Compositio Mathematica

Jan-HEndrik Evertse
 On sums of S-units and linear recurrences

Compositio Mathematica, tome 53, $\mathrm{n}^{\circ} 2$ (1984), p. 225-244
http://www.numdam.org/item?id=CM_1984__53_2_225_0
© Foundation Compositio Mathematica, 1984, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON SUMS OF \boldsymbol{S}-UNITS AND LINEAR RECURRENCES

Jan-Hendrik Evertse

§1. Introduction

In 1961 Chowla [1] proved that in any algebraic number field K there are only finitely many pairs of units $\epsilon_{1}, \epsilon_{2}$ such that $\epsilon_{1}-\epsilon_{2}=1$. Schlickewei [15] and Dubois and Rhin [2] proved independently of each other that the equation $x_{1}+x_{2}+\ldots+x_{n}=0$ has only finitely many solutions in rational integers $x_{1}, x_{2}, \ldots, x_{n}$ which are pairwise coprime and each composed of fixed primes. Recently, Shorey [20] showed that if $\left\{u_{k}\right\}_{k=0}^{\infty}$ is a simple linear non-degenerate binary recurrence sequence of rational integers, then the greatest prime factor of u_{r} / u_{s} tends to infinity if $r \rightarrow \infty, r>s, u_{s} \neq 0$. It is our intention to generalize these results by a uniform approach based on Schlickewei's p-adic version of the method of Thue-Siegel-Roth-Schmidt. Part of our results has been obtained independently by van der Poorten and Schlickewei [14].

Throughout this paper, K will denote an algebraic number field of degree D with ring of integers O_{K}. By a prime on K we mean an equivalence class of non-trivial valuations on K. We distinguish between infinite primes which contain archimedean valuations and finite primes which contain non-archimedean valuations. We denote the set of all infinite primes on K by S_{∞}. There is a well-known correspondence between finite primes and prime ideals. The letter p is used for primes on \mathbb{Q}, the letter v for primes on K. The infinite prime on \mathbb{Q} is denoted by p_{0} and $|\cdot|_{p_{0}}$ is the ordinary absolute value. If q is a prime number in \mathbb{Q}, the corresponding finite prime is also denoted by q and $|\cdot|_{q}$ denotes the q-adic valuation defined in the usual way. The completions of \mathbb{Q}, K at the primes p, v respectively, are denoted by \mathbb{Q}_{p}, K_{v} respectively. Thus $\mathbb{Q}_{p_{0}}=\mathbb{R}$. For every prime v on K lying above a prime p on \mathbb{Q} we choose a valuation $\|\cdot\|_{v}$ such that

$$
\|\alpha\|_{v}=|\alpha|_{p} \quad\left[K_{v}: \mathbb{Q}_{p}\right] \quad \text { for all } \quad \alpha \in \mathbb{Q} .
$$

By this choice, the so-called product-formula holds,

$$
\begin{equation*}
\prod_{v}\|\alpha\|_{v}=1 \quad \text { for all } \quad \alpha \in K, \alpha \neq 0 \tag{1}
\end{equation*}
$$

where \prod_{v} means that the product is taken over all primes v on K.
Let n be an integer with $n \geq 1$. Points in the vector space K^{n+1} are denoted by $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{D}$ be the embeddings of K in \mathbb{C}. Put

$$
\begin{equation*}
\|\boldsymbol{x}\|=\max _{\substack{0 \leq k \leq n \\ 1 \leq j \leq D}}\left|\sigma_{j}\left(x_{k}\right)\right| . \tag{2}
\end{equation*}
$$

If we identify pairwise linearly dependent non-zero points in K^{n+1}, we obtain the n-dimensional projective space $\mathbb{P}^{n}(K)$. Points in $\mathbb{P}^{n}(K)$, so-called projective points, are denoted by $X=\left(x_{0}: x_{1}: \ldots: x_{n}\right)$, where the homogeneous coordinates are in K and determined up to a multiplicative constant in K. Put

$$
\begin{equation*}
H(X)=\prod_{v} \max \left(\left\|x_{0}\right\|_{v},\left\|x_{1}\right\|_{v}, \ldots,\left\|x_{n}\right\|_{v}\right) \tag{3}
\end{equation*}
$$

By (1) this height is well-defined since it is independent of the multiplicative factor. The functions $\|x\|$ and $H(X)$ are closely related. Schmidt [17] showed that positive constants c_{1}, c_{2} exist, depending only on K, such that for each point $X \in \mathbb{P}^{n}(K)$ the homogeneous coordinates x_{0}, x_{1}, \ldots, x_{n} can be chosen such that if $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$,
(i) $\quad x_{k} \in O_{K} \quad$ for $\quad k=0,1, \ldots, n$
and
(ii) $\quad c_{1}\|x\|^{D} \leq H(X) \leq c_{2}\|x\|^{D}$. (cf. §3).

In case $K=\mathbb{Q}$ we may take $c_{1}=c_{2}=1$ since

$$
\begin{equation*}
\|\boldsymbol{x}\|=H(X) \quad \text { if and only if } \operatorname{gcd}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=1 \tag{5}
\end{equation*}
$$

Obviously $\|x\| \geq 1$ for all $x \in O_{K}^{n+1}$ and $H(X) \geq 1$ for all $X \in \mathbb{P}^{n}(K)$. It is easy to check that for each $A \geq 1$ there are at most finitely many $x \in O_{K}^{n+1}$ with $\left\|_{x}\right\| \leq A$. Hence by (4) for each $B \geq 1$ there are at most finitely many $X \in \mathbb{P}^{n}(K)$ with $H(X) \leq B$.

Let S be a finite set of primes on K, enclosing S_{∞}. An S-unit is by definition and element α of K with $\|\alpha\|_{v}=1$ if $v \in S$ and an S-integer an element α of K with $\|\alpha\|_{v} \leq 1$ if $v \in S$. Let c, d be constants with $c>0$, $d \geq 0$. A projective point $X \in \mathbb{P}^{n}(K)$ is called (c, d, S)-admissible if its homogeneous coordinates $x_{0}, x_{1}, \ldots, x_{n}$ can be chosen such that

$$
\begin{equation*}
\text { (i) all } x_{k} \text { are } S \text {-integers } \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { (ii) } \prod_{v \in S} \prod_{k=0}^{n}\left\|x_{k}\right\|_{v} \leq c \cdot H(X)^{d} \tag{6}
\end{equation*}
$$

Clearly, the homogeneous coordinates of $(1,0, S)$-admissible projective points can be chosen to be all S-units.

Theorem 1: Let c, d be constants with $c>0,0 \leq d<1$, let S be a finite set of primes on K enclosing S_{∞} and let n be a positive integer. Then there are only finitely many (c, d, S)-admissible projective points $X=$ $\left(x_{0}: x_{1}: \ldots: x_{n}\right) \in \mathbb{P}^{n}(K)$ satisfying

$$
\begin{equation*}
x_{0}+x_{1}+\ldots+x_{n}=0 \tag{7}
\end{equation*}
$$

but

$$
\begin{equation*}
x_{t_{0}}+x_{t_{1}}+\ldots+x_{t_{\mathrm{s}}} \neq 0 \tag{8}
\end{equation*}
$$

for each proper, non-empty subset $\left\{i_{0}, i_{1}, \ldots, i_{s}\right\}$ of $\{0,1, \ldots, n\}$.
Mahler showed that for $n=2$ (7) has at most finitely many (1, 0 , S)-admissible solutions in $\mathbb{P}^{n}(K)$. As far as I know, Lang [4] was the first who published a proof of this result. For related results we refer to Chowla [1], Nagell [8], [9], [10], Györy [3], Schneider [19]. A somewhat weaker result than Theorem 1 has been stated by van der Poorten and Schlickewei [14]. For $K=\mathbb{Q}$ we have the following corollary of Theorem 1.

