connected.) Such a W is called a near-product
h-cobordism provided W - Bo = B, X (0, 1] and W - B1 ~ Bo X [0, 1).
(The symbol = means "is homeomorphic to.") Each near-product
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h-cobordism W has a standard decomposition yW associated with any
homeomorphism 03C8 of Bi  [0, 1) onto W - Bj (i, j ~ {0, 1}, i~j);
namely

It should be clear that W/yW ~ [0, 1].
The true purpose of the "near-product" phraseology is apparent only

for n = 3, 4. For n &#x3E; 5 the following holds:

PROPOSITION 2.1: For n  5, each n-dimensional h-cobordism W is a

near-product.
This was established by E.H. Connell [10].

For n = 3 this language helps circumvent potential ambiguities that
would stem from failure of the 3-dimensional Poincaré Conjecture.

PROPOSITION 2.2. If W is a 3-dimensional near-product h-cobordism, with
boundary components Bo and Bl, then W = Bo X I.

PROOF: Let 03C8: BI X (0, 1] - W - Bo be a homeomorphism. Construct an
embedding À of Bo X [0, 1] ] in W giving a collar on Bo there. Then

03C8-1(03BB(B0 X {1/2})) is locally flat and incompressible (cf. [18, pp. 42-43])
in BI X (0, 1]; according to [18, Appendix], the region bounded by
03C8-1(03BB(B0  {1/2})] and B1  {1} is homeomorphic to Bo X [1/2, 1].
The result follows.

Let N denote a closed (n - 1)-manifold, on which is defined a 2 - 1
covering map p: N - X. A twisted I-bundle over X is a space WT
equivalent to ( N X I)/R, where R represents the (usc) partition of N X I
whose only nondegenerate sets are those of the form

Then WT has a standard decomposition yW into the (n - 1)-manifolds
corresponding to the images of N  {t}, t ~ I. When t  1, these are
homeomorphic to N, but the image of N X {1} is homeomorphic to X.
As before, WT/yW ~ [0, 1].

Repeating a definition given previously, we say that {Wi} is a stan-
dard formation for an n-manifold M provided {Wi} is a locally finite
cover of M, each W is either a near-product h-cobordism or a twisted
I-bundle over some (n - 1)-manifold, and W n Wj ~  (i ~ j) implies
W ~ W is a boundary component of each. Associated with any standard
formation {Wi} for M is a standard decomposition 9 of M given by
y = ~iyi, where gi represents some standard decompostion of Wi.

Here is an obvious result:
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PROPOSITION 2.3 : If {Wi} is a standard formation for M such that each W
is homeomorphic to Ni X [0, 1], then M is a locally trivial fiber bundle over
SI or El (according to whether or not M is compact) with fibers homeo-
morphic to N.

Recall the example of Husch [20, p. 912] demonstrating the necessity,
for our purposes, of considering near-product h-cobordisms that are not
products.

3. Analysis of the decomposition space.

The aim in this section is to prove that MIG is a 1-manifold with

boundary. Boundary must be tolerated because 03C0(g) E ~(M/G) iff g is
1-sided in M (equivalently, g separates no connected neighborhood of
itself).

In addition, it is shown that, for compact manifolds M, the objects of
study can be regarded as arbitrary partitions G of M into closed,
connected codimension one manifolds; every such G is usc.

First, a technical result.

LEMMA 3.1: Each closed, connected ( n-1)-manifold g in M has a connected
neighborhood Vg such that every closed ( n - 1)-manifold in Vg - g separates
vg.

PROOF: Select a connected neighborhood Vg of g that deformation
retracts to g in M.

Suppose to the contrary that some closed (n - 1)-manifold N in

Tlg - g fails to separate Vg. Then an arc A in Vg meeting N at just one
point and piercing N at that point can be completed to a simple closed
curve J in Vg, with J r1 N = A ~ N. By construction of Vg, J is homo-
topic in M to a loop J’ in g. This yields: J n N = {point} while

J’ r1 N = ~, violating the invariance of (mod 2) intersection number.

COROLLARY 3.2: If G is a usc decomposition of M into closed, connected
(n - l)-manifolds, then the set Q of all g* E G that are 1-sided in M is
locally finite.

Next, the central result of this section.

THEOREM 3.3: If G is a usc decomposition of M into closed, connected
( n - l)-manifolds, then MIG is a 1-manifold with boundary.

PROOF : Focus first on some go E G having a connected neighborhood Uo
separated by go. Apply Lemma 3.1 to obtain a G-saturated connected
neighborhood Vo, with go c Vo c Uo, such that every g E G in Vo sep-
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arates Va. Then 03C0(V0) is a non-compact, locally compact, connected,
locally connected, separable metric space, each point of which separates
03C0(V0) into two components. This implies 03C0(V0) ~ E1.

Let Q denote the set of all g* ~ G having no connected neighborhood
separated by g*. By Corollary 3.2, Q is locally finite.

In case Q = 0, clearly 03C0(M) = M/G must be a 1-manifold.
In case Q ~ ~, the set MQ = M - ~ {g*|g* E Q 1 is a G-saturated,

connected, open manifold, and 03C0(MQ) must be topologically (0, 1), the
only boundaryless non-compact 1-manifold. For distinct elements g*,
g** of Q, w(g*) and i7(g**) compactify distinct ends of 03C0(MQ). Hence,
Q consists of either two or one elements, and M/G is homeomorphic to
[0, 1] or [0, 1), according to whether M is compact or not.

THEOREM 3.4: Suppose M is a closed n-manifold and G is a partition of M
into closed, connected (n - l)-manifolds. Then G is usc.

