COMPOSITIO MATHEMATICA

HENERI A. M. DZINOTYIWEYI The cardinality of the set of invariant means on a locally compact topological semigroup

Compositio Mathematica, tome 54, nº 1 (1985), p. 41-49 <http://www.numdam.org/item?id=CM 1985 54 1 41 0>

© Foundation Compositio Mathematica, 1985, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE CARDINALITY OF THE SET OF INVARIANT MEANS ON A LOCALLY COMPACT TOPOLOGICAL SEMIGROUP

Heneri A.M. Dzinotyiweyi

Abstract

For a large class of locally compact topological semigroups, which include all non-compact, σ -compact and locally compact topological groups as a very special case, we show that the cardinality of the set of all invariant means on the space of weakly uniformly continuous functions is either 0 or $\geq 2^{c}$; where c denotes the cardinality of continuum.

1. Preliminaries

Throughout this paper, let S denote a (Hausdorff, jointly continuous and) locally compact topological semigroup, C(S) the space of all bounded complex-valued continuous functions on S and M(S) the Banach algebra of all complex-valued bounded Radon measures on S with convolution multiplication given by

$$\nu^*\mu(f) \coloneqq \iint f(xy) \mathrm{d}\nu(x) \mathrm{d}\mu(y) = \iint f(xy) \mathrm{d}\mu(y) \mathrm{d}\nu(x)$$

for all $\nu, \mu \in M(S)$ and $f \in C(S)$. Corresponding to each function f in C(S), measure ν in M(S) and point x in S we have the functions ${}_{x}f, f_{x}, \nu \circ f$ and $f \circ \nu$ in C(S) given by

$$_{x}f(y) \coloneqq f(xy) \text{ and } f_{x}(y) \coloneqq f(yx) \quad (y \in S)$$

 $\nu \circ f(y) \coloneqq \nu(f_{y}) \text{ and } f \circ \nu(y) \coloneqq \nu(_{y}f) \quad (y \in S).$

A function in C(S) is said to be *weakly uniformly continuous* if it belongs to the set WUC(S) := { $f \in C(S)$: the maps $x \to_x f$ and $x \to f_x$ of S into C(S) are weakly continuous}.

For any subsets A and B of S and point x in S, we write $AB := \{ab: a \in A \text{ and } b \in B\}$, $A^{-1}B := \{y \in S: ay \in B \text{ for some } a \in A\}$, $x^{-1}B := \{x\}^{-1}B$ and $A^{-1}x := A^{-1}\{x\}$. By symmetry we similarly define BA^{-1} , Bx^{-1} and xA^{-1} . An object playing a pivotal role in this paper is the

algebra of all *absolutely continuous measures* on S - namely $M_a(S) := \{ \nu \in M(S) :$ the maps $x \to |\nu|(x^{-1}K)$ and $x \to |\nu|(Kx^{-1})$ of S into \mathbb{R} are continuous for all compact $K \subseteq S$. (Here $|\nu|$ denotes the measure arising from the total variation of ν .) For various studies on the algebra $M_a(S)$, see e.g. [1], [5] and the references cited there. Taking $\operatorname{supp}(\nu) := \{x \in S : |\nu|(X) > 0 \text{ for every open neighbourhood } X \text{ of } x \}$ we define the foundation of $M_a(S)$, namely $F_a(S)$, to be the closure of the set $\cup \{\operatorname{supp}(\nu) : \nu \in M_a(S)\}$. For a function f in C(S) we also write $\operatorname{supp}(f) := \operatorname{closure} of \{x \in S : f(x) \neq 0\}$.