Corollary 1. Let c, d be constants with $c>0,0 \leq d<1$, let S_{0} be a finite set of prime numbers and let n be a positive integer. Then there are only finitely many tuples $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of rational integers such that

$$
\begin{align*}
& x_{0}+x_{1}+\ldots+x_{n}=0 \tag{9}\\
& x_{t_{0}}+x_{i_{1}}+\ldots+x_{i_{s}} \neq 0 \tag{10}
\end{align*}
$$

for each proper, non-empty subset $\left\{i_{0}, i_{1}, \ldots, i_{s}\right\}$ of $\{0,1, \ldots, n\}$;

$$
\begin{align*}
& \operatorname{gcd}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=1 \tag{11}\\
& \prod_{k=0}^{n}\left(\left|x_{k}\right| \prod_{p \in S_{0}}\left|x_{k}\right|_{p} \leq c \cdot\|x\|^{d} .\right. \tag{12}
\end{align*}
$$

The corollary follows by (5) and the fact that there are exactly two tuples $\left(x_{0}, \ldots, x_{n}\right)$ of rational integers with gcd 1 which can be chosen as homogeneous coordinates of a given projective point in $\mathbb{P}^{n}(\mathbb{Q})$. Schlickewei [15] and Dubois and Rhin [2] showed that the number of tuples $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n+1}$ satisfying (9), (12) and $\max \left(\left|x_{1}\right|_{p},\left|x_{j}\right|_{p}\right)=1$ for $i, j \in\{0,1, \ldots, n\}$ and $i \neq j$ and $p \in S_{0}$ is finite, where again c, d are constants with $c>0,0 \leq d<1$.

We shall derive Theorem 1 from

Theorem 2: Let n be a non-negative integer and S a finite set of primes on K, enclosing S_{∞}. Then for every $\epsilon>0$ a constant C exists, depending only on ϵ, S, K, n such that for each non-empty subset T of S and every vector $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in O_{K}^{n+1}$ with

$$
\begin{equation*}
x_{t_{0}}+x_{t_{1}}+\ldots+x_{t_{s}} \neq 0 \tag{13}
\end{equation*}
$$

for each non-empty subset $\left\{i_{0}, \ldots, i_{s}\right\}$ of $(0,1, \ldots, n)$:

$$
\begin{align*}
& \left(\prod_{k=0}^{n} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right) \prod_{v \in T}\left\|x_{0}+x_{1}+\ldots+x_{n}\right\|_{v} \\
& \quad \geq C\left(\prod_{v \in T} \max \left(\left\|x_{0}\right\|_{v}, \ldots,\left\|x_{n}\right\|_{v}\right)\right)\|\boldsymbol{x}\|^{-\epsilon} \tag{14}
\end{align*}
$$

A straightforward application of theorem 2 yields

Corollary 2: Let n, S be as in theorem 2. Then for every $\epsilon>0$ a constant C_{1} exists, depending only on ϵ, S, K, n, such that for each non-empty subset T of S and every vector $X=\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in O_{K}^{n+1}$ with $x_{0} x_{1} \ldots x_{n}\left(x_{0}+\right.$ $\left.\ldots+x_{n}\right) \neq 0$:

$$
\begin{aligned}
& \left(\prod_{k=0}^{n} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right) \prod_{v \in T}\left\|x_{0}+x_{1}+\ldots+x_{n}\right\|_{v} \\
& \quad \geq C_{1}\left(\prod_{v \in T} \min \left(\left\|x_{0}\right\|_{v}, \ldots,\left\|x_{n}\right\|_{v}\right)\right)\|x\|^{-\epsilon}
\end{aligned}
$$

We shall apply theorem 1 to linear recurrence sequences $\left\{u_{k}\right\}_{k=0}^{\infty}$. We assume that no integer k_{0} exists such that $u_{k}=0$ for $k \geq k_{0}$. Let n be the smallest integer for which constants $v_{1}, v_{2}, \ldots, v_{n}$ exists such that

$$
\begin{equation*}
u_{k+n}=v_{1} u_{k+n-1}+v_{2} u_{k+n-2}+\ldots+v_{n} u_{k} \quad \text { for } \quad k=0,1,2, \ldots \tag{15}
\end{equation*}
$$

Then $v_{n} \neq 0$. It is well-known that polynomials f_{l} and pairwise distinct numbers α_{1} exist, depending only on $v_{1}, v_{2}, \ldots, v_{n}, u_{0}, u_{1}, \ldots, u_{n-1}$, such that

$$
\begin{equation*}
u_{k}=\sum_{i=1}^{m} f_{t}(k) \alpha_{t}^{k} \quad \text { for } \quad k=0,1,2, \ldots \tag{16}
\end{equation*}
$$

Without loss of generality we may assume that the polynomials f_{t} do not vanish identically. The numbers α_{1} are called the characteristic roots of $\left\{u_{k}\right\}_{k=0}^{\infty}$. We call the sequence degenerate if at least one of the quotients of two distinct characteristic roots is a root of unity and non-degenerate otherwise.

Van der Poorten [13] has applied his version of theorem 1 to deduce several remarkable facts on non-degenerate recurrence sequences $\left\{u_{k}\right\}_{k=0}^{\infty}$ of algebraic numbers. Under very general conditions he proved that (i) for every $\epsilon>0$ there exists a K such that

$$
\left|u_{k}\right|>\left(\max _{i=1,2, \ldots, n}\left|\alpha_{i}\right|\right)^{k(1-\epsilon)} \quad \text { for } \quad k \geq K
$$

(ii) the maximum of the norms of the prime ideals $\not p$ with $\operatorname{ord}_{\mu}\left(u_{k}\right) \neq 0$ tends to infinity if $k \rightarrow \infty$ and (iii) the total multiplicity of $\left\{u_{k}\right\}_{k=0}^{\infty}$ is finite. Here the total multiplicity is defined as the number of pairs (r, s) of non-negative rational integers with $u_{r}=u_{s}$ and $r \neq s$. Shorey [20] gave in the case of a binary recurrence sequence of rational integers a lower bound for the greatest prime factor of u_{r} / u_{s} subject to the conditions $r>s, u_{s} \neq 0$, which tends to infinity if r does. In Theorem 3 we shall generalize (ii) to prime ideals $\not p$ with ord ${ }_{\neq}\left(u_{r} / u_{s}\right) \neq 0$ in the same way as Shorey did, but without an explicit lower bound. Result (iii) is a direct consequence of theorem 3.

For $\alpha \in K, \alpha \neq 0$ we define $P_{K}(\alpha)$ to be the maximum of the norms of the prime ideals \nsim with ord $(\alpha) \neq 0$ if α is not a unit and $P_{K}(\alpha)=1$ if α is a unit. Further we put $P_{K}(0)=0$.

Theorem 3: Let $\left\{u_{k}\right\}_{k=0}^{\infty}$ be a linear non-degenerate recurrence sequence in K with at least two characteristic roots. Then

$$
\lim _{\substack{r \rightarrow \infty \\ r \\ u_{s} \neq 0}} P_{K}\left(\frac{u_{r}}{u_{s}}\right)=\infty .
$$

The example $u_{k}=k a^{k}$ with $\mathrm{a} \in \mathbb{Z}, a>2$, where $u_{\mathrm{a}^{\prime}}$ is a power of a for every positive integer l, shows that the assertion of Theorem 3 does not hold if there is only one characteristic root.

The following two results of van der Poorten [13] are consequences of Theorem 3.

Corollary 3: Let $\left\{u_{k}\right\}_{k=0}^{\infty}$ be as in theorem 3. Then

$$
\lim _{r \rightarrow \infty} P_{K}\left(u_{r}\right)=\infty
$$

This follows from Theorem 3 by keeping some s with $u_{s} \neq 0$ fixed. This is an improvement and generalization of a result of Pólya ([12], Satz 2', p. 17) which in fact states that if $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a sequence satisfying the conditions of theorem 3 and if all u_{n} belong to \mathbb{Q}, then $\limsup _{n \rightarrow \infty}\left(P_{\mathbf{Q}}\left(u_{n}\right)\right)=\infty$.

Corollary 4: Let $\left\{u_{k}\right\}_{k=0}^{\infty}$ be a linear non-degenerate recurrence sequence of algebraic numbers. Suppose that there do not exist a constant a and a root of unity ρ such that $u_{k}=a \rho^{k}$ for all k. Then there are only finitely many pairs of non-negative integers (r, s) with $r \neq s$ and $u_{r}=u_{s}$.