PROOF: There exists a finite subset F of G such that every g E G - F

separates M = M - U {g|g E F}. To see this, suppose otherwise. Choose
successively gl, g2, ... from G such that M - ( gl U g2 U - - - U gk ) is
connected. The impossibility of such choices becomes clear for k larger
than the rank (over Z2 ) of H1(M; Z2 ). For i ~ {1, 2,...,k} one can
construct a simple closed curve J in M that meets and pierces gi at

precisely one point and that intersects no other g, selected. By the
homological invariance of (mod 2) intersection number, no J is null-ho-
mologous (over Z2 ) in M. The size of k ensures that some curve, say Jl,
is homologous in M to some union of the other J’s (i &#x3E; 1), another
violation of intersection number invariance.

Fix go e G - F and a neighborhood Uo of go in M. Determine a
smaller neighborhood ho of go with g0 ~ V0 ~ C1 V0 ~ U0 ~  and Cl %
compact. Let M+ represent the closure (in M ) of one of the components
of M - go. Define G+ as the set of all g E G, g ~ go, in M+. For g E G+,
let Xg denote the closure of the component of M+ - g containing go. The
collection {Xg|g ~ G+} is totally ordered and its intersection is go. The
compactness of Fr % guarantees the existence of some g+ ~ G+ for
which Xg+ c %. If g- is the analogous element of G in M - M+, then
every g E G in the component of M - (g+ ~ g-) containing go satisfies:
g c % c Uo, revealing that G satisfies the usual definition of upper
semicontinuity at go E G - F.

One can argue, in similar fashion, that G is upper semicontinuous at
each g E F. The only extra technical matter to account for is that some
g E F may separate no connected neighborhood of itself.

This argument establishes the stronger result below.

COROLLARY 3.5: Suppose M is an n-manifold without boundary such that
H1(M; Z2 ) is finite, and suppose G is a partition of M into closed,
connected (n - l)-manifolds. Then G is usc.
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COROLLARY 3.6: If M is a closed, connected n-manifold such that

Hl ( M; Z) is finite and if G is a partition of M into closed connected
( n - l)-manifolds, then there exist exactly two elements of G that are
1-sided in M.

PROOF: By Theorem 3.4, G is usc; thus, by Theorem 3.3, M/G is either
[0, 1] or SI. It cannot be SI because then one could produce a loop J in
M such that 03C0 1 J : J - SI has degree 1, by finding J that pierces some
g E G exactly once, indicating that 03C0*: H1(M; Z) ~ HI(MjG; Z) is an
epimorphism (monotonicity implies that automatically).

COROLLARY 3.7: If M is a closed n-manifold such that H1(M; Z2 ) = 0,
then M admits no partition into closed, connected ( n - l)-manifolds.

PROOF: By the Universal Coefficient Theorem, Hl ( M; Z) is finite.

Moreover, since H1(M; Z2 ) = 0, each closed (n - 1)-manifold in M
separates. This contradicts the preceding Corollary.
We close by stating, without proof, improvements to the main results

that can be established by similar arguments.

THEOREM 3.3’: If K is a usc decomposition of an n-manifold M into
compacta having the shapes of closed, connected, ( n - l)-manifolds, then

MIK is a 1-manifold with boundary.

COROLLARY 3.5’: If M is an n-manifold such that Hl(M; Z2) is finite and
K is a partition of M into compacta having the shapes of closed, connected,
( n - l)-manifolds, then K is usc.

4. Decompositions with locally f lat submanifolds

LEMMA 4.1: Suppose M/G ~ El and each g ~ G is locally flat in M. Then
for each go E G, M is homeomorphic to go X ( -1, 1), with go c M corre-
sponding to go X toi-

PROOF: Without loss of generality, MIG = El and 03C0(g0) = 0. It suffices
to prove that 03C0-1([0, ~)) = M+ is homeomorphic to go X [0, 1).

Since go is locally flat in M and separates M, it is bicollared [5]. Fix
an open collar C = go X [0, 1) on go in M+. Let X denote the set of all
points t in [0, oc) for which there exists a homeomorphism h of M+ onto
itself having compact support, fixing (pointwise) some neighborhood of
go, with the property that h(C) ~ 03C0-1[0, t ]. Certainly X, which contains
a neighborhood of 0, is nonempty and connected. It has no upper bound,
because if xo were the least upper bound, one could stretch the collar C
out very near 03C0-1(x0) and use the bicollar on 03C0-1(x0) to expand it still
farther to encompass 03C0-1[0, x0]. Hence, X = [0, oo).
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By the techniques developed by M. Brown in [6], M+ is homeomor-
phic to go X [0, 1).

The proof of Lemma 4.1 also establishes:

COROLLARY 4.2: Suppose each g E G is locally flat in M, M/G ~ El, and
A c MIG is an arc. Then 7r -’A is a near-product h-cobordism.

Nothing about Corollary 4.2 should be construed as suggesting any
compatibility between the layers 7r -la, a E A, and the levels in a stan-
dard decomposition 9 resulting from the near-product features of 03C0-1A.

COROLLARY 4.3 : Suppose each g E G is locally flat in M and ~(M/G) = .
Then all pairs {g1, g2} of elements in G are homotopy equivalent.

PROOF : In M/G choose an open set U = E1 and an arc A c U with
aA = {03C0(g1), 03C0(g2)}. Then apply Corollary 4.2.

At this point we are prepared to give the first Structure Theorem.

THEOREM 4.4: Suppose M admits a usc decomposition G into closed,
connected (n - 1)-manifolds, each of which is locally flat in M. Then M has
a standard formation {Wi} and a standard decomposition cg, with decom-
position map p: M - Mlg. Moreover, for each continuous e: MIG -
(0, (0), cg can be obtained so that there exists a homeomorphism À of M jcg
onto MIG satisfying

PROOF: In case ~(M/G) = , express M/G as the union of a collection
of arcs {Ai}, where A; F) Aj ~  (1 ~ j) implies Ai n Aj is an endpoint of
each, and where the arcs are small enough that diam Ai  03B5(ai) for all
ai ~ Ai. Corollary 4.2 certifies that each 03C0-1Ai is a near-product h-
cohordism. Hence, {03C0-1Ai} is a standard formation on M, as required.
The homeomorphism À almost constructs itself; one can readily define it
so 03BBp(03C0-1Ai) = Ai for all i.

