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1. Introduction

Let A be an abelian variety of dimension g  1 defined over the field Q
of algebraic numbers and embedded in projective space PN of dimension
N  1. Then A is in fact defined over some smallest algebraic number
field K, and for any subfield F of C containing K the set of points A ( F )
of A defined over F is an additive group. We may construct absolute
Weil height functions H( P ), h(P) on A(Q) in the usual way as follows.
First of all, if P is a point of PN defined over Q, we can assume that P
has projective coordinates 03BE0 , ... , 03BEN lying in some algebraic number field
F, and we put

where v runs over all valuations of F. To avoid the customary ramifica-
tion indices we shall assume that these are normalized in such a way that

each non-archimedean valuation extends the underlying p-adic valuation
on Q and we have the product formula

for any non-zero e in F.
Next, if D is the degree of F the expression

is independent of the choice of F, and we write

These are the standard absolute height functions on the set of points of
PN defined over 0, and by specialization they give the required height
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functions on the subset A(Q) (here, as always, we identify A with A(C),
and we regard both as subsets of P.).
Now we have the fundamental Néron-Tate decomposition

where q(P) is a quadratic form on A(O), 1( P ) is a linear form on A(O),
and c( P ) is a function bounded on A(Q) (see for example Theorem 3 of
[4]). Moreover it is well-known that q(P) is positive definite on the
quotient of A(Q) by the group of torsion points of A (a simple proof is to
use Lemma 7 below to deduce that h(nP) is bounded independently of
the integer n as soon as q(P) = 0). 

Hence if P is a non-torsion point of A(Q), we have q(P) &#x3E; 0. One of

the aims of the present paper is to give a refinement of this assertion in
terms of the degree d(P) of P. This is simply the degree over Q of the
field generated over K by the ratios of the projective coordinates of P. It
is not too difficult to see that there exist positive functions 03C8(D) and
03C9(D), depending only on A and the integer D &#x3E; 1, such that if P is a
point of A(Q) with d(P)  D and q( P )  (03C8(D))-1, then P is a torsion
point of order at most w ( D ) (and so necessarily q( P ) = 0 as well). Such
inequalities have applications to questions of linear independence on A,
as explained in [7]. As an example, let Pl, ... , Pm be points of A( F ) for a
field F containing K, with [F:Q]  D and q(Pl)  Q (1  i  m) for
some integer D  1 and some real Q  (03C8(D))-1. Then the arguments of
[7] (Sections 2 and 5) show that Pl,..., Pm are linearly dependent over 0
if and only if tl Pl + - .- + tm Pm = 0 for rational integers tl, ... , tm with

Now the simple counting method of [7] (p. 217) allows us to take
03C8(D) and 03C9(D) not exceeding CD2 for some positive constant c depend-
ing only on A. With more care, and the use of the Box Principle as in
[10], these can both be improved to c’; it is also interesting that an
argument of Stuhler using reduction theory appears to yield the slightly
weaker estimate (CD)cD for 03C9(D). However, we do not give the details of
these elementary methods, as the results proved in the present paper are
rather stronger. They are summarized in the following theorem.

THEOREM: There are positive constants K and À, depending only on the
dimension g of A, and a positive constant C depending only on A, with the

following properties. Suppose for some integer D  1 that P is a point of
A(Q) with d(P)  D and q(P)  C-1D-03BA. Then P is a torsion point of
order at most CDÀ.
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In particular it follows that

for all non-torsion P in A(Q).
We have taken some trouble to calculate the best value of rc that our

method will give, and we find that any K with

is permissible. Thus, in accordance with the main result of Anderson and
the author in [1] on elliptic curves, we may take any K &#x3E; 10 for g = 1; and
we may further take any K &#x3E; 11 for g = 2. Some improvements are
possible in special cases; for example, the methods of [1] easily extend to
permit any value K &#x3E; 3 (independently of g) if A has many complex
multiplications.
We have been less careful in our estimates for À; when A is a simple

abelian variety our Theorem is valid for any À satisfying

and this result then allows us to take any

in the Theorem when A is not necessarily simple. But for g = 1 it is

already known from class field theory (or [6]) and the work [11] of Serre
that À &#x3E; 2 suffices if we are not interested in calculating constants
effectively (but see [12]); and Paula Cohen has recently obtained a
completely effective estimate with any À &#x3E; 1. Either result leads im-

mediately to an improvement on (1) for arbitrary A, with 6g replaced by
13g/4.