If $u_{k}=f(k) \rho^{k}$ for $k=0,1, \ldots$, where f is a non-constant polynomial with complex coefficients and ρ is a root of unity, then there can be only finitely many pairs (r, s) with $r \neq s$ and $u_{r}=u_{s}$. This follows from the fact that $\left\{\left|u_{k}\right|\right\}_{k=0}^{\infty}=\{|f(k)|\}_{k=0}^{\infty}$ is a strictly increasing sequence from a certain term on. If $u_{k}=f(k) \alpha^{k}$ for $k=0,1, \ldots$, where f is a polynomial with algebraic coefficients and α not a root of unity, then we consider instead of $\left\{u_{k}\right\}_{k=0}^{\infty}$ the non-degenerate recurrent sequence $\left\{v_{k}\right\}_{k=0}^{\infty}$ with $v_{k}=u_{k}+1^{k}$ for $k=0,1, \ldots$. So we may assume that $\left\{u_{k}\right\}_{k=0}^{\infty}$ has at least two distinct characteristic roots. Using that in fact all coefficients v_{t} in (15) are algebraic, all u_{k} belong to some algebraic number field and now Corollary 4 follows immediately from Theorem 3.

We remark that van der Poorten [13] has claimed that Corollary 4 is also valid if some of the terms u_{k} are transcendental over \mathbb{Q}.

§2. Proof of Theorem 2

As in $\S 1$, let K be an algebraic number field of degree D and let O_{K} be its ring of integers. We mention a theorem, due to Schlickewei [16], which will be used in the proof of theorem 2. As in $\S 1, p_{0}$ denotes the infinite prime on \mathbb{Q}. Let $p_{1}, p_{2}, \ldots, p_{t}$ be distinct prime numbers (or finite primes on $\mathbb{Q})$. For each $i \in\{0,1, \ldots, t\}$ the valuation $|\cdot|_{p_{1}}$ can be extended to the algebraic closure $\overline{\mathbb{Q}}_{p_{1}}$ of $\mathbb{Q}_{p_{1}}$ in a unique way and this extension is also denoted by $\mid \|_{p_{1}}$. Furthermore there are D isomorphic embeddings $\sigma_{1}^{(1)}$, $\sigma_{2}^{(i)}, \ldots, \sigma_{O}^{(t)}$ of K in $\overline{\mathbb{Q}}_{p_{i}}$. Put $K^{(i, J)}=\sigma_{J}^{(i)}(K), \alpha^{(i, J)}=\sigma_{J}^{(i)}(\alpha)$ for $\alpha \in K$ and $\boldsymbol{x}^{(i, J)}=\left(x_{0}^{(1, J)}, \ldots, x_{n}^{(1, J)}\right)$ for $\boldsymbol{x}=\left(x_{0}, \ldots, x_{n}\right) \in K^{n+1}$.

Theorem 4: Let n be a non-negative integer. For every j with $1 \leq j \leq D$ and every i with $0 \leq i \leq t$, let $L_{0}^{(t, ~,)}, \ldots, L_{n}^{(t, j)}$ be $n+1$ linearly independent linear forms in $n+1$ variables with coefficients in \mathbb{Q}_{p}, which are algebraic over \mathbb{Q}. Then for all $\epsilon>0$ there are finitely many proper subspaces T_{1}, T_{2}, \ldots, T_{n} of K^{n+1}, depending only on $n, p_{0}, \ldots, p_{t}, \epsilon, K$ and the forms $L_{k}^{(t, J)}$, containing all solutions $\boldsymbol{x} \in O_{K}^{n+1}, \boldsymbol{x} \neq 0$ of the inequality

$$
\begin{equation*}
\prod_{i=0}^{t} \prod_{j=1}^{D} \prod_{k=0}^{n}\left|L_{k}^{(t, j)}\left(\boldsymbol{x}^{(i, J)}\right)\right|_{p_{t}} \leq\|\boldsymbol{x}\|^{-\epsilon} \tag{17}
\end{equation*}
$$

We shall now prove Theorem 2. Let S be a finite set of primes on K, enclosing S_{∞}. We assume that S has the property that if it contains one prime lying above some prime p on \mathbb{Q}, then it contains all the other primes on K lying above p. Obviously, this is no restriction. Let p_{0}, p_{1}, \ldots, p_{t} be the primes on \mathbb{Q} above which the primes in S ly. We shall proceed by induction on n. For $n=0$, theorem 2 is trivial. Suppose that theorem 2 has been proved for all integers n with $0 \leq n<m$ (where $m \geq 1$). Our aim is to prove Theorem 2 for $n=m$. Let $\epsilon>0$ and T a non-empty subset of S. We shall show that the points $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots\right.$, $\left.x_{n}\right) \in O_{K}^{n+1}$ which satisfy both

$$
\begin{equation*}
x_{i_{0}}+x_{i_{1}}+\ldots+x_{i_{\mathrm{s}}} \neq 0 \tag{18}
\end{equation*}
$$

for each non-empty subset $\left\{i_{0}, i_{1}, \ldots, i_{s}\right\}$ of $\{0,1, \ldots, m\}$ and

$$
\begin{equation*}
\left\|x_{i_{0}}\right\|_{v} \geq\left\|x_{i_{r}}\right\|_{v} \geq \ldots \geq\left\|x_{i_{m r}}\right\|_{v} \quad \text { for all } \quad v \in S \tag{19}
\end{equation*}
$$

where for each $v \in S,\left(i_{0 v}, i_{v v}, \ldots, i_{m v}\right)$ is a given permutation of $(0,1$, $\ldots, m)$, and

$$
\left(\prod_{k=0}^{m} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right) \prod_{v \in T}\left\|x_{0}+x_{1}+\ldots+x_{m}\right\|_{v} \leq\left(\prod_{v \in T}\left\|x_{i_{0},}\right\|_{v}\right)\|\boldsymbol{x}\|^{-\epsilon}
$$

do also satisfy (14) for a certain constant C, specified in Theorem 2. This is clearly sufficient to prove Theorem 2.

For each prime $v \in S$, lying above the prime p, on \mathbb{Q} (where $i \in\{0,1$, $\ldots, t\}$), we have that the valuation given by $\left|\sigma_{J}^{(1)}(\alpha)\right|_{p}$ for $\alpha \in K$ belongs to v for exactly $\left[K_{v}: \mathbb{Q}_{p}\right.$] embeddings $\sigma_{j}^{(t)}$. Thus, if $l(v)$ is the set of these embeddings,

$$
\begin{equation*}
\|\alpha\|_{v}=\prod_{\sigma_{l}^{(1)} \in l(v)}\left|\sigma_{j}^{(1)}(\alpha)\right|_{p_{1}} \quad \text { for all } \quad \alpha \in K \tag{21}
\end{equation*}
$$

Let \mathscr{L} be the set of pairs of integers (i, j) with $0 \leq i \leq t, 1 \leq j \leq D$, such that $\sigma_{J}^{(t)} \in l(v)$ for some $v \in T$. We now define the following linear forms in the variables x_{0}, \ldots, x_{m}, where v is determined by $\sigma_{J}^{(t)} \in l(v)$:

$$
\begin{aligned}
& L_{0}^{(1, j)}(x)=x_{0}+x_{1}+\ldots+x_{m} \quad \text { for } \quad(i, j) \in \mathscr{L} ; \\
& L_{0}^{(1, j)}(x)=x_{t_{0 r}} \quad \text { for } \quad(i, j) \in \mathscr{L} ; \\
& L_{k}^{(i, j)}(x)=x_{t_{\text {he }}} \quad \text { for } \quad 0 \leq i \leq t, \quad 1 \leq j \leq D, \quad 1 \leq k \leq m .
\end{aligned}
$$

These linear forms have coefficients in \mathbb{Q} and for fixed i, j, the forms $\left\{L_{k}^{(1, j)}\right\}_{k=0}^{m}$ are linearly independent. Furthermore, for all $x \in O_{K}^{n+1}$ satisfying (18), (19), (20) we have by (21),

$$
\begin{aligned}
& \prod_{i=0}^{t} \prod_{j=1}^{D} \prod_{k=0}^{m}\left|L_{k}^{(1, \rho)}\left(\boldsymbol{x}^{(i, f)}\right)\right|_{p_{j}}=\left(\prod_{k=0}^{m} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right)\left(\prod_{v \in T}\left\|x_{i_{0}}\right\|_{v}\right)^{-1} \\
& \times\left(\prod_{v \in T}\left\|x_{0}+x_{1}+\ldots+x_{m}\right\|_{v}\right) \\
& \leq\|\boldsymbol{x}\|^{-\epsilon}
\end{aligned}
$$