Somewhat more interesting is the case M/G = [0, 1). Set go = 03C0-1(0).
Since go does not locally separate M, it has a nice twisted I-bundle

neighborhood B in M. There exists a map p: M - M with compact
support whose nondegenerate preimages are the fiber arcs corresponding
to the I-"factor" in B. Let G’ denote the decomposition of M induced
by 03C003BC: M ~ [0, 1); that is,
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Note that 03BC-103C0-1(0) = B, and that 03BC-103C0-1(t) z 03C0-1(t) f or t &#x3E; 0. Modify
G’ to form another decomposition G* consisting of the natural levels,
from a standard decomposition of B, together with the elements of
G’ - {B}. Clearly G * is a decomposition of M with locally flat, closed,
connected (n - l)-manifolds. Furthermore, if ’1T*: M - MjG* denotes
the new decomposition map, we can equate MjG* with [0, 1) and
presume that 03C0* is sufficiently close to 03C0. Now M = B U C1(M - B) and
C1(M-B)=(’1T*)-1[to,1), where to=’1T*(aB»O. Cover MjG* by
small arcs {A0, A1,...}, as before, with Ao = [0, t0]. Then {(03C0*)-1Ai} is
a standard formation on M, as required.

Finally, the case MjG z [0, 1] is just a double-barreled variation to
the preceding one, obtained by modifying G in the same fashion over
neighborhoods of both points in a(MjG).

COROLLARY 4.5: Suppose M admits a usc decomposition G into closed,
connected, locally flat ( n - l)-manifolds. Then

( i ) if MjG z [0, 1), M is homeomorphic to the interior of a twisted
I-bundle over 03C0-1(0);

(ii) if MjG z [o, 1], M has a standard formation (Wl, W2, W3} con-
sisting of two twisted I-bundles and a near-product h-cobordism;

(iii) if MIG (o, 1), then M = go X ( -1, 1), go E G; and
(iv) if MIG S1, then M can be obtained from some near-product

h-cobordism W by homeomorphically identifying the two compo-
nents of aw.

Since every 1-sphere in a 2-manifold is locally flat there, we have
another proof of a result given by Liem [22, Corollary l’].

COROLLARY 4.6: Suppose G is a usc decomposition of a 2-manifold M2
without boundary into 1-spheres. then

(i ) if M2 IG [o, 1), M2 is an open Mobius band;
(ii) if M2 IG ~ [0, 1 J, M2 is a Klein bottle;
(iii) if M2jG ~ E1, M2 is an open annulus; and
(iv) if M2 IG sI, M2 is a torus (SI X Sl) or a Klein bottle.

Theorem 4.4 also brings us to the subject of approximate fibrations,
introduced and analyzed by Coram and Duvall. See [12] for the defini-
tion.

COROLLARY 4.7: Suppose each g E G is locally flat in M. Then ’1T:

M - MIG is an approximate fibration if and only if a(MjG) = 9.

PROOF : When ~(M/G) = 9, 03C0 is an approximate fibration because it can
be approximated, in a reasonable sense, by the approximate fibrations p :
M - Mlg associated with standard decompositions y. When A(MIG)
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= , 03C0 fails to be an approximate fibration because the inclusion of go
into a twisted I-bundle B over go is not homotopic in B to a map whose
image misses go.

5. Examples

This section is devoted to displaying some of the bizarre possibilities for
the decompositions under consideration. First, we give an explicit re-
minder that wildness can occur by incorporating a classical, wild 2-sphere
in E 3 as a decomposition element in a decomposition of E 3-origin into
2-spheres, and then we produce more complex examples revealing unex-
pected changes, due to wildness, among the homotopy types of decom-
position elements.

EXAMPLE 1: A decomposition G 1 of M3 = E 3-origin into 2-spheres, one
of which is wildly embedded in M3.

Let S denote the 2-sphere in E3 described by Fox and Artin [17,
Example 3.2], which bounds a 3-cell C there. Coordinatize E 3 so that the
origin is placed interior to C. One can fill up Int S ~ M3 with 2-spheres
that cobound with S 3-dimensional annuli in M3; by construction,
Ext S ~ S2 X (1, oo), and Ext S can be filled up with 2-spheres as well,
but the regions bounded by S and any of the latter are not manifolds
with boundary.

Controls on the Fox-Artin construction can be imposed by noting the
following: there exists a decomposition of S2  [-1, 1] into 2-spheres,
where both S2 X { ± 1} are members and some other member is (wildly)
embedded in S2  (-1, 1) c E 3 like the Fox-Artin sphere. With this, the
Fox-Artin wildness can be inserted repeatedly and densely, to obtain:

EXAMPLE 2: A decomposition G2 of M 3 = E 3-origin such that the image
of those g E G2 wildly embedded in M3 is dense in M3 jG2.

By taking products with Sn-3, one can produce similar decomposi-
tions of n-manifolds.

Although examples like the preceding illustrate that wildness must be
accounted for, they do not exhibit the full range of pathology that can be
present. Among the decompositions encountered thus far, as long as the
decomposition space has empty boundary, all the elements have been

homotopy equivalent. The example below shows that this is not always
the case.

Fix n  6. Let F" - 2 denote a nonsimply-connected homology ( n - 2)-
cell (explicitly, a compact (n - 2)-manifold having trivial integral ho-
mology), and let X denote a spine of F" - 2 (that is, the complement in
F" - 2 of an open collar on Fn-2). Form V = Fn-2  [-1, 1]. Let Nn-1
be the homology (n - l)-sphere obtained by doubling V along its

boundary, with N"-’ = V+U V_ representing this double. Set M’ =
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Nn-1  E1. Name a Cantor set C in ( -1, 1 ). Let K denote the de-
composition of M’ into singletons and the sets X  {c} X {0}, c e C, in
V+  {0} ~ Nn-1 X {0}. Finally, define M as the decomposition space
M’/K, with decomposition map p : M’ ~ M’/K = M.