However, it should be at once pointed out that the best possible values
of K and À are probably much smaller, and they are liable to depend on
the factorization of A into simple varieties as well as on the ring of
endomorphisms of A. As the Corollary below suggests, these questions
are related to difficult unsolved problems of Kummer theory on abelian
varieties, and there seems little point in putting forward precise conjec-
tures at the moment. Let us just note in passing that it seems likely that if
A is simple then the Theorem holds for any 03BA &#x3E; g-1; and for elliptic
curves with complex multiplication a slightly sharper form of this has
recently been proved by Laurent [5].

In the following Corollary we fix any constants K, À satisfying the
conditions of the above Theorem.
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COROLLARY: Let Q be a point of A(ii). Then there exists a positive
constant c, depending only on Q and A, with the following property:
(i ) If Q is non-torsion and P is any point on A(Q) with TP = Q for some
integer T  1, then d(P)  cT2/03BA.

_

(ii) If Q is torsion and P is any point on A(Q) with TP = Q for some
minimal integer T  1, then d(P)  cT1/03BB.

From the point of generalized Kummer theory, these lower bounds are
rather weak. Nevertheless they seem to be the only results of their kind at
present, and, moreover, the constants appearing are all in principle
effectively computable. It should be pointed out, however, that recent
work of Bogomolov [16] implies an ineffective sharpening of (ii) in a
special case. Namely, if T is a power of a fixed prime 1, then we can take
À = 1 provided c is now allowed to depend on /.

The proofs of these results are arranged in this paper as follows. First,
in Section 2 we collect a number of results from [8] about general group
varieties, and we deduce a zero estimate for the special group variety
C X A appropriate to our problem. After some preliminaries in Section 3
we prove in Section 4 our Theorem for a simple abelian variety. Finally
in Section 5 we prove the Theorem in general and we also deduce the
Corollary.

2. Zéro estimates

Let G be an arbitrary quasi-projective commutative group variety of
dimension n  1 embedded in some projective space X. For m  1 let

-y,, ... , ym be elements of G, and for integers sl, ... , sm write 03C3 = (s1, ... , sm)
for the corresponding element of 7L m and

for the corresponding linear combination in G. Write also

and for a real number S  0 let 7Lm(S) denote the set of Q with

0  s1,...,sm  S.
We say that a subset W of G is defined in G by homogeneous

polynomials P1, ... , Pk if the set of common zeroes of these polynomials
in X meets G precisely in W.

LEMMA 1: There is a constant c &#x3E; 0, depending only on G, with the

following property. Suppose for some integer D  1 and some real 03B8  nlm
there exists a homogeneous polynomial of degree at most D vanishing on
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03A8(Zm(n(cD)03B8)) but not all of G. Then there are integers k, r with

together with a subgroup Z of 7L m of rank at least k and an algebraic
subgroup H of G of dimension at most n - r, such that ’¥(Z) c H.
Furthermore, Z contains elements 03C31,..., Crkl linearly independent over 7L,
with

and H is contained in an algebraic subset S of G, of dimension at most
n - r, that is defined in G by homogeneous polynomials of degrees at most
cD.

PROOF: This is Theorem 1 (Chapter I) of [8], which generalizes the earlier
work of [15]. In fact c depends only on the degrees of the equations
defining the Zariski closure of G in X and the degrees of the equations
defining its addition laws.

LEMMA 2: There is a constant c &#x3E; 0, depending only on G, with the

following property. Suppose for some integer D  1 that S is an algebraic
subset of G, defined in G by homogeneous polynomials of degrees at most D.
If H is an algebraic subgroup of G contained in S, there exists an algebraic
subgroup H’ of G, itself defined in G by homogeneous polynomials of
degrees at most cD, such that

HcH’cS.

PROOF: This is the Proposition (Chapter 1) of [8]. Here in fact c depends
only on the degrees of the equations defining the addition laws on G.

The next lemma is a technical estimate for primary ideal components.
For n  1 let 9t = C[ Xo,..., Xn be a polynomial ring in n + 1 variables.
Recall that a non-zero proper homogeneous ideal gj of 9t has rank r
satisfying 1  r  n + 1; the dimension of its associated variety in Pn is
then n - r. It is convenient here to define the rank of the zero ideal as 0.

Also, if 1  r  n, we denote the degree of  by deg ; this is a positive
integer. In addition, for 1  t  k and integers D1  1,..., Dk  1 we write
Mt(D1, ... , Dk ) for the maximum of the products of D1, ... , Dk taken t at
a time. If t = 0 we interpret this expression as 1.