Hence by Theorem 4, the $x \in O_{K}^{n+1}$ satisfying (18), (19), (20) already belong to finitely many proper subspaces of K^{n+1}. For each subspace it is possible to express some of the variables x_{t} in the other variables x_{i}. Hence there exist finitely many tuples ($\beta_{J_{0}}, \beta_{J_{1}}, \ldots, \beta_{j_{u}}$) of numbers in K, where $0 \leq u \leq m$ such that each solution $\boldsymbol{x} \in O_{K}^{n+1}$ of (18), (19), (20) satisfies at least one of the relations

$$
\begin{equation*}
x_{0}+x_{1}+\ldots+x_{m}=\beta_{J_{0}} x_{J_{0}}+\beta_{J_{1}} x_{J_{1}}+\ldots+\beta_{j_{u}} x_{J_{u}} \quad(0 \leq u<m) . \tag{22}
\end{equation*}
$$

We may assume that no subsums of the right-hand side are equal to zero by cancelling some of the terms $\beta_{J_{l}} \mathrm{x}_{J_{l}}$ if possible. We now show that all points $x \in O_{K}^{n+1}$ satisfying (18), (19), (20), (22) also satisfy (14) with a constant C depending only on ϵ, m, K, S, the permutations in (19) and the tuple ($\beta_{J_{0}}, \ldots, \beta_{J_{u}}$). Since we have only finitely many permutations of $(0,1, \ldots, m)$ and a finite set of tuples $\left(\beta_{J_{0}}, \ldots, \beta_{j_{u}}\right)$ which depends only on m, K, S, ϵ and the permutations in (19), this suffices. Let $\mathscr{V}_{1}=\left\{j_{0}, j_{1}\right.$, $\left.\ldots, j_{u}\right\}, \mathscr{V}_{2}=\{0,1, \ldots, m\}-\mathscr{V}_{1}$, let T_{1} be the subset of T such that $i_{0 v} \in \mathscr{V}_{1}$ and T_{2} the subset of T such that $i_{0 v} \in \mathscr{V}_{2}$. The constants c_{3}, c_{4}, \ldots. will depend only on $\epsilon, K, S, \mathrm{~m}$, the permutations in (19) and the tuple $\left(\beta_{J_{0}}, \ldots, \beta_{J_{u}}\right)$. Let δ be a number in K such that $\delta \beta_{J_{0}}, \ldots, \delta \beta_{J_{u}}$ are algebraic integers and put $z_{l}=\delta \beta_{J_{l}} x_{J_{l}}$ for $l=0,1, \ldots, u, z=\left(z_{0}, z_{1}, \ldots\right.$,
z_{u}). By (22) and the induction hypothesis we have

$$
\begin{align*}
& \left(\prod_{k=0}^{m} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right) \prod_{v \in T}\left\|x_{0}+x_{1}+\ldots+x_{m}\right\|_{v} \\
& \quad \geq c_{3}\left(\prod_{k \in \mathscr{V}_{2}} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right) \prod_{l=0}^{u} \prod_{v \in S}\left\|z_{l}\right\|_{v}\left(\prod_{v \in T}\left\|z_{0}+\ldots+z_{u}\right\|_{v}\right) \\
& \quad \geq c_{4}\left(\prod_{k \in \mathscr{V}_{2}} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right)\left(\prod_{v \in T} \max \left(\left\|z_{0}\right\|_{v}, \ldots,\left\|z_{u}\right\|_{v}\right)\right)\|z\|^{-\epsilon / 2} \\
& \quad \geq c_{5}\left(\prod_{k \in \mathscr{V}_{2}} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right)\left(\prod_{v \in T} \max _{k \in \mathscr{V}_{1}}\left\|x_{l}\right\|_{v}\right)\|\boldsymbol{x}\|^{-\epsilon / 2} . \tag{23}
\end{align*}
$$

If $T_{1}=T$ then (23) implies inequality (14) since $\Pi_{k \in \mathscr{V}_{2}} \Pi_{v \in S}\left\|x_{k}\right\|_{v} \geq 1$. If $T_{1} \varsubsetneqq T$, then, by (22) and the induction hypothesis,

$$
\begin{aligned}
& \left(\prod_{k \in \mathscr{V}_{2}} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right)\left(\prod_{v \in T_{2}} \max _{k \in \mathscr{V}_{1}}\left\|x_{k}\right\|_{v}\right) \\
& \quad \geq c_{6}\left(\prod_{k \in \mathscr{V}_{2}} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right) \cdot \\
& \quad \cdot\left(\prod_{v \in T_{2}}\left\|\left(\beta_{j_{0}}-1\right) x_{j_{0}}+\left(\beta_{J_{1}}-1\right) x_{j_{1}}+\ldots+\left(\beta_{j_{u}}-1\right) x_{J_{u}}\right\|_{v}\right) \\
& \quad=c_{6}\left(\prod_{k \in \mathscr{V}_{2}} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right) \prod_{v \in T_{2}}\left\|\sum_{k \in \mathscr{V}_{2}} x_{k}\right\|_{v} \\
& \quad \geq c_{7}\left(\prod_{v \in T_{2}} \max _{i \in \mathscr{V}_{2}}\left\|x_{k}\right\|_{v}\right)\|x\|^{-\epsilon / 2} .
\end{aligned}
$$

Together with (23) this implies that

$$
\begin{aligned}
& \left(\prod_{k=0}^{m} \prod_{v \in S}\left\|x_{k}\right\|_{v}\right)_{v \in T}\left\|x_{0}+\ldots+x_{m}\right\|_{v} \\
& \quad \geq c_{8}\left(\prod_{v \in T_{1}} \max _{k \in \mathscr{V}_{1}}\left\|x_{k}\right\|_{v}\right)\left(\prod_{v \in T_{2}} \max _{k \in \mathscr{V}_{2}}\left\|x_{k}\right\|_{v}\right) \cdot\|\boldsymbol{x}\|^{-\epsilon} \\
& \quad=c_{8}\left(\prod_{v \in T} \max \left(\left\|x_{0}\right\|_{v}, \ldots,\left\|x_{m}\right\|_{v}\right)\right)\|\boldsymbol{x}\|^{-\epsilon},
\end{aligned}
$$

where empty products must be taken equal to 1 . This completes the proof of Theorem 2.

§3. Proof of Theorem 1

As before, K is an algebraic number field of degree D, S a finite set of primes on K enclosing S_{∞} and c, d positive constants with $c>0$, $0 \leq d<1$. Constants c_{9}, c_{10}, \ldots will depend only on K, s, n, c, d. Let $X=\left(x_{0}: x_{1}: \ldots: x_{n}\right) \in \mathbb{P}^{n}(K)$ be a projective point satisfying (6), (7), (8). By an argument of Schmidt [17], (p. 63), there are positive constants c_{9}, c_{10}, c_{11} and a $\lambda \in K$ with $\lambda \neq 0$ such that

$$
\begin{aligned}
& \lambda x_{i} \in O_{K} \quad \text { for } \quad i=0,1, \ldots, m, \\
& N\left(\left(\lambda x_{0}, \ldots, \lambda x_{n}\right)\right) \leq c_{9},
\end{aligned}
$$

(where $N(a)$ denotes the absolute norm of the ideal a) i.e.

$$
\begin{equation*}
\prod_{v \notin S_{\infty}} \max \left(\left\|\lambda x_{0}\right\|_{v}, \ldots,\left\|\lambda x_{n}\right\|_{v}\right) \geq c_{9}^{-1} \tag{25}
\end{equation*}
$$

and if $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{D}$ are the embeddings of K in \mathbb{C},

$$
\begin{equation*}
c_{10} \leq \frac{\max \left(\left|\sigma_{t}\left(x_{0}\right)\right|, \ldots,\left|\sigma_{t}\left(x_{n}\right)\right|\right)}{\max \left(\left|\sigma_{J}\left(x_{0}\right)\right|, \ldots,\left|\sigma_{J}\left(x_{n}\right)\right|\right)} \leq c_{11} \quad \text { for } \quad i, j \in\{1,2, \ldots, D\} \tag{26}
\end{equation*}
$$