According to the Main Lemma of [16], M is an n-manifold. Obvi-
ously, it admits a decomposition G3, where

For t ~ 0, p(Nn-1 X {t}) is naturally homeomorphic to the nonsimply-
connected homology sphere Nn-1, while p(Nn-1 X {0}) is homeomor-
phic to S" -1 (cf. the proof of Proposition 1 in [16]). Thus, we have:

EXAMPLE 3: For n &#x3E; 6 there exists a decomposition G3 of an n-manifold
M into codimension 1 closed submanifolds such that MIG3 = El yet not
all pairs of elements from G3 are homotopy equivalent.

EXAMPLE 4: For n  6 there exists a decomposition G4 of an n-manifold
M into codimension 1 closed submanifolds such that MIG4 = [0, 1) and
each g E G4 that separates M is locally flat, but M is not a twisted line
bundle over any (n - l)-manifold.

For Example 4, start with a twisted line bundle M* over some closed
(n - l)-manifold S*. Let S’ denote the connected sum of S* and Nn-1,
the homology sphere of Example 3, and let M’ denote the line bundle
produced by piecing together relevant parts of M* and N X E1. Let Y
denote a standard kind of decomposition on M’ (where M’ is considered
as the interior of a twisted I-bundle over S’).
Name a decomposition K4 of M’ into singletons and the sets X  {c}

(c ~ C) in that copy of V = Fn-2  [-1, 1] contained in the trivial
section S’ of M’. Define M as M’IK4 and p: M’ ~ M as the decom-
position map. As before, M is an n-manifold, and it admits a decomposi-
tion G4 = {p(g)|g~y}. Then the fundamental group of M is isomor-
phic to 03C01(S*), while 03C01(M - p (S’)) is isomorphic to the free product of
’1T 1 (M* - S*) and two copies of 03C01(Nn-1) ~ 03C01(F). Certainly S* can be
chosen with sufficiently simple 03C01(S*) that it has no subgroup of index 2
isomorphic to qri ( M* - S*) * qri ( F ) * ’1T1(F) (03C01(S*) = Z2, for example).
This prevents M from being an E1-bundle over any manifold X.

Finally, to indicate how the pathology can proliferate, we give:

EXAMPLE 5: For n  6 there exists a decomposition G5 of an n-manifold
M into codimension 1, closed submanifolds such that MIG5 = El and
the fundamental group of M at oo is infinitely generated.

Let D denote the complement of a standardly embedded (n - 1)-cell
in Nn-1, the homology sphere of Examples 3 and 4, arranged so D
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contains one of the homology cells V = F  [-1, 1] of which Nn-1 is the
double. In S n -1 pick out a null sequence of pairwise disjoint ( n -1 )-cells
Bo, B1, B2,... converging to some point and replace each Bi with a copy
Di of D, thereby forming an object Y (a non-ANR, topologized so as to
be compact and metric). Let Z = Y  E1. Form a decomposition K5 of Z
into singletons and

where (X  {c})i denotes the compactum in Di corresponding to X X
{c} ~ V ~ D.

It can be proved that the decomposition space M = ZjK5 is an
n-manifold (by showing it is generalized n-manifold that satisfies the

Disjoint Disk Property). The central reason behind its being a gener-
alized manifold is that, for t  i, p ( Dl X ( t 1) is a contractible (n - 1)-
manifold bounded by an (n - 2)-sphere (cf. [16]), forcing it to be an

( n - 1)-cell. As usual, p: Z ~ M denotes the decomposition map; as

should now be expected, the decomposition GS is defined to be {p(Y 
(til-

The manifold M deformation retracts to p ( Y X {0}), which is homeo-
morphic to S’n-1. Moreover, for each integer i  1, p(Y  [ i, ~)) defor-
mation retracts to p(Y  {i}), the fundamental group of which has
rank i times the rank of [03C01(D) = 03C01(F)]. Explicitly, for t ~ (i, i + 1],
p(Y  {t}) is topologically the connected sum of i + 1 copies of N n -1.

6. Décompositions into arbitrary submanifolds.

In view of the pathology manifested in Section 5, we now attempt to gain
some understanding of the manifolds M that admit decompositions G
into closed, codimension 1 submanifolds, possible wildly embedded. The
goal is to establish a structure theorem that is the homology analogue to
Theorem 4.4. In particular, we want to represent M as a union of some
quasi-standard objects {i}, and the initial concern is to find objects J7vi
that are n-manifolds with boundary.

LEMMA 6.1: The set e of all x G M/G such that 03C0-1(x) is bicollared in M
contains a dense G8 subset of MIG.

PROOF: Without loss of generality, we assume M/G = El. According to
[9], there exists (up to homeomorphism) just a countable collection
{Ni | i = 1, 2,...} of distinct, closed, connected (n - 1)-manifolds. Parti-
tion El into subsets T (i = 1, 2,...) by the rule: x E T iff 03C0-1(x) is
homeomorphic to Ni. For each x E T name a specific homeomorphism
03BBx of N onto 03C0-1(x). Topologize the various sets {03BBx|x E Ti} by means
of the sup-norm metric in M.
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As suggested by Bryant [7, p. 478] or in the unpublished work of Bing
[3], one can prove the following claim :

For each integer j there exists a countable subset 0 of T such that to
each x e T - 0 there correspond two sequences {s(i)} and {u(i)} of
real numbers in T such that s(i)xu(i) for all i and each of the
associated sequences (03BBs(i)} and {03BBu(i)} converges to À x (in the sup-norm
metric).

Because then 03C0-1(x) can be homeomorphically approximated in each
component of M - 03C0-1(x), a classical argument (cf. [4, Theorem 9])
shows that M - 03C0-1(x) is 1-LC at each point of 03C0-1(x) (for x E T - Cj).
As a result, 03C0-1(x) is bicollared in M (this comes from [4, Theorem 6] in
case n = 3, from [8] or [14] in case n &#x3E; 5, and from [25, Theorem 2.7.1] in
case n = 4.
Now it is transparent that the Lemma holds, since MjG - P) is

contained in the countable set U 0.
Our intention is to find quasi-standard objects {i} in M such that

fl is homologically like an object in a standard formation ( Wi 1. The
crux of that matter is given in the next lemma.