If $h \in M(S)^*$ and $\nu \in M(S)$ we define the functional $\nu \circ h$ on M(S) and function $\nu \circ h$ on S by

$$\nu \circ h(\mu) \coloneqq h(\nu^*\mu) \quad \text{and} \quad \nu \circ h(x) \coloneqq h(\nu^*\overline{x})$$
 $(\mu \in M(S) \quad \text{and} \quad x \in S);$

where \bar{x} stands for the point mass at x. By symmetry one similarly defines $h \circ v$ and $h \circ v$. By a mean m on $M_a(S)^*$ (or WUC(S)) we mean a functional such that m(1) = 1 and $m(f) \ge 0$ if $f \ge 0$; for all f in $M_a(S)^*$ (or WUC(S), respectively). A mean m on WUC(S) is said to be invariant (or topologically invariant) if $m(_x f) = m(f_x) = m(f)$ (or $m(v \circ f) =$ $m(f \circ v) = m(f)v(S)$, respectively), for all $f \in WUC(S)$, $x \in S$ and $v \in$ M(S). Similarly one defines a (topologically) invariant mean on $M_a(S)^*$. We denote the set of all invariant means on WUC(S) by IM(WUC(S)).

For ease of reference we mention the following special case of a result proved in [6] and which can also be deduced from the two main theorems of [14].

1.1. PROPOSITION: If S has an identity element and coincides with the foundation of $M_a(S)$, the following items are equivalent:

- (a) There exists a topological invariant mean on $M_a(S)^*$.
- (b) There exists an invariant mean on WUC(S).

The following result is also proved in [6].

1.2. PROPOSITION: Every invariant mean on WUC(S) is topologically invariant.

For any subsets A, B, C of S we write $A \otimes B \coloneqq \{AB, A^{-1}B, AB^{-1}\}\)$ and $A \otimes B \otimes C \coloneqq (\cup \{A \otimes D: D \in B \otimes C\}) \cup (\cup \{D \otimes C: D \in A \otimes B\})$. So inductively we can define $A_1 \otimes A_2 \otimes \ldots \otimes A_n$ for any subsets A_1, \ldots, A_n of S. Following [7], a subset B of S is said to be *relatively neo-compact* if B is contained in a (finite)union of sets in $A_1 \otimes A_2 \otimes \ldots \otimes A_2$ for some compact subsets A_1, A_2, \ldots, A_n of S. In particular, as noted in [7]: For a topological semigroup S such that $C^{-1}D$ and DC^{-1} are compact whenever C and D are compact subsets of S, we have that $B \subseteq S$ is relatively neo-compact if and only if B is relatively compact. (So relatively neo-compact subsets of a topological group are precisely the relatively compact subsets.)

The centre of $E \subset S$ is the set $Z(E) \coloneqq \{x \in S: xy = yx \text{ for all } y \in E\}$. Let $P(M_a(S)) \coloneqq \{v \in M_a(S): v \ge 0 \text{ and } \|v\| = 1\}$. A net or sequence $(\mu_{\alpha}) \subset P(M_a(S))$ is said to be weakly (or strongly) convergent to topological invariance if $v^*\mu_{\alpha} - \mu_{\alpha} \to 0$ and $\mu_{\alpha} * v - \mu_{\alpha} \to 0$ weakly (or strongly, respectively) in $M_a(S)$, for all $v \in P(M_a(S))$.

Let $F = \{\phi \in (l^{\infty}): \phi > 0, \|\phi\| = 1 \text{ and } \phi(g) = 0 \text{ for all } g \in l^{\infty} \text{ such that } g(k) \to 0 \text{ as } k \to \infty\}$ and c be the cardinality of continuum.

Our aim in this paper is to prove the following result.

THEOREM: Let S be a σ -compact locally compact topological semigroup such that S is not relatively neo-compact, $M_a(S)$ is non-zero and there exists an invariant mean on WUC(S). Suppose either (a) S has an identity element and coincides with the foundation of $M_a(S)$, or (b) the centre of $F_a(S)$ is not $M_a(S)$ -negligible. Then there exists a linear isometry τ : $(l^{\infty})^* \rightarrow$ WUC(S)* such that

 $\tau(F) \subset \mathrm{IM}(\mathrm{WUC}(S))$ and so $\mathrm{card}(\mathrm{IM}(\mathrm{WUC}(S))) \ge 2^c$.