Put $y_{i}=\lambda x_{i}, \boldsymbol{y}=\lambda \cdot \boldsymbol{x}$. Then, by (25), (26),

$$
\begin{equation*}
c_{12}\|\boldsymbol{y}\|^{D} \leq H(X) \leq c_{13}\|\boldsymbol{y}\|^{D} \tag{27}
\end{equation*}
$$

Moreover, since the x_{t} are S-integers and the y_{t} algebraic integers, by (25),

$$
\begin{aligned}
\prod_{v \in S}\|\lambda\|_{v} & \geq \prod_{v \in S} \max \left(\left\|y_{0}\right\|_{v}, \ldots,\left\|y_{n}\right\|_{n}\right) \\
& \geq \prod_{v \notin S_{\infty}} \max \left(\left\|y_{0}\right\|_{v}, \ldots,\left\|y_{n}\right\|_{v}\right) \geq c_{9}^{-1}
\end{aligned}
$$

hence

$$
\prod_{v \in S}\|\lambda\|_{v} \leq c_{9}
$$

By (6) this implies that

$$
\begin{equation*}
\prod_{k=0}^{n} \prod_{v \in S}\left\|y_{k}\right\|_{v} \leq c_{14} H(X)^{d} \tag{28}
\end{equation*}
$$

Put $\tilde{\boldsymbol{y}}=\left(y_{v}, \ldots, y_{n}\right), Y=\left(y_{1}: y_{2}: \ldots: y_{n}\right)$. Since $y_{0}+y_{1}+\ldots+y_{n}=0$ we have

$$
\begin{equation*}
H(Y) \leq H(X) \leq c_{15} H(Y) \tag{29}
\end{equation*}
$$

Now we have, by (28), (7), (24), (8), (27), (29) and Theorem 2 with $\epsilon=\frac{1}{2} D(1-d)$,

$$
\begin{aligned}
c_{14} H(X)^{d} & \geq \prod_{k=0}^{n} \prod_{v \in S}\left\|y_{k}\right\|_{v} \\
& =\left(\prod_{k=1}^{n} \prod_{v \in S}\left\|y_{k}\right\|_{v}\right) \prod_{v \in S}\left\|y_{1}+y_{2}+\ldots+y_{n}\right\|_{v} \\
& \geq c_{16}\left(\prod_{v \in S} \max \left(\left\|y_{1}\right\|_{v}, \ldots,\left\|y_{n}\right\|_{v}\right)\|\boldsymbol{y}\|^{-\epsilon}\right. \\
& \geq c_{17} H(Y) H(X)^{-\epsilon / D} \geq c_{18} H(X)^{1-\epsilon / D} .
\end{aligned}
$$

This implies that

$$
H(X)^{(1-d) / 2} \leq c_{14} / c_{18}
$$

Since $d<1$ this proves Theorem 1 .

§4. Proof of Theorem 3

In the proof of Theorem 3 we shall use two lemmas which are stated and proved below. In the sequel, K denotes an algebraic number field.

Lemma 1: Suppose K has degree D, let $f(X) \in K[X]$ be a polynomial of degree m and T a non-empty set of primes on K. Then there exists a positive constant c_{19}, depending only on K, f such that for all $r \in \mathbb{Z}$ with $r \neq 0$, $f(r) \neq 0$,

$$
\begin{align*}
c_{19}^{-1}|r|^{-D m} & \leq\left(\prod_{v} \max \left(1,\|f(r)\|_{v}\right)\right)^{-1} \leq \prod_{v \in T}\|f(r)\|_{v} \\
& \leq \prod_{v} \max \left(1,\|f(r)\|_{v}\right) \leq c_{19}|r|^{D m} . \tag{30}
\end{align*}
$$

Proof: It follows easily from (1) that

$$
\begin{aligned}
& \prod_{v \in T}\|f(r)\|_{v} \leq \prod_{v} \max \left(1,\|f(r)\|_{v}\right) \\
& \prod_{v \in T}\|f(r)\|_{v}=\prod_{v \notin T}\|f(r)\|_{v}^{-1} \geq\left(\prod_{v} \max \left(1,\|f(r)\|_{v}\right)\right)^{-1}
\end{aligned}
$$

Furthermore there exist positive constants c_{20}, c_{21} and a finite set of finite primes T_{0}, all depending only on K, f such that for all $r \in \mathbb{Z}$ with $r \neq 0, f(r) \neq 0$,

$$
\begin{aligned}
& \|f(r)\|_{v} \leq c_{20}\|r\|_{v}^{m} \quad \text { for } \quad v \in S_{\infty}, \\
& \|f(r)\|_{v} \leq c_{21} \quad \text { for } \quad v \in T_{0}, \\
& \|f(r)\|_{v} \leq 1 \quad \text { for } \quad v \notin S_{\infty} \cup T_{0} .
\end{aligned}
$$

This implies Lemma 1 immediately.
Lemma 2: Let $f(X), g(X) \in K[X]$ be polynomials of degrees m, n respectively such that no rational integer h with $h \neq 0$ exists for which one of the polynomials $f(X+h), g(X)$ divides the other. Let S be a finite set of primes on K and β, γ constants with

$$
\begin{equation*}
\beta>0,0 \leq \gamma<\frac{1}{m+n+2} . \tag{31}
\end{equation*}
$$

Then there are only finitely many pairs of rational integers (r, s) such that

$$
\begin{equation*}
0<|r-s| \leq \beta|r|^{\gamma} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{f(r)}{g(s)} \text { is an } S \text {-unit. } \tag{33}
\end{equation*}
$$

Proof: For each pair of polynomials $f(X), g(X) \in K[X]$, let $\mathscr{H}(f, g)$ be the set of rational integers h with $h \neq 0$ which are the difference of a zero of f and a zero of g. It suffices to show that if f, g are both non-constant polynomials, then at most finitely many pairs $(r, s) \in \mathbb{Z}^{2}$ exist which satisfy (32), (33) and $r-s \notin \mathscr{H}(f, g)$. For assume we have shown this. Let f, g be polynomials in $K[X]$ such that no rational integer h with
$h \neq 0$ exists for which one of the polynomials $f(X+h), g(X)$ divides the other. Let $\mathscr{H}(f, g)$ be non-empty. Take $h \in \mathscr{H}(f, g)$ and consider the pairs $(r, s) \in \mathbb{Z}^{2}$ with $r-s=h$ for which $f(r) / g(s)$ is an S-unit. The polynomials $f(X), g(X-h)$ have a nonconstant greatest common divisor $k(X)$ in $K[X]$. Put $f_{0}(X)=f(X) / k(X), g_{0}(X)=g(X) / k(X+h)$. Then neither $f_{0}(X)$, nor $g_{0}(X)$ is constant and for the pairs (r, s) under consideration we have that $f_{0}(r) / g_{0}(s)=f(r) / g(s)$ is an S-unit and $r-s \notin \mathscr{H}\left(f_{0}, g_{0}\right)$. By our assumption and by the fact that $\mathscr{H}(f, g)$ is finite, this proves Lemma 2 in general.

Let \mathscr{V} be the set of pairs $(r, s) \in \mathbb{Z}^{2}$ satisfying (32), (33) and $r-s \notin$ $\mathscr{H}(f, g)$, where f, g are non-constant polynomials in $K[X]$. It is our aim to show that \mathscr{V} is finite. We assume that $f(X), g(X) \in O_{K}[X]$, that all the zeros of f and g are S-units in K and that $S \supset S_{\infty}$, which are no restrictions. Put $D=[K: \mathbb{Q}]$. Suppose $K \subset \mathbb{C}$ and let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{D}$ be the embeddings of K in \mathbb{C}. The constants c_{22}, c_{23} will be positive and depend only on K, f, g.