LEMMA 3: For 0  r  n and an integer D  1 let 0 be an ideal of  of
rank r generated by homogeneous polynomials of degrees at most D. For
k  1 and integers D1  D, ... , Dk  D let Pl, .... Pk be homogeneous poly-



158

nomials of degrees at most D1, ... , Dk respectively. Suppose that Z5 =

(0, Pl, .... Pk) is a non-zero proper ideal of  and that for some s with
r  s  n it has at least one isolated primary component of rank s. Then as
G runs over all such isolated primary components of Z5 of rank s, we have

where t = min( s - r, k).

PROOF. This is Theorem II (Chapter 2) of [8].
Now we shall consider the special group variety G = C X A, where A is

a simple abelian variety of dimension g  1 embedded in PN for some
N  1. If the additive group variety C is embedded in Pl in the usual
way, the Segre map provides an embedding of G in P2N+1· Let ’1Tc, 77A
denote the projections from C X A to the factors C, A respectively.

LEMMA 4: There is a constant c &#x3E; 0, depending only on A, with the following
property. For an integer D  1 let H be a proper algebraic subgroup of
C X A, defined in C X A by homogeneous polynomials of degrees at most D,
such that 03C0C(H) ~ 0. Then ’1TA (H) is a finite group of order at most cDe.

PROOF: Since there are no surjective homomorphisms from C to A or
from A to C, Kolchin’s Theorem [3] (p. 1152) shows that the algebraic
groups 03C0C(H), 03C0A(H) satisfy either 03C0C(H) ~ C or 03C0A(H) ~ A. As 03C0C(H)
~ 0 by hypothesis and C has no non-zero proper algebraic subgroups, we
must have 03C0C(H) = C. Hence B=03C0A(H)~A. Because A is simple, this
means that B is a finite group. Now as b runs over all elements of B the

disjoint algebraic sets Hb = H ~ 03C0-1A(b) exactly cover H and they are
cosets of the group Ho corresponding to b = 0. If 03C0C(H0) = 0 it would
follow that ’1Tc (H) is finite, which is not so; therefore 03C0c(H0) = C. We
deduce easily that H = C X B.

Hence for each b in B the Zariski closure P1 X b of Hb in P2N+ 1 is an
irreducible component of the Zariski closure P1 X B of H in P2N+l’ Now
we can find an integer c0  1 depending only on A, and homogeneous
polynomials Q1, ... , QI, of degrees at most co, whose set of common
zeroes in P2N+1 is Pl X A. Thus the ideal 0 = (Q1,..., Ql) has rank r =
2N - g. Also by hypothesis we can find homogeneous polynomials
Pl, ... , Pk, of degrees at most D, whose set of common zeroes in P2 N + 1
meets C X A exactly in H = C X B. It follows easily that for each b in B
the ideal gj = (0, Pl, ... , Pk ) has an isolated prime component of rank s
= 2 N corresponding to P1 X b (it may well have other isolated compo-
nents, but if so, they correspond to subvarieties of cc X A, where cc is the
point of P1 not in C).

Finally Lemma 3 with n = 2 N + 1 shows that the total number of
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isolated prime components of  of rank 2 N is at most

where t = min( g, k ). Hence we get the required estimate for the cardinal-
ity of B, with c = c2N0.
We can now give our special zero estimate as a conséquence of these

lemmas. There exists a Riemann lattice  in Cg, together with associated
theta functions 03B80(z),...,03B8N(z) having no common zeroes in Cg, such
that by sending the point z of Cg to the point 8( z) of P. with projective
coordinates °0 (z ), ... , 03B8N(z), we obtain an analytic isomorphism between
the quotient C91Y and our simple abelian variety A. Let 03B8’0(z) be any
linear combination of 03B80(z),...,03B8N(z), not vanishing at z = 0, and as-
sume that the quotients f, (z) = °1 (z)/03B8’0(z) (1  i  g) are algebraically
independent.

PROPOSITION: There is a constant C &#x3E; 0, depending on A but not on the
functions fi (z), ... , fg(z), with the following property. For an integer D  1
let v be a point of cg such that f1(z),...,fg(z) are analytic at sv for all
integers s with 0  s  CDg+1, and let P be a non-zero polynomial of total
degree at most D such that

for all integers s with 0  s  CD9". Then there is an integer so with
1  so  CD2g+ 1 such that sov lies in Y.