2. Proof of the theorem

We partition part of our proof into some lemmas. In the following lemma $C_0(S)$ denotes the space of functions in C(S) which are arbitrarily small outside compact sets and $C_{00}(S) \coloneqq \{f \in C(S): f \text{ vanishes outside some compact subset of } S\}$.

2.1. LEMMA: If S is not relatively neo-compact, then

$$m(f) = 0$$
 for all $f \in C_0(S)$ and $m \in IM(WUC(S))$

PROOF: Let $f \in C_{00}(S)$ be positive and take K to be the support of f (i.e. $\operatorname{supp}(f)$). Since S is not relatively neo-compact, we can choose a sequence $\{x_n\}$ in S such that

$$x_{n+1} \notin K(x_1^{-1}K \cup \ldots \cup x_n^{-1}K)^{-1}$$
 for all $n \in \mathbb{N}$.

So if $n \neq k$ we have $x_n^{-1}K \cap x_k^{-1}K = \emptyset$ or, equivalently,

$$\operatorname{supp}\left(_{x_{k}}f\right) \cap \operatorname{supp}\left(_{x_{k}}f\right) = \emptyset$$

consequently

$$nm(f) = m(x_1f + \ldots + x_nf) \leq ||f||_S \quad \text{for all} \quad n \in \mathbb{N},$$

and so m(f) = 0.

Since $C_{00}(S)$ is dense in $C_0(S)$, the remainder of our result follows trivially.

2.2. LEMMA: There is a net in $P(M_a(S))$ weakly convergent to topological invariance if and only if there is a net in $P(M_a(S))$ strongly convergent to topological invariance.

PROOF: Suppose $(\eta_{\alpha}) \subseteq P(M_a(S))$ converges weakly to topological invariance. Setting $M_{\nu,\mu} \coloneqq M_a(S)$ we form the locally convex product space $M \coloneqq \prod \{ M_{\nu,\mu} : (\nu, \mu) \in P(M_a(S)) \times P(M_a(S)) \}$ with the product of norm topologies and define the linear map $L: M_a(S) \to M$ by

$$L(\phi)(\nu, \mu) \coloneqq \nu^* \phi^* \mu - \phi$$

for all $\phi \in M_a(S)$ and $\nu, \mu \in P(M_a(S))$

As noted in [11, page 160], the weak topology on M coincides with the product of the weak topologies on the $M_{\nu,\mu}$'s. Since $\nu^*\eta_{\alpha}^*\mu - \eta_{\alpha} \to 0$ weakly, for all $\nu, \mu \in P(M_a(S)), 0 \in$ weak-closure $L(P(M_a(S)))$. Since $L(P(M_a(S)))$ is a convex subset of the locally convex space M, we have weak-closure $L(P(M_a(S))) =$ strong-closure $L(P(M_a(S)))$, by the Hahn-Banach Theorem. So there exists a net $(\rho_\beta) \subseteq P(M_a(S))$ such that $L(\rho_\beta) \to 0$ in M or, equivalently, such that

$$\|\boldsymbol{\nu}^* \rho_{\boldsymbol{\beta}}^* \boldsymbol{\mu} - \rho_{\boldsymbol{\beta}}\| \to 0$$
 for all $\boldsymbol{\nu}, \boldsymbol{\mu} \in P(M_a(S)).$

Hence

$$\begin{aligned} \|\nu^{*}\rho_{\beta} - \rho_{\beta}\| &\leq \|\nu^{*}\rho_{\beta} - \nu^{*}\nu^{*}\rho_{\beta}^{*}\nu\| + \|(\nu^{*}\nu)^{*}\rho_{\beta}^{*}\nu - \rho_{\beta}\| \\ &\leq \|\rho_{\beta} - \nu^{*}\rho_{\beta}^{*}\nu\| + \|(\nu^{*}\nu)^{*}\rho_{\beta}^{*}\nu - \rho_{\beta}\| \to 0 \end{aligned}$$

for all $\nu \in P(M_a(S))$. Similarly $\|\rho_{\beta} * \nu = \rho_{\beta}\| \to 0$, an the remainder of our lemma follows trivially.