LEMMA 6.2: Suppose c E El = M/G. Then, for any coefficient module r,
the inclusion-induced i *: H,(7r - 1(c); 0393) ~ H*(M; r) is an isomorphism.

PROOF: For simplicity we assume c = 0 and we suppress any further
mention of r.

First, we show that 1 * is 1 - 1. Define

Certainly S ~ {0}, for ’1T-I(O) is a déformation retract in M of some

neighborhood of itself. Moreover, if so E S and 0  s’  so, then obvi-
ously s’ E S. Consequently, S must be one of: [0, ~), [0, d], or [0, d)
(for some d &#x3E; 0). However, S= [0, d ] is impossible by the same rea-
soning indicating S = {0} is impossible. In addition, because the inclu-
sion-induced H*(03C0-1(-d, d)) ~ H*(03C0-1[-d, d]) is an isomorphism,
S = [0, d) is also impossible. Therefore, S = [0, oc). The claim that

H*(03C0-1(0)) ~ H*(M) is 1 - 1 follows.
Next we show that i * is onto. We compare images by setting

and we argue, as above, that S’ = [0, (0), which yields im i* = H*(M).
Details are left to the reader.

COROLLARY 6.3 : Suppose M/G = E1, [ a, b] ~ E1 and c E [ a, b]. Then,
for every coefficient module r, the inclusion-induced a*: H *( ’1T -l( c); r)
~ H*(03C0-1[a, b]; 0393) is an isomorphisme
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PROOF: This can be viewed as a corollary to the proof of Lemma 6.2.
Alternately, one can select an interval (a’, b’) ~ [a, b ] such that

03C0-1(a’, b’) deformation retracts in M to 03C0-1[a, b], with p denoting the
ultimate retraction. The diagram

displays that a. is an isomorphism.

COROLLARY 6.4: Suppose Af/6’ = [0, 1) and 0  c  b. Then for every
coefficient module r, H,(i7-1(c); I) - H.(,r-’(0, b]; r) is an isomor-
phism.

The quasi-standard structures are of two types. Each is a compact
n-manifold with boundary W endowed with some (quasi-standard) usc
decomposition y into closed, connected (n - l)-manifolds, where each
component B of ~ belongs to 9?. Moreover, aw can have either 1 or 2
components. In case it has 2, then each H*(; 0393) ~ H*(; r) is re-
quired to be an isomorphism (g E y); in case it has just 1, then there is
required to be one exceptional element e ~  such that H*(; 0393) ~
H*( - ge; r) is an isomorphism for all g =1= e ~  (thus, ge represents
the unique 1-sided element of  in Int W). We say that an n-manifold
M has a quasi-standard formation {i} provided it has a locally finite
cover {i} by quasi-standard structures (of dimension equal to that of
M) such that 17Vi n »i =1= 0 implies i n J7Vj is a boundary component of
each. When M has a quasi-standard formation {i}, it is equipped
thereby with an associated quasi-standard decomposition !9 = U yi, where
yi denotes any such decomposition on Wk.

Implicit in this discussion is the trust that if W (quasi-standard) has
just one boundary component, it behaves homologically like a twisted
I-bundle. To support that trust, the reader should check the (straightfor-
ward) result below.

LEMMA 6.5: Let y be a quasi-standard decomposition of 17V, where W has
one boundary component, and let ge be the exceptional element of 9. Then
H*(e, 0393) ~ H*(W; 0393) is an isomorphism but no H1(; Z2)
H1(; Z2) is an epimorphism 9 ge

The second assertion can be proved with another linking number
argument.
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THEOREM 6.6: Suppose Mn admits a usc decomposition G into closed,
connected (n - l)-manifolds. Then Mn has a quasi-standard formation
{i}. Moreover, given a continuous function e: M"IG - (0, oc), the

quasi-standard formation {i} can be chosen so that, for any quasi-stan-
dard decomposition ie associated with {i}, there exists a homeomorphism
À of Mnle onto M"/G satisfying

PROOF: Choose a collection {Ai} of (at least two) arcs filling up Mn/G
so that any two intersect in, at most, a single boundary point of each,
with the additional property that diam Ai  03B5(ai) for all ai ~ Ai. Apply
Lemma 6.1 to modify this collection slightly so that each 03C0-1(Ai) is an
n-manifold-with-boundary.
By Corollary 6.3 or 6.4, the natural decomposition on each 03C0-1Ai,
obtained as a restriction of G, is itself quasi-standard. Thus, {03C0-1Ai} is a
quasi-standard formation on M n, and G represents one associated

quasi-standard decomposition. In case e is any other, one can produce
the required homeomorphism À as in the proof of Theorem 4.4.

In the argument above, the quasi-standard formation {03C0-1Ai} impo-
ses a quasi-standard decomposition Y identical to the given decomposi-
tion G. That is not to say that y = G is always preferred. In the next
result we show that (n ~ 4) quasi-standard twisted I-bundles can be

exchanged for genuine twisted I-bundles.

PROPOSITION 6.7: Let W denote a quasi-standard n-manifold with one
boundary component B, where n =1= 4. Then there exist (1) a twisted
I-bundle WT and (2) a quasi-standard W2 having 2 boundary components
such that  = WT U W2, WT ~ 2 = aWT c aw2, and ôW2 - aWT = 8 À.

PROOF: By hypothesis, W has an associated quasi-standard decomposi-
tion ie with exceptional element ge. To get this argument underway, one
should substantiate the claim that the subgroup of 03C01() generated by
loops in W - ge has index 2 in 03C01(). Let 0 :  ~  denote the
corresponding 2 - 1 covering map. Then P has 2 boundary components;
in fact, 03B8-1() has 2 components for all  ~  - {e} but 03B8-1(e) is a
connected manifold Ne. Furthermore, Ne separates V into two compo-
nents having compact closures + and _, and every 03B8-1() meets both
V+ and V-.