PROOF : We use constants cl , ... depending only on A. We apply Lemma
1 with G=CXA, so n = g + 1, and m = 1, with yl as the point of G
defined by

We take 03B8 = n/m = g + 1. On writing f1(z),...,fg(z) as quotients of
linear forms in 03B80(z), ....,03B8B(z), we see without difficulty that if C is

sufficiently large our polynomial P gives rise to a homogeneous poly-
nomial satisfying the conditions of Lemma 1; this does not vanish on all
of G because f1(z), ... , fg ( z ) are algebraically independent. The resulting
integers k, r necessarily satisfy k = 1 and 1  r  g + 1, so we obtain an
integer SI’ with 0  |s1|  c1Dg+1, such that the group r generated by slyl
lies in a proper algebraic subgroup H of G. Furthermore H lies in an
algebraic subset S of G, of dimension at most g, that is defined in G by
homogeneous polynomials of degrees at most c2 D. Hence by Lemma 2
we can find an algebraic subgroup H’ of G, itself defined in G by
homogeneous polynomials of degrees at most c3 D, with H c H’ c S. So
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H’ is a proper algebraic subgroup, and 03C0C(H’) ~ 0 because this projec-
tion contains 03C0C(H)~03C0C(0393)=s1Z. Thus by Lemma 4 we conclude that
7TA(H’) is a finite group of order t not exceeding c4Dg. Hence t03C0A(H’) = 0,
and since SI "/1 lies in r c H c H’ this gives

We may evidently suppose s1 &#x3E; 0; and now the Proposition follows with
s0 = ts1.
We need one more preliminary result about zeroes of polynomials. We

shall actually be working with the group variety (C  A)t for a large
integer t, but it would not have been so straightforward to analyse the
algebraic subgroups of this group. However, the following simple lemma
on Cartesian products will suffice for our purposes. For n  1, t  1 and
a subset S of en denote by St the t-fold Cartesian product of S in C nt.

LEMMA 5: Let S be a subset of cn, and for some integer D  1 suppose
there is a non-zero polynomial of total degree at most D that vanishes on S’.
Then there is a non-zero polynomial of total degree at most D that vanishes
on S.

PROOF: This is a straightforward induction on t, and we omit the details.
If S is a finite set, then, with the notation of [14], this result says that
03C91(S)03C91(St), and in fact it is just as easy to see that we always have
equality here.

3. Preliminaries

For n  1 let P be a non-zero polynomial in variables x1, ... , xn with

algebraic coefficients. Regarding these coefficients as projective coordi-
nates in some space of large dimension, we may define as in Section 1 the
projective absolute height H( P ) of P. If P = 0 we define H( P ) = 0. We
note that if Pl, ... , Pk are such polynomials whose product Pl ... Pk has
total degree at most D  1, then

this follows in the usual way from Gelfond’s well-known inequality in [2]
(p. 135) and its conjugates, together with the corresponding non-archi-
medean equalities.

The classical height H( a) of an algebraic number a is then just the
height of the polynomial x, - a. If P as above has total degree at most
D  1 and its coefficients are in fact rational integers of absolute values
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at most U  1, then we have

for any algebraic numbers a,, ..., an and /3 = P(03B11, ... , an)’ See for exam-
ple Lemma 1 (p. 26) of [1].

LEMMA 6: For an integer D  1 suppose F is an algebraic number field of
degree at most D, and let m, n be positive integers with 03B4n  (1 + 03B4) Dm for
some 8 &#x3E; 0. For H  1 let LI, ... , Lm be linear forms with coefficients in F
and projective absolute heights at most H. Then there exist rational integers
Xl’ ... , X n with

such that

PROOF: See the Proposition (p. 32) of [1].
Let now A be an abelian variety as in the introduction, and let h(P),

q(P), c(P) be the associated functions defined on A(Q).

LEMMA 7 : Let c be any constant such that |c(P)|  c for all P in A(Q).
Then we have

PROOF: Let P be an arbitrary point on A(Q). Then for any integers r, s
with s ~ 0 we can find Q on A(Q) such that sQ = rP. Now

where f(x) denotes the quadratic polynomial x2q(P) + xl(P) + c. Hence
f is non-negative on Q, so non-negative on R, so we must have (l(P))2 
4 cq( P ). Thus we get
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and the lemma follows on taking the square root. We note that the
opposite inequality

is almost as easy to prove.
Next, for the abelian variety A as above, we recall the period lattice Y

and the theta functions 00 ( z ), ... , ON (z) of Section 2.

LEMMA 8: There exists a constant c &#x3E; 0, depending only on .P, with the
following property. For any real B  1 and any element u of C 9 we can find
an integer b with 1  b  B such that

for some period w of IR.