2.3. LEMMA: Let S be not relatively neo-compact and let $\{\mu_n\}$ be a sequence in $P(M_a(S))$ strongly convergent to topological invariance and such that $T_n \coloneqq \operatorname{supp}(\mu_n)$ is compact, for all $n \in \mathbb{N}$. Then, given $n_0 \in \mathbb{N}$ and $\epsilon > 0$, we can find $n > n_0$ such that

$$\mu_n\big(\big(T_1\cup\ldots\cup T_{n_0}\big)\cap T_n\big)<\epsilon.$$

44

45

PROOF: Suppose, on the contrary, there exists an n_0 and $\epsilon > 0$ such that

$$\mu_n((T_1\cup\ldots\cup T_{n_0})\cap T_n)>\epsilon \quad \text{for all} \quad n>n_0.$$

Let $f \in C_0(S)$ be a positive function with f = 1 on $T_1 \cup \ldots \cup T_{n_0}$ and note that

$$\mu_n(f) > \epsilon$$
 for all $n > n_0$.

Let *m* be any weak* - cluster point of $\{\mu_n\}$ in WUC(S)* and note that *m* is such that $m(f) > \epsilon$ and $m(\nu \circ g) = m(g)(\nu \in P(M_a(S)))$ and $g \in WUC(S)$. Since $M_a(S)$ is an ideal of M(S), see e.g. [1] or [5], we have $\bar{x}^*\nu \in P(M_a(S))$ whenever $x \in S$ and $\nu \in P(M_a(S))$. Now $x^*\nu \circ g = \nu \circ {}_xg$ and so $m(g) = m(x^*\nu \circ g) = m(\nu \circ {}_xg) = m({}_xg)$; similarly $m(g_x) = m(g)(g \in WUC(S))$ and $x \in S$. By Lemma 2.1, we must have m(f) = 0. This contradiction implies our result.

2.4. LEMMA: Let S be σ -compact with $M_a(S)$ non-zero and let there be an invariant mean on WUC(S). Then there exists a sequence (ρ_n) in $P(M_a(S))$ converging strongly to topological invariance and such that $K_n \coloneqq \operatorname{supp}(\rho_n)$ is compact, for all $n \in \mathbb{N}$, if any one of the following conditions holds:

- (a) S is the foundation of $M_a(S)$ and S has an identity element.
- (b) The centre of $F_a(S)$ is not $M_a(S)$ -negligible.

PROOF: First we show that there exists a net in $P(M_a(S))$ weakly convergent to topological invariance, if (a) or (b) holds. To this end, suppose (a) holds. Then there exists a topological invariant mean m on $M_a(S)^*$, by Proposition 1.1. Now $m \in \text{weak}^*$ -closure $(P(M_a(S)))$ in $M_a(S)^{**}$. Consequently, there exists a net (μ_α) in $P(M_a(S))$ such that $\mu_\alpha(h) \to m(h)$ for all $h \in M_a(S)^*$. In particular, for each $\nu \in P(M_a(S))$ we have

$$|h(\nu^*\mu_{\alpha}-\mu_{\alpha})|=|\mu_{\alpha}(\nu_{\odot}h)-\mu_{\alpha}(h)|\rightarrow |m(\nu_{\odot}h)-m(h)|=0,$$

for all $h \in M_a(S)^*$. Similarly $\mu_{\alpha}^* \nu - \mu_{\alpha} \to 0$ weakly. Thus $((\mu_{\alpha}) \subseteq P(M_a(S)))$ is weakly convergent to topological invariance.