Since n ~ 4, we can apply the crumpled cube reembedding theorem
(cf. [19] or [23] in case n = 3, [15] in case n &#x3E; 5) to obtain disjoint
embeddings 03C8± of P. in V such that 03C8±|± ~ ~ = identity and the
closure of  - [03C8+(+)~03C8_(_)] is homeomorphic to Ne  [-1, 1]
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(with z X 1 corresponding to 03C8+(z) for all z e Ne ). This correspondence
does not respect the given embedding of Ne in Ù, which in all likelihood
is wild.

Form a new manifold with boundary Û from ( Ne X [0, 1]) ~ 03C8+(V+)
by identifying those points z, X 0, z2 X 0 ( zl, Z2 e Ne ) for which 8(ZI) =

03B8(z2). Note that Û can be expressed as the union of a twisted I-bundle
ÛT, the image of Ne X [0, 1/2] in U, and a quasi-standard U2 with 2
boundary components, where U2 = U - Int UT. The required decomposi-
tion of Û2 consists of the various 03C8+(03B8-1()~+) and the levels

Ne X {s}, s e [1/2, 1]. (Remark: although the image of Ne X [0, 1] in Û
gives what may seem to be a more natural twisted I-bundle, the closure
of its complement has the undesirable feature of not necessarily being a
manifold with boundary.)

Having found structures of the required kind in U, we complete the
proof by showing Û and W to be homeomorphic. Consider the decom-
position of Û into singletons and all the image arcs obtained from
( zi, z2} X [o, 1] ~ , where 03B8(z1) = 03B8(z2) and Zl =1= Z2 E Ne. The decom-
position space Û/K is naturally equivalent to 03B8(+) = ; in other

words, the decomposition map essentially provides a cell-like map of U
onto W (all of whose nondegenerate preimages are found in Int Ù). The
Armentrout-Siebenmann Cell-Like Approximation Theorem [2, Theorem
1] [26, Theorem A] attests that Û and W are homeomorphic.

ADDENDUM TO THEOREM 6.6: In case n ~ 4, M" has such a quasi-stand-
ard formation {l} in which each W with connected boundary is a twisted
I-bundle, and the associated quasi-standard decomposition for such W is
standard.

7. Décompositions of 3-manifolds

In case n = 3 and M/G ~ E1, Lemma 6.2 has the important consequence
that all g E G are homeomorphic. Consequently, none of the pathology
appearing in Examples 5.3 through 5.5 can be present when n = 3. What
impact is produced by the remaining possible wildness? We show that the
impact is negligible, by proving that the 3-manifolds admitting arbitrary
decompositions G into 2-manifolds also admit (approximating) standard
decompositions y, into locally flat 2-manifolds.

LEMMA 7.1: Suppose G is a usc decomposition of M3 into closed, connected
2-manifolds such that M3/G = El, A is an arc in M/G such that 03C0-1A is a
3-manifold with boundary and is locally flat in M, and a E aA. Then

03C0-1A ~ 03C0-1(a) [0, 1].

PROOF: According to Theorem 2 of [24], each t ~ A has a neighborhood
U in M/G where 03C0-1Ut lies interior to 3-manifold Q, locally flatly
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embedded in M, Q, is obtained from a space ~ 03C0-1(t)  [-1, 1] by
adding (in M) a finite number of pairwise disjoint 1-handles, and the
obvious homeomorphism 03C0-1(t) ~ 03C0-1(t)  {0} is homotopic in M to
the inclusion. It is important to observe that 03C0-1(t)  [-1, 1] ~ M
separates M (since 03C0-1(t) does); thus, each 1-handle attached in forming
Q, meets either 03C0-1(t)  {1} or 03C0-1 (t) X {-1}, but not both.

Subdivide A into a finite chain of arcs {Aj} such that Ai ~ Aj+1 is an
endpoint of each, {03C0-1Aj} refines {03C0-1Ut 1 t ~ A}, and each 03C0-1Aj is a

(locally flat) 3-manifold with boundary (cf. Lemma 6.1). The proof will
be completed by showing that each 03C0-1AJ is topologically 03C0-1(a) X [0, 1],
where a E ~Aj.

Let ~Aj={a, a’} and Ut ~ M/G the promised neighborhood con-
taining Ai. The handle attaching properties of Q, make it possible to
embed Q in 03C0-1(t)  [-2, 2] = Q r, with the portion 03C0-1(t)  [-1, 1] ~
Qt included naturally in Qt.
We argue that both 03C0-1(a) and 03C0-1(a’) are incompressible in Q’. If

not, Dehn’s Lemma and standard 3-manifold arguments give a 2-cell D,
locally flat in Q’, with ~D ~ 03C0-1(a), say, and D ~ 03C0-1(a) = ~D. Since
03C0-1(t) separates the two ends of M, it must separate the two components
of aQt in Qt, which implies it does the same for the two components of
aQ’ i in Q’t. After performing a surgery on 03C0-1(t) along D, we find that
the resulting (possibly disconnected) 2-manifold F still separates the

components of ~Q’t in Q,. Then we have

where x denotes the Euler characteristic, and where the equality stems
from Lemma 6.2. By Proposition 3.2 of [21], this is impossible.

Hence, by [18, pp. 91-92] or by [21, Proposition 3.1] 03C0-1(a) and
’1T -1 ( a’) can be rearranged in Qt to be parallel to the boundary. This
indicates that the region W in Q’ t bounded by them is topologically
77 -’(a) X [0,1]. Clearly, W ~ Qt c M.

THEOREM 7.2: If the 3-manifold M3 admits a usc decomposition G into
closed, connected 2-manifolds, then it admits a standard decomposition 9
of the same sort. Moreover, given any continuous E: M3 IG - (0, (0),
there exists a homeomorphism À: M3/y ~ M3/G such that

( where p: M3 ~ M3/y denotes the decomposition map).