We assume that \mathscr{V} is infinite for some pair of constants β, γ satisfying (31). Let

$$
\begin{aligned}
& f(X)=A\left(X-a_{1}\right)^{e_{1}}\left(X-a_{2}\right)^{e_{2}} \ldots\left(X-a_{p}\right)^{e_{p}} \\
& g(X)=B\left(X-b_{1}\right)^{f_{1}}\left(X-b_{2}\right)^{f_{2}} \ldots\left(X-b_{q}\right)^{f_{q}}
\end{aligned}
$$

where the a_{1} are distinct, the b_{j} are distinct, the e_{t} and the f_{j} are positive integers with $\sum_{i=1}^{p} e_{l}=m, \sum_{j=1}^{1} f_{j}=n$. First of all we have for $(r, s) \in \mathscr{V}$, if $N(a)$ denotes the absolute norm of the ideal a, on noting that $r-s \notin \mathscr{H}(f, g)$,

$$
\begin{aligned}
& N\left(\left(r-a_{\imath}, s-b_{\jmath}\right)\right) \leq N\left(\left(r-s+b_{J}-a_{t}\right)\right) \\
& \leq \prod_{k=1}^{D}\left|r-s+\sigma_{k}\left(b_{J}-a_{t}\right)\right| \\
& \leq c_{22}|r-s|^{D} \quad \text { for } \quad \begin{array}{l}
i=1,2, \ldots, p, \\
j
\end{array}, 1,2, \ldots, q,
\end{aligned}
$$

hence

$$
N((f(r), g(s))) \leq c_{23}|r-s|^{D m n}
$$

Since $f(r) / g(s)$ is an S-unit this implies by (1), and $f(X), g(X) \in O_{K}[X]$
that

$$
\begin{aligned}
& \max \left(\prod_{v \in S}\|f(r)\|_{v}, \prod_{v \in S}\|g(s)\|_{v}\right) \\
& \quad=\max \left(\prod_{v \notin S}\|f(r)\|_{v}^{-1}, \prod_{v \notin S}\|g(s)\|_{v}^{-1}\right) \\
& \quad=\left(\prod_{v \notin S} \max \left(\|f(r)\|_{v},\|g(s)\|_{v}\right)\right)^{-1} \\
& \quad \leq\left(\prod_{v \notin S_{\infty}} \max \left(\|f(r)\|_{v},\|g(s)\|_{v}\right)\right)^{-1} \\
& \quad=N((f(r), g(s))) \leq c_{23}|r-s|^{D m n}
\end{aligned}
$$

By permuting the a_{i}, b_{J} if necessary we may therefore assume that an infinite subset \mathscr{V}_{1} of \mathscr{V} exist such that for $(r, s) \in \mathscr{V}_{1}$:

$$
\begin{align*}
\prod_{v \in S}\left\|r-a_{1}\right\|_{v} & \leq c_{24}\left(|r-s|^{D m n}\right)^{1 / m}=c_{24}|r-s|^{D n} \\
\prod_{v \in S} s-b_{1 v} & \leq c_{24}|r-s|^{D m} \tag{34}
\end{align*}
$$

Put $\zeta_{0}=\zeta_{0}^{(r, s)}=s-r+a_{1}-b_{1}, \quad \zeta_{1}=\zeta_{1}^{(r, s)}=r-a_{1}, \quad \zeta_{2}=\zeta_{2}^{(r, s)}=b_{1}-s$, $Z=Z^{(r, s)}=\left(\zeta_{0}: \zeta_{1}: \zeta_{2}\right)$. Then $Z \in \mathbb{P}^{2}(K)$,

$$
\begin{equation*}
\zeta_{0}+\zeta_{1}+\zeta_{2}=0 \tag{35}
\end{equation*}
$$

and by (34), since $r-s \notin \mathscr{H}(f, g)$,

$$
\begin{equation*}
\prod_{i=0}^{2} \prod_{v \in S}\left\|\zeta_{i}\right\|_{v} \leq c_{25}|r-s|^{D(m+n+1)} \tag{36}
\end{equation*}
$$

Since $f(r) \neq 0, g(s) \neq 0, r-s \notin H(f, g)$ for $(r, s) \in \mathscr{V}_{1}$, we have by (1)

$$
\begin{align*}
H(Z) & =\prod_{v} \max \left(\left\|\zeta_{0}\right\|_{v},\left\|\zeta_{1}\right\|_{v},\left\|\zeta_{2}\right\|_{v}\right) \\
& \geq \prod_{v \in S_{\infty}}\left\|r-a_{1}\right\|_{v} \cdot \prod_{v \notin S_{\infty}}\left\|s-r+a_{1}-b_{1}\right\|_{v} \\
& =\prod_{v \in S_{\infty}}\left(\left\|r-a_{1}\right\|_{v}\left\|s-r+a_{1}-b_{1}\right\|_{v}^{-1}\right) \geq c_{26}|r|^{D}|r-s|^{-D} \tag{37}
\end{align*}
$$

Put $d=(m+n+1) \gamma /(1-\gamma)$. Then, by (31), $0 \leq d<1$. Formulas (36), (32) and (37) yield that for $(r, s) \in \mathscr{V}_{1}$:

$$
\begin{aligned}
\prod_{i=0}^{2} \prod_{v \in S}\left\|\zeta_{,}\right\|_{v} & \leq c_{25} \beta^{D(m+n+1)}|r|^{D \gamma(m+n+1)}=c_{25} \beta^{D(m+n+1)}|r|^{D d(1-\gamma)} \\
& \leq c_{25} \beta^{D(m+n+1+d)}\left(|r|^{D}|r-s|^{-D}\right)^{d} \\
& \leq c_{25} c_{26}^{-d} \beta^{D(m+n+1+d)} H(Z)^{d}
\end{aligned}
$$

Together with (35), the fact that $\zeta_{0}, \zeta_{1}, \zeta_{2}$ are non-zero S-integers and Theorem 1, this yields that there at most finitely many such projective points Z. Therefore, there must be an infinite subset \mathscr{V}_{2} of \mathscr{V}_{1} such that $Z^{(r, s)}=Z_{0}$ for $(r, s) \in \mathscr{V}_{2}$, where Z_{0} is a fixed projective point in $\mathbb{P}^{2}(\mathrm{~K})$; Choose two pairs $\left(r_{1}, s_{1}\right),\left(r_{2}, s_{2}\right)$ in \mathscr{V}_{2} with $\left|r_{2}\right|>\left|r_{1}\right|$. By (32), (31) this is possible. Now we have by (32),

$$
\begin{aligned}
\left|\zeta_{2}^{\left(r_{1}, s_{2}\right)}\right| & =\left|\frac{\zeta_{1}^{\left(r_{1}, s_{1}\right)}}{\zeta_{0}^{\left(r_{1}, s_{1}\right)}}\right| \cdot\left|\zeta_{0}^{\left(r_{2}, s_{2}\right)}\right| \\
& \leq c_{27} \beta\left|\frac{\zeta_{1}^{\left(r_{1}, s_{1}\right)}}{\zeta_{0}^{\left(r_{1}, s_{1}\right)}}\right| \cdot\left|\zeta_{1}^{\left(r_{2}, s_{2}\right)}\right|^{\gamma} .
\end{aligned}
$$

By (31), this implies that $\left|\zeta_{1}^{\left(r_{2}, s_{2}\right)}\right|$, whence $\left|r_{2}\right|$, can be bounded above in terms of $r_{1}, s_{1}, f, g, k, \beta, \gamma$. Together with (32) this contradicts the fact that \mathscr{V}_{2} is infinite. Therefore our assumption that \mathscr{V} is infinite was false and together with the remarks made at the beginning of the proof, this proves Lemma 2.

Proof of Theorem 3: Let K be an algebraic number field and let $\left\{u_{k}\right\}_{k=0}^{\infty}$ be a non-degenerate linear recurrence sequence with $u_{k} \in K$, having at least two characteristic roots. We have

$$
\begin{equation*}
u_{k}=\sum_{i=1}^{m} f_{i}(k) \alpha_{i}^{k} \quad \text { for } \quad k=0,1,2, \ldots \tag{38}
\end{equation*}
$$

where $m \geq 2, f_{i}$ is a non-zero polynomial for $i=1,2, \ldots, m$ and the α_{t} are distinct algebraic numbers such that α_{i} / α_{j} is not a root of unity for $i \neq j$. We assume that $f_{i}(X) \in K[X]$, and $\alpha_{i} \in K$ for $i=1,2, \ldots, m$ which is no restriction in the proof of theorem 3. Further c_{28}, c_{29}, \ldots will denote positive constants depending only on $K, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}, f_{1}, \ldots, f_{m}$.