Next suppose condition (b) holds. Then we can choose $\tau \in P(M_a(S))$ such that $\operatorname{supp}(\tau) \subset Z(F_a(S))$ (, where $Z(F_a(S))$ denotes the centre of $F_a(S)$). We then have $\tau^* \nu = \nu^* \tau$ for all $\nu \in P(M_a(S))$. Now if m_0 is any invariant mean on WUC(S) we have that m_0 is topologically invariant, by proposition 1.2. Let (η_α) be a net in $P(M_a(S))$ such that $\eta_\alpha(f) \to m_0(f)$, for all $f \in WUC(S)$. Then for any $\nu \in P(M_a(S))$ and $h \in M_a(S)^*$, we have that $\tau^* \nu \circ h \circ \tau$, $\tau \circ h \circ \tau \in WUC(S)$ by [7, Lemma 4.1]. Hence, if $\mu_{\alpha} = \tau^* \eta_{\alpha}^* \tau$,

46

$$\begin{split} h(\nu^*\mu_{\alpha} - \mu_{\alpha}) &= h(\nu^*\tau^*\eta^*_{\alpha}\tau - \tau^*\eta^*_{\alpha}\tau) \\ &= h(\tau^*\nu^*\eta^*_{\alpha}\tau - \tau^*\eta_{\alpha}^*\tau) \\ &= \eta_{\alpha}(\tau^*\nu \circ h \circ \tau) - \eta_{\alpha}(\tau \circ h \circ \tau) \\ &\to m_0(\tau^*\nu \circ h \circ \tau) - m_0(\tau \circ h \circ \tau) \\ &= m_0(\nu \circ (\tau \circ h \circ \tau)) - m_0(\tau \circ h \circ \tau) = 0 \end{split}$$

Similarly $h(\mu_{\alpha}^*\nu - \mu_{\alpha}) \rightarrow 0$. Thus (μ_{α}) is weakly convergent to topological invariance.

Now suppose either (a) or (b) holds. Then there exists a net $(\eta_{\beta}) \subset$ $P(M_a(S))$ strongly convergent to topological invariance, by Lemma 2.2. Fix any $\lambda \in P(M_a(S))$ and set $\mu_{\beta} = \lambda^* \eta_{\beta}^* \lambda$. Note that (μ_{β}) is also strongly convergent to topological invariance. As S is σ -compact, we can choose an increasing sequence of compact neighbourhoods, $D_1 \subset D_2 \subset \ldots$, such that $S = \bigcup_{n=1}^{\infty} D_n$. Noting that the maps $(x, y) \to \overline{x}^* \mu_{\beta}^* \overline{y}$ of $S \times S$ into $M_a(S)$ are norm continuous (see e.g. [5, Corollary 4.10 (ii)]) we can choose a sequence $\{\mu_{\beta}, \mu_{\beta}, \dots\}$ from the μ_{β} 's such that

$$\|\bar{x}^*\mu_{\beta_n}^*\bar{y}-\mu_{\beta_n}\|<\frac{1}{5n}$$
 for all $x, y\in D_n$.

Choose compact sets K_n such that

$$\mu_{\beta_n}(S \setminus K_n) < \frac{1}{5n} \quad \text{for all} \quad n \in \mathbb{N}.$$

Setting $\rho \coloneqq (\mu_{\beta_n}(K_n))^{-1} \mu_{\beta_n | K_n}$ we have $(\rho_n) \subset P(M_a(S))$, $\operatorname{supp}(\rho_n) \subset K_n$ and a standard technical argument shows that

$$\|\mu_{\beta_n}-\rho_n\|<2\mu_{\beta_n}(S\setminus K_n)<\frac{2}{5n}$$

Consequently

$$\begin{split} \|\bar{x}^*\rho_n^*\bar{y} - \rho_n\| &< \|\bar{x}^*\rho_n^*\bar{y} - \bar{x}^*\mu_{\beta_n}^*\bar{y}\| + \|\bar{x}^*\mu_{\beta_n}^*\bar{y} - \mu_{\beta_n}\| + \|\mu_{\beta_n} - \rho_n\| \\ &< 2\|\rho_n - \mu_{\beta_n}\| + \|\bar{x}^*\mu_{\beta_n}^*\bar{y} - \mu_{\beta_n}\| \\ &< \frac{4}{5n} + \frac{1}{5n} = \frac{1}{n} \qquad \text{for all} \quad x, y \in D_n. \end{split}$$

Now for any ν , $\eta \in P(M_a(S))$ with compact supports we have $\operatorname{supp}(\nu) \cup \operatorname{supp}(\eta) \subset D_n$ for *n* larger than some n_0 and hence

It is now trivial to complete the proof of our lemma.