PROOF: By the Addendum to Theorem 6.6, M3 has a quasi-standard
formation {j} consisting of twisted I-bundles and quasi-standard
objects Uj having 2 boundary components. Lemma 7.1 establishes that
each of the latter is a standard product.
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COROLLARY 7.3: If G is a usc decomposition of M3 into closed, connected

2-manifolds and ~(M3/G) = , then 03C0: M3 ~ M3/G is an approximate
fibration (see also Corollary 4.7).

From Theorem 7.2 we obtain a strengthening of Corollary 4.5 for
n = 3, somewhat comparable to what Corollary 4.6 does in case n = 2.

COROLLARY 7.4: Suppose M3 admits a usc decomposition into closed,
connected 2-manifolds. Then:

(i) if M3/G ~ [0, 1), M3 is a twisted line bundle over some go E G;
(ii) If M3/G ~ [0, 1], M3 is obtained by homeomorphically identify-

ing the boundaries of twisted I-bundles over some pair {g0, g1}
~ G;

(iii) if M3/G ~ (0, 1), M3 ~ go X ( -1, 1) for each go e G;
(iv) if M3/G ~ Sl, M3 is a locally trivial fiber bundle over S’, with

fiber any go e G. 

8. Décompositions into homotopy équivalent submanifolds

Having considered decompositions into rather arbitrary codimension one
submanifolds, here we specialize to study certain decompositions into
homotopy equivalent submanifolds. The central result reveals that if

03C01(g) ~ 03C01(Mn) is an isomorphism for all g e G, then each g - M" is a
homotopy equivalence and (for n &#x3E; 5) Mn = g X ( -1, 1). This has

straightforward applications (primarily for 9(M"/G’)=0) in case each
g E G has Abelian fundamental group.

Due to the frequent reference to homotopy groups, we shall attempt to
minimize the potential for notational confusion in this section by denot-
ing the decomposition map M ~ M/G as p instead of 03C0.

PROPOSITION 8.1: Suppose G is a usc decomposition of M into closed,
connected (n - 1)-manifolds such that, for each g E G, the inclusion-in-
duced i*: 03C01(g) ~ 03C01(M) is an isomorphism. Then M/G ~ E1 and i :

g ~ M is a homotopy equivalence.

PROOF: Let B: k - M denote the universal covering. The collection
G = {03B8-1(g) | g E G) forms a partition of M into closed subsets that are
(n - l)-manifolds. Since 03C01(g) ~ ’1Tl(M) is an isomorphism, each g =

0 1 (g) is connected and 0 g:  ~ g is the universal covering. Although
G is not necessarily usc, due to the likely noncompactness of g, p0:
 ~ M/G is equivalent to the quotient map  ~ M/G.

Fix some g E G. Lifting properties of B gives rise to a G-saturated
neighborhood Ü of g that deformation retracts to g in M (under a
deformation fixing all points of g). Thus, g, being simply connected,
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separates such a Û, which implies that 03B8() separates 03B8(). As a result,
~(M/G) = . It is impossible for M/G to be S1, for p * : 03C01(M) ~ 03C01(S1)
is an epimorphism but (p | g)*: 03C01(g) ~ ’1TI(SI) is always trivial. Conse-
quently, Af/6’=EB

The crucial claim is that the inclusion-induced H*(; Z) ~ H*(; Z)
is an isomorphism. Armed with the observation that Û deforms to g, we
establish the claim by simply repeating the argument given for Lemma
6.2.

According to the Whitehead Theorem [28, p. 399], 03C0k() ~ 03C0k() is
an isomorphism for all k &#x3E;- 2. Since 0 induces isomorphisms of higher
homotopy groups i * : ’1Tk(g) ~ ’1Tk(M) is an isomorphism for all k  2 (as
well as for k = 1). Hence, i: g - M is a homotopy equivalence.

COROLLARY 8.2: Under the hypothesis of Proposition 8.1, all pairs of
elements of G are homotopy equivalent.

PROPOSITION 8.3: If G is a usc decomposition of Mn into closed, connected
( n - l)-manifolds, each with Abelian fundamental group, and if M/G ~ El,
then i : g ~ M is a homotopy equivalence, for all g E G.

PROOF: Each g E G has a (connected) neighborhood Ug that deforms to
g in M, implying that the images of [03C01(g, x) ~ 03C01(M, x)] and

[03C01(Ug, x) ~ 03C01(M, x)] coincide. Let p : 03C01(M) ~ H1(M; Z) denote the
Abelianization. It follows from the hypothesis and Lemma 6.2 that

03C1|i*03C01(g, x ) is an isomorphism, so the same is true of p image 03C01(Ug, x ),
independent of the choice of g E G.

Express M/G as the union of a chain of arcs {Aj|j ~ Z}, in the usual
way, chosen small enough that {p-1Aj} refines ( Ug g E G 1. Piecing the
various p-1Aj together, we can invoke the Siefert-van Kampen Theorem
repeatedly to prove that, on the image of

p is an isomorphism. Therefore, 03C01(M) ~ Hl ( M; Z). Furthermore, each
03C01(g) ~ 03C01(M) must be an isomorphism, since each group is its own

abelization, and Lemma 6.2 applies once again. Now Proposition 8.1
certifies that g - M is a homotopy equivalence.

COROLLARY 8.4: If G is a usc decomposition of Mn into closed, connected
( n-1)-manifolds, each with Abelian fundamental group, and if ~(M/G) = ,
then all pairs of elements of G are homotopy equivalent.

COROLLARY 8.5: If G is a usc decomposition of Mn into simply-connected,
closed ( n - l)-manifolds, then all pairs of elements of G are homotopy
equivalent.
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LEMMA 8.6: Suppose g - M is a homotopy equivalence, for each g e G;
[a, b] ~ E1 = M/G; and c ~ [a, b]. then p-1(c) ~ p-1[a, b] is a homo-
topy equivalence. Furthermore, p-1 [a, b] is an h-cobordism whenever it is
an n-manifold.