We assume that theorem 3 is not valid, i.e. there exists a finite set of primes S on K, enclosing S_{∞}, and an infinite set \mathscr{W} of pairs of integers (r, s) with $r>s \geq 0$ and $u_{s} \neq 0$, such that u_{r} / u_{s} is an S-unit or $u_{r}=0$ for $(r$, $s) \in \mathscr{W}$. We assume that the α_{t} and the coefficients of the f_{t} are all S-units which is no restriction. In view of (38) we have

$$
\begin{equation*}
\zeta_{r, s} \sum_{i=1}^{m} f_{i}(r) \alpha_{i}^{r}-\beta \sum_{i=1}^{m} f_{i}(s) \alpha_{t}^{s}=0 \quad \text { for } \quad(r, s) \in \mathscr{W} \tag{39}
\end{equation*}
$$

where $\zeta_{r, s}$ is an S-unit, $\beta=1$ if $u_{r} \neq 0, \beta=0$ and $\zeta_{r, s}=1$ if $u_{r}=0$. Put $\xi_{t}=\zeta_{r, s} f_{t}(r) \alpha_{t}^{r}$ for $i=1,2, \ldots, m, \xi_{t}=-\beta f_{i-m}(s) \alpha_{i-m}^{s}$ for $i=m+1$, $\ldots, 2 m$. Then $\xi_{1}+\xi_{2}+\ldots+\xi_{2 m}=0$. For each pair $(r, s) \in \mathscr{W}$ there is a collection \mathscr{P} of pairwise disjoint non-empty subsets of $\{1,2, \ldots, 2 m\}$, having $\{1,2, \ldots, 2 m\}$ as their union, such that

$$
\begin{array}{ll}
\sum_{i \in S} \xi_{l}=0 & \text { for } \mathscr{S} \in \mathscr{P} \\
\sum_{i \in T} \xi_{1} \neq 0 & \text { if } \quad \mathscr{T} \nsubseteq \mathscr{S}, \mathscr{T} \neq \emptyset \quad \text { for some } \quad \mathscr{S} \in \mathscr{P} \tag{40}
\end{array}
$$

Since there are only finitely many collections of subsets as described above, we can find such a collection \mathscr{P} such that (40) holds for all pairs (r, s) belonging to an infinite subset \mathscr{W}_{1} of \mathscr{W}. We assume that there are no pairs (r, s) in \mathscr{W}_{1} with $f_{l}(r)=0$ for some $i \in\{1,2, \ldots, m\}$ which is no restriction.

First of all, we shall prove that each set \mathscr{S} in \mathscr{P} can contain at most one element from $\{1,2, \ldots, m\}$. Let us assume the contrary i.e. that there is an \mathscr{S} in \mathscr{P} containing integers i, j with $1 \leq i<j \leq m$. Let $\Xi=\Xi^{(r, s)}$ denote the projective point with the $\xi_{k}(k \in \mathscr{S})$ as homogeneous coordinates. Put

$$
c_{28}=\prod_{v} \max \left(1,\left\|\alpha_{t} / \alpha_{\jmath}\right\|_{v}\right) .
$$

Since α_{i} / α_{j} is not a root of unity, we have $c_{28}>1$. By (1) and Lemma 1 we have for $r \geq c_{29}$,

$$
\begin{aligned}
H(\Xi) & \geq \prod_{v} \max \left(\left\|\zeta_{r, s} f_{l}(r) \alpha_{l}^{r}\right\|_{v},\left\|\zeta_{r, s} f_{j}(r) \alpha_{J}^{r}\right\|_{v}\right) \\
& =\prod_{v} \max \left(1, \| \frac{f_{l}(r) \alpha_{i}^{r}}{f_{j}(r) \alpha_{J}^{r} \|_{v}}\right) \\
& \geq \prod_{v}\left(\left(\max \left(1,\left\|f_{l}(r)\right\|_{v}\right) \max \left(1,\left\|f_{J}(r)\right\|_{v}\right)\right)^{-1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\times \max \left(1,\left\|\frac{\alpha_{t}}{\alpha_{j}}\right\|_{v}\right)\right)^{r} \\
\geq & c_{30} r^{-c_{31}} c_{28}^{r} \geq c_{28}^{r / 2} .
\end{aligned}
$$

But on the other side we have, since all α_{1} are S-units,

$$
\begin{aligned}
\prod_{i \in S} \prod_{v \in S}\left\|\xi_{i}\right\|_{v} & \leq \max _{1 \leq k \leq m}\left(\prod_{v \in S}\left\|f_{k}(r)\right\|_{v}^{2 m}, \prod_{v \in S}\left\|f_{k}(s)\right\|_{v}^{2 m}\right) \\
& \leq c_{32} r^{c_{33}} .
\end{aligned}
$$

Since all the ξ, are S-integers, this implies by Theorem 1, and (40) that there are only finitely many of such projective points $\Xi^{(r, s)}$. But then there are infinitely pairs (r, s) in \mathscr{W}_{1} which correspond to the same projective point $\Xi^{(r, s)}$. Take two of these pairs, $\left(r_{1}, s_{1}\right),\left(r_{2}, s_{2}\right)$ say, with $r_{2}>2 r_{1}$. Then

$$
\frac{\zeta_{r_{1}, s_{1}} f_{i}\left(r_{1}\right) \alpha_{i}^{r_{1}}}{\zeta_{r_{1}, s_{1}} f_{j}\left(r_{1}\right) \alpha_{j}^{r_{1}}}=\frac{\zeta_{r_{2}, s_{2}} f_{i}\left(r_{2}\right) \alpha_{t}^{r_{2}}}{\zeta_{r_{2}, s_{2}} f_{j}\left(r_{2}\right) \alpha_{j}^{r_{2}}},
$$

hence

$$
\begin{equation*}
\left(\frac{\alpha_{t}}{\alpha_{J}}\right)^{r_{2}-r_{1}}=\frac{f_{t}\left(r_{1}\right) f_{J}\left(r_{2}\right)}{f_{t}\left(r_{2}\right) f_{J}\left(r_{1}\right)} . \tag{41}
\end{equation*}
$$

Choose a prime v such that $\left\|\alpha_{i} / \alpha_{j}\right\|_{v}=: c_{34}>1$. Then $\left\|\alpha_{t} / \alpha_{J}\right\|_{v}^{r_{2}-r_{1}} \geq c_{34}^{r_{2} / 2}$, whereas by Lemma 1,

$$
\left\|\frac{f_{i}\left(r_{1}\right) f_{j}\left(r_{2}\right)}{f_{j}\left(r_{1}\right) f_{l}\left(r_{2}\right)}\right\|_{v} \leq c_{35} r_{2}^{c_{36}} .
$$

However, for r_{2} sufficiently large this contradicts (41). This shows indeed that each set \mathscr{S} in \mathscr{P} can contain at most one element from $\{1,2, \ldots, m\}$. Of course, there are sets \mathscr{S} containing an element from $\{1,2, \ldots, m\}$ and since we assumed that $f_{i}(r) \neq 0$ for $i \in\{1,2, \ldots, m\}$ and $(r, s) \in \mathscr{W}_{1}$, these sets must contain also an element i from $\{m+1, \ldots, 2 m\}$, for which $\xi_{i} \neq 0$. Hence $\beta=1$ and \mathscr{P} consists of m pairwise disjoint subsets of $\{1,2, \ldots, 2 m\}$, each containing exactly one element from $\{1,2, \ldots, m\}$ and one from $\{m+1, \ldots, 2 m\}$. This can be written as

$$
\begin{equation*}
\zeta_{r, s} f_{i}(r) \alpha_{i}^{r}=f_{\sigma(t)}(s) \alpha_{\sigma(i)}^{s} \quad \text { for } \quad(r, s) \in \mathscr{W}_{1} \tag{42}
\end{equation*}
$$

where $\zeta_{r, s}$ is an S-unit and σ a fixed permutation of $\{1,2, \ldots, m\}$.
In the final part of the proof we shall show that \mathscr{W}_{1} is finite. This is contradictory to what we have seen before and will complete the proof of theorem 3. We distinguish two cases.