2.5. PROOF OF OUR THEOREM: Note that we have the hypothesis of Lemma 2.4 met and so let $\{\rho_n\}$ and $\{K_n\}$ be as in Lemma 2.4. Choose $\nu \in P(M_a(S))$ with $C \coloneqq \operatorname{supp}(\nu)$ compact and note that the sequence $\{\nu^*\rho_n^*\nu\}$ also converges strongly to topological invariance.

Observing that $T_n \coloneqq \operatorname{supp}(\nu^* \rho_n^* \nu) = CK_n C$ is compact $(n \in \mathbb{N})$ and recalling Lemma 2.3, there exist subsequences $\{T_{n_k}\}$ of $\{T_n\}$ and $\{\nu^* \rho_{n_k}^* \nu\}$ of $\{\nu^* \rho_n^* \nu\}$ such that

 $\nu^* \rho_{n_k}^* \nu \left(T_{n_k} \setminus (T_{n_0} \cup \ldots \cup T_{n_{k-1}}) \right) > \frac{1}{2}$ for $k \in \mathbb{N}$, where $T_{n_0} := \emptyset$.

Let $F_k \coloneqq T_{n_k} \setminus (T_{n_1} \cup \ldots \cup T_{n_{k-1}})$ and $\mu_k \coloneqq \nu^* \rho_{n_k}^* \nu$, for all $k \in \mathbb{N}$. Let Π : WUC(S) $\rightarrow l^{\infty}$ be the linear mapping defined by

$$\Pi(f)(k) \coloneqq \rho_{n_k}(f)$$

for all $f \in WUC(S)$ and $k \in \mathbb{N}$.

To see that Π is onto, let $g \in l^{\infty}$ be fixed. Since members of the sequence $\{F_k\}$ are clearly pairwise disjoint and $\mu_k(F_k) > \frac{1}{2}$, the function

$$h \coloneqq \sum_{k=1}^{\infty} \frac{g(k)}{\mu_k(F_k)} \chi_{F_k}$$

is a linear functional in $M(S)^*$. (Here χ_{F_k} is the characteristic function of

 F_k .) Consequently $\nu \circ h \circ \nu \in WUC(S)$, by [7, Lemma 4.1]. Now, for all $k \in \mathbb{N}$, we have

$$\Pi(\nu \circ h \circ \nu)(k) \coloneqq \rho_{n_k}(\nu \circ h \circ \nu)$$
$$= \nu^* \rho_{n_k}^* \nu(h)$$
$$= \mu_k \left(\sum_{i=1}^{\infty} \frac{g(i)}{\mu_i(F_i)} \chi_{F_i} \right)$$
$$= g(k).$$

Thus Π maps the function $v \circ h \circ v$ onto g and Π is onto. Further, we clearly have

$$\|g\|_{\infty} = \|\Pi(\nu \circ h \circ \nu)\|_{\infty} = \|\nu \circ h \circ \nu\|_{S}.$$

It follows that the dual map $\Pi^*: (l^{\infty})^* \to WUC(S)^*$ is a linear isometry. To see that $\Pi^*F \subset IM(WUC(S))$, let $\phi \in F$ be fixed. Then, clearly

 $\Pi^* \phi > 0$ and $\Pi^* \phi(1) = \phi(1) = 1$.

Now, for any $\eta \in P(M_a(S))$ and $f \in WUC(S)$, we have

$$\Pi(\eta \circ f - f)(k) \coloneqq \rho_{n_k}(\eta \circ f - f)$$
$$= (\eta^* \rho_{n_k} - \rho_{n_k})(f) \to 0 \quad \text{as} \quad k \to \infty.$$

Recalling the definition of F we have

 $\Pi^*\phi(\eta\circ f-f)=0.$

Similarly $\Pi^* \phi(f \circ \eta - f) = 0$ and so $\Pi^* \phi \in IM(WUC(S))$.