PROOF: Since M retracts to p-1[a, b] under some map r, the homotopy
h t : M - M between Id and a retraction M ~ p-1(c) leads to a homo-
topy r ht|p-1 [a, b ] of p-1[a, b ] to itself revealing the required equiv-
alence.

THEOREM 8.7: Suppose M" admits a usc decomposition G into closed,
connected ( n - l)-manifolds, n  5, each with Abelian fundamental group.
Then M n has a standard formation {Wi}. Moreover, the associated

standard decomposition y of Mn can be obtained as an approximation to G,
in the sense of Theorem 4.4.

PROOF: By the Addendum to Theorem 6.6, M n admits a quasi-standard
formation {j} into twisted I-bundles and quasi-standard objects W
with two boundary components. It follows from the construction there
that each g in the associated quasi-standard decomposition for W has
Abelian fundamental group. Proposition 8.3 and Lemma 8.6 reveal that
such a Uj is an h-cobordism; by [10], JÎJ is a near-product h-cobordism.
This can be done so that the associated standard 9 approximates G.

THEOREM 8.8: Suppose Mn admits a usc decomposition into closed, con-
nected ( n - 1)-manifolds, n  5, such that i * : 03C01(g) ~ ’1T 1 ( Mn) is an

isomorphism for each g E G. Then, for every go E G, Mn ~ go X (-1, 1).

PROOF: By Proposition 8.1, Mn /G =:; El.
First, assume go has a bicollared embedding. Then M/G can be

expressed as the union of a countable collection {Aj} of arcs, in the
usual way, where each p-1Aj is a compact manifold with boundary (cf.
Lemma 6.1) and where g0 ~ ~p-1A0. From Lemma 8.6 and [10], each
p-1Aj is a near-product h-cobordism, so M n has a standard decomposi-
tion 9 associated with this standard formation {p-1Aj}, and go E 9.
Corollary 4.5 indicates that Mn ~ go X ( -1, 1).

In general, however, go may not be bicollared. Select some gl E G
that does have a bicollar (recall Lemma 6.1 again). Use the Locally Flat
Approximation Theorem of Ancel and Cannon [1, p. 63] to find a

bicollared embedding À of go in Mn 2013 gl that is homotopic in M n - gl
to the inclusion. Set W equal to the compact manifold bounded by 03BB(g0)
and gl. Argue, as before, that W is an h-cobordism, which necessarily is
a near-product. Therefore, Int W is homeomorphic to both go X (2013 1, 1)
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and gl X ( -1, 1). From what was shown in the preceding paragraph,

From Proposition 8.3, we obtain:

COROLLARY 8.9: If Mn (n  5) admits a usc decomposition G into closed,
connected ( n - l)-manifolds, each with Abelian fundamental group, and if
Mn/G z EI, then, for each go E G, Mn = go X ( -1, 1).

The argument given for Theorem 8.8 actually establishes:

THEOREM 8.10: Under the hypothesis of Theorem 8.8, for all pairs
{g1, g2} c G, there exists a near-product h-cobordism W, locally flatly
embedded in Mn, with aW homeomorphic to gl U g2.

THEOREM 8.11. If Mn admits a usc decomposition into simply connected,
closed ( n - 1)-manifolds, n  5, then Mn has a standard formation {Wi}
consisting solely of simply connected (near-product) h-cobordisms. Thus,
for each go E G,

(1) Mn noncompact implies Mn is homeomorphic to go X ( -1, 1), and
(2) Mn compact implies Mn is homeomorphic to a locally trivial fiber

bundle over S1 with fiber go.

PROOF : The only part of this result not subsumed by earlier results is
statement (2). In that situation, we know Mn/G z SI.

Assume go is bicollared in Mn. By the same procedures used in
proving Theorem 4.4, we can modify G slightly on one side (locally) of go
so as to express M/G as the union of two arcs A and B with

(i) p(g0) E DA = A n B,
(ii) p-1(B) homeomorphic to go X [-1, 0] and
(iii) p - lA a near-product h-cobordism.
The simply connected case of L.C. Siebenmann’s Topological s-

cobordism [26] Theorem implies that p - lA is also homeomorphic to
go X I, for n  6; F. Quinn [25] has announced the same result for n = 5
(simply-connected case).

In case go is not bicollared, choose two gl, g2 E G that are bicollared.
Find a bicollared embedding À of go in M - ( gl U g2) that is homotopic’
there to the inclusion [1]. Then the closure W of that component of
M - g2 bounded by X (go) and gl is a (near-product) h-cobordism.

Similarly, the closure of M - W is a simply-connected h-cobordism.
Consequently, M admits a decomposition G* consisting of X(go), gl
and other manifolds homeomorphic to go. Since À(go) E G* is bicol-

lared, the result follows from the previous case.
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PROPOSITION 8.12: If G is a usc decomposition of the n-manifold M",
n  5, into simply connected, closed (n - l)-manifolds, then all pairs of
elements of G are homeomorphic.

This follows because, by Theorem 8.9, there is a simply connected
h-cobordism between embedded copies of any two elements of G. It must
be a product [25] [26].

Using the full strength of the Topological s-cobordism Theorem [26],
we can improve some of the results of this section as follows.

PROPOSITION 8.13: Suppose G is a usc decomposition of the n-manifold
Mn, n  6, into closed, connected (n - 1)-manifolds such that each 03C01(g)
~ 03C01(Mn) is an isomorphism and the Whitehead group of 03C01(Mn) is

trivial. Then all pairs of elements of G are homeomorphic.

THEOREM 8.14: Suppose Mn is a closed n-manifold, n  6, that admits a
usc decomposition G into closed, connected ( n - l)-manifolds, each with
Abelian fundamental group having trivial Whitehead group, and suppose
M/G = SI. Then, for each go E G, Mn is a locally trivial fiber bundle over
SI with fiber homeomorphic to go.
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