Case $1 . \sigma$ is the identity.
Then we have for $i, j \in\{1,2, \ldots, m\}$, by (42),

$$
\begin{equation*}
\frac{f_{i}(r)}{f_{j}(r)}\left(\frac{\alpha_{i}}{\alpha_{j}}\right)^{r}=\frac{f_{i}(s)}{f_{j}(s)}\left(\frac{\alpha_{I}}{\alpha_{j}}\right)^{s} \quad \text { for } \quad(r, s) \in \mathscr{W}_{1} \tag{43}
\end{equation*}
$$

If all polynomials $f_{t}(X)$ with $i \in\{1,2, \ldots, m\}$ are constant this implies that α_{i} / α is a root of unity for all pairs (i, j) with $i, j \in\{1,2, \ldots, m\}$ and we have excluded this case. Therefore we can choose a polynomial $f_{l}(X)$ such that $f_{l}(X)$ is non-constant. Then for every non-zero rational integer h, none of the polynomials $f_{i}(X+h), f_{i}(X)$ divides the other. Furthermore, by (42), $f_{i}(r) / f_{i}(s)$ is an S-unit for $(r, s) \in \mathscr{W}_{1}$. Take $j \in\{1,2, \ldots, m\}$ with $j \neq i$. By (43) and lemma 1, we have, on choosing a prime v such that $\left\|\alpha_{t} / \alpha_{j}\right\|_{v}>1$,

$$
\left\|\frac{\alpha_{t}}{\alpha_{j}}\right\|_{v}^{r-s}=\left\|\frac{f_{l}(s) f_{j}(r)}{f_{l}(r) f_{j}(s)}\right\|_{v} \leq c_{37} r^{c_{38}}
$$

hence

$$
0<r-s \leq c_{39} \log r \quad \text { for } \quad(r, s) \dot{\in} \mathscr{W}_{1} .
$$

By Lemma 2 we infer that \mathscr{W}_{1} is finite indeed.

Case 2. σ is not the identity.
Choose an integer i such that $i \neq \sigma(i)$ and $(r, s) \in \mathscr{W}_{1}$. Put $\theta_{k}=\alpha_{\sigma^{k}(t)} /$ $\alpha_{\sigma^{k+1}(t)}, \theta_{k}=f_{\sigma^{k+1}(t)}(s) / f_{\sigma^{k}(i)}(r)$. By (42) we have

$$
\boldsymbol{\theta}_{k}^{r}=\frac{q_{k}}{q_{k+1}} \theta_{k+1}^{s} \quad \text { for } \quad k=0,1,2, \ldots
$$

A simple inductive argument shows that

$$
\theta_{0}^{r^{k}}=\left(\frac{q_{0}}{q_{1}}\right)^{r^{k-1}}\left(\frac{q_{1}}{q_{2}}\right)^{r^{k-2} s} \ldots\left(\frac{q_{k-1}}{q_{k}}\right)^{s^{k-1}} \theta_{k}^{s^{k}} \quad \text { for } \quad k=1,2,3, \ldots
$$

Let v be the order of σ. Then $\theta_{v}=\theta_{0}, q_{v}=q_{0}$. This implies that

$$
\begin{aligned}
\theta_{0}^{r^{v-s^{v}}} & =\left(\frac{q_{0}}{q_{1}}\right)^{r^{v-1}}\left(\frac{q_{1}}{q_{2}}\right)^{r^{\nu-2} s} \ldots\left(\frac{q_{m-1}}{q_{m}}\right)^{s^{v-1}} \\
& =q_{0}^{r^{\nu-1}}-s^{\nu-1} \cdot q_{1}^{r^{v-2} s-r^{v-1}} \cdot q_{2}^{r^{v-3} s^{2}-r^{v-2} s} \ldots q^{s^{v-1}-r . s^{v-2}}
\end{aligned}
$$

All exponents appearing in the above equality are divisble by $r-s$ and we have

$$
\begin{equation*}
\theta_{0}^{\nu^{\nu-1}+r^{\nu-2} s+\ldots+s^{v-1}}=q_{0}^{r^{\nu-2}+\ldots+s^{v-2}} q_{1}^{-r^{\nu-2}} q_{2}^{-r^{\nu-3} s} \ldots q_{v-1}^{-s^{v-2}} \tag{44}
\end{equation*}
$$

Now choose a prime v such that $1<\left\|\theta_{0}\right\|_{\mathrm{v}}=: e^{c_{40}}$. Then by (44) and Lemma 1,

$$
e^{c_{40} r^{\nu-1}} \leq\left(c_{41} \cdot r^{c_{42}}\right)^{r^{\nu-2}} \leq e^{c_{43} \nu^{\nu-2} \log r} .
$$

This implies that r is bounded and hence that also in this case \mathscr{W}_{1} is finite.

References

[1] S. Chowla: Proof of a conjecture of Julia Robinson. Norske Vid. Selsk. Forh. (Trondheim) 34 (1961) 107-109.
[2] E. Dubois and G. Rhin, Sur la majoration de formes linéaires à coefficients algébriques réels et p-adiques. Démonstration d'une conjecture de K. Mahler. C.R. Acad. Sc. Paris 282, Série A-1211 (1976).
[3] K. Gyory, On the number of solutions of linear equations in units of an algebraic number field. Comment. Math. Helv. 54 (1979) 583-600.
[4] S. Lang, Integral points on curves. Inst. Hautes Etudes Sci. Publ. Math. no. 6 (1960) 27-43.
[5] D.J. Lewis and K. Mahler, On the representation of integers by binary forms. Acta Arith. 6 (1961) 333-363.
[6] K. Mahler, Zur Approximation algebraischer Zahlen (I). Uber den gröszten Primteiler Binärer Formen. Math. Ann. 107 (1933) 691-730.
[7] K. Mahler: Math. Rev. 42 (1971) 3028.
[8] T. Nagell, Sur une propriété des unités d'un corps algébrique. Arkiv för Mat. 5 (1965) 343-356.
[9] T. NAGELL: Quelques problèmes relatifs aux unités algébriques. Arkiv för Mat. 8 (1969) 115-127.
[10] T. Nagell: Sur un type particulier d'unités algébriques. Arkiv för Mat. 8 (1969) 163-184.
[11] M. Newman: Units in arithmetic progression in an algebraic number field. Proc. Amer. Math. Soc. 43 (1974) 266-268.
[12] G. Polya, Arithmetische Eigenschaften der Reihenentwicklungen. J. reine angew. Math. 151 (1921) 1-31.
[13] A.J. van der Poorten, Some problems of recurrent interest. Macquarie Math. Reports; Macquarie Univ., Northride, Australia, 81-0037 (1981).
[14] A.J. van der Poorten and H.P. Schlickewei, The growth conditions for recurrence sequences. Macquarie Math. Reports 82 -0041 (1982).
[15] H.P. Schlickewei Über die diophantische Gleichung $x_{1}+x_{2}+\ldots+x_{n}=0$ Acta Arith. 33 (1977) 183-185.
[16] H.P. Schlickewei: The \not-adic Thue-Siegel-Roth-Schmidt Theorem. Arch Math. 29 (1977) 267-270.
[17] W.M. Schmidt: Simultaneous approximation to algebraic numbers by elements of a number field Monatsh. Math. 79 (1975) 55-66.
[18] W.M. Schmidt: Diophantine Approximation, Lecture Notes in Math. 785, Springer Verlag, Berlin Etc. 1980.
[19] Th. Schneider: Anwendung eines abgeänderten Roth-Ridoutschen Satzes auf diophantische Gleichungen. Math. Ann. 169 (1967) 177-182.
[20] T.N. Shorey, Linear forms in numbers of a binary recursive sequence. Acta Arith, to appear.
(Oblatum 17-I-1983)

University of Leiden
Department of Mathematics
Wassenaarseweg 80
Postbus 9512
2300 RA Leiden
The Netherlands