Taking $\beta \mathbb{N}$ to be the Stone-Chech compactification of \mathbb{N} , we have $\beta \mathbb{N} \setminus \mathbb{N} \subset F$. Since card $(\beta \mathbb{N} \setminus \mathbb{N}) = 2^c$ and Π^* is an isometry, we thus get card $(\mathrm{IM}(WUC(S))) \ge \mathrm{card}(F) \ge 2^c$. So $\tau := \Pi^*$ is the required map and our Theorem is proved.

3. Note on references

Many results on the sizes of sets of invariant means can be found in the literature: for discrete semigroups see e.g. Chou ([2] and [3]), Granirer [8] and Klawe [12]; and for locally compact topological groups see e.g. Chou ([3] and [4]) and Granirer [8]. Related results dealing with the difference between an invariant and a topologically invariant mean can be found in

48

the papers of Rosenblatt [15] and Liu and Van Rooij [13]. Our main theorem generalizes some of these results and our techniques are inspired by the paper of Chou [4]. The proof of lemma 2.2 is closely related to that given in Greenleaf [9, Theorem 2.42].

Acknowledgement

This research was done at New York State University at Buffalo and sponsored by a Fulbright Research Fellowship. The author is indebted to Professor Ching Chou for some useful discussions.

References

- A.C. and J.W. BAKER: Algebras of measures on a locally compact semigroup III. J. Lond. Math. Soc. 4 (1972) 685-695.
- [2] C. CHOU: On the size of the set of left invariant means on a semigroup. Proc. Amer. Math. Soc. 23 (1969) 199-205.
- [3] C. CHOU: On topologically invariant means on a locally compact group. Trans. Amer. Math. Soc. 151 (1970) 443-456.
- [4] C. CHOU: Topologically invariant means on the von Neumann algebra (VN(G). Trans. Amer. Math. Soc. 273 (1982), 207 (1982) 207-229.
- [5] H.A.M. DZINOTYIWEYI: Algebras of measures on C-distinguished topological semigroups. Proc. Camb. Philos. Soc. 84 (1979) 323-336.
- [6] H.A.M. DZINOTYIWEYI: Algebras of functions and invariant means on semigroups. Math. Instituut, Katholieke Universiteit, Nijmegen, Report. 7807 (1978).
- [7] H.A.M. DZINOTYWEYI: Nonseparability of quotient spaces of function algebras on topological semigroups. *Trans. Amer. Math. Soc.* 272 (1982) 223-235.
- [8] E.E. GRANIRER: Exposed points of convex sets and weak sequential convergence. Memo Amer. Math. Soc. 123 (1972).
- [9] F. GREENLEAF: Invariant means on topological groups and their applications, Van Nostrand, New York, 1969.
- [10] E. HEWITT and K. Ross: *Abstract harmonic analysis Vol. I.* Springer-Verlag, New York 1963.
- [11] J.L. KELLEY and I. NAMIOKA: Linear topological spaces. D. van Nostrand, Princeton, New Jersey, London, 1963.
- [12] M.M. KLAWE: Dimensions of the sets of invariant means of semigroups. Ill J. Math. 24 (1980) 233-243.
- [13] T.S. LIU and A. VAN ROOIJ: Invariant means on a locally compact group. Mon. fur Math. 78 (1974) 356-359.
- [14] A.L.T. PATERSON: Amenability and locally compact semigroups. *Mathematica Scandinavia* 42 (1978) 271–288.
- [15] J.M. ROSENBLATT: The number of extensions of an invariant mean. Comp. Math. 33 (1976) 147-159.

(Oblatum 28-II-1983)

Department of Mathematics University of Zimbabwe P.O. Box MP 167 Mount Pleasant Harare Zimbabwe