PROOF: This is a straightforward application of the Box Principle;
compare Lemma 5 (p. 28) of [1].

LEMMA 9: There is a constant c &#x3E; 0, depending only on the functions
03B80(z),...,03B8N(z), such that

for any z in Ce.

PROOF: This follows easily from the functional equations for

03B80(z), .... 03B8N(z) together with the fact that these have no common zeroes;
compare the proof of Lemma 3 (p. 27) of [1].

Finally we record a well-known Schwarz Lemma in several complex
variables. For t  1 let F(z1 , ... , zt) be an entire function and for real
R  0 let M(F, R) be its maximum modulus for |z1| = ···= IZtl = R.
Recall the notation Zt(R) of Section 2.

LEMMA 10: For R  0 let F(z1,..., zt) be an entire function vanishing on
Zt(R). Then for any S  R we have

PROOF: See Proposition 7.2.1 (p. 122) of [14]; however, it should be noted
that there is a factor 1/n missing in the displayed formula, because of an
incorrect application on p. 127 of the Landau trick of replacing f by fk.
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4. The auxiliary function

Here we shall prove our Theorem when the abelian variety is simple. We
fix arbitrary numbers K, À with

It will suffice to show that if D is sufficiently large and P is a point on
A(Q) with

then P is necessarily a torsion point of order at most D’. This we proceed
to do by constructing a suitable auxiliary function.

For any integer t  1 and any real number E &#x3E; 0 we define exponents

Then we have the inequalities

We put

Further we define the exponent

then

and we take

Finally we put
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so that

We then have from (5)

Henceforth all constants CI’ ... will be positive and they will depend
only on A (and the fixed numbers t, e). Also we shall suppose D is
sufficiently large in terms of these quantities. We start by choosing any u
in Cg such that P = 0398(u). Then we use an idea of Stewart [13] which is
necessary to counteract the analytic growth of the theta functions.

Namely, by Lemma 8 there exists an integer b with 1  b  B and a
period w of Y such that the vector

satisfies

We now observe that for any integer s with 0  s  S we have

which by (10) does not exceed c2. Hence from Lemma 7 we deduce the
inequality

for all integers s with 0  s  S.

LEMMA 11: There exist integers ko, ... , kN of absolute values at most c4
such that the function

satisfies

for all integers s with 0  s  S.



[13]

PROOF: Suppose k is a positive integer such that

for some integer s with 0  s  S. We can find a non-zero complex
number w such that the polynomial

has algebraic coefficients, and then its absolute height H( S )’ is simply the
Weil height H( sbP ) of the point sbP on A(Q). But S( k ) = 0, so S( x ) has
a factor L(x) = x - k. Writing S(x) = L(x)T(x), we have by (2)

Thus by (13) we deduce that k  c3eN. The lemma follows on taking kl as
the least positive integer exceeding c3eN, and k, = ki1 (0  i  N).

Next, the quotients

generate the field of all abelian functions with respect to 2, and without
loss of generality we may suppose that f1(z),...,fg(z) are algebraically
independent over C. By the preceding lemma these are analytic at z = sv
for all integers s with 0  s  S. Furthermore it follows easily from (13)
and the standard estimates (3) that

It is now usual to construct an auxiliary function whose coefficients
involve a basis of the field we are working over. However, it seems that
this would introduce estimates of order c’. We are able to improve upon
this by restricting the coefficients to 7L and using a large number of
variables, by analogy with an idea of Philippon [9].

LEMMA 12: There exists a non-zero polynomial Po of total degree at most L,
whose coefficients are rational integers of absolute values at most Dc6L, such
that the function f(z1, ... , 1 Zt) = P0(z1,..., zt, f1(z1v),...,fg(z1v),...,
f1(ztv),...,fg(ztv)) vanishes on Zt(S0).

PROOF : We have here
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conditions and

unknowns, corresponding to m linear forms in n variables with coeffi-
cients in the field F generated over K by the ratios of the projective
coordinates of P. From (6) we deduce n  2 Dm, and since F has degree
at most D, the basic inequality of Lemma 6 holds with 5=1. Thus it
remains to calculate an upper bound H for the heights of the linear forms
involved. Let (SI’’’. 1 S,) be an element of 7L I(SO)’ Then from (14) and (3)
we find without difficulty that the height of the corresponding linear
form is at most cL9(s1 + I)L ... (St + 1)L. We deduce that H  cL9(2S0)tL 
DClOL, and now the present lemma follows at once from the estimates of
Lemma 6.

LEMMA 13: For any integer s with 0  s  S we have

PROOF: From (14) it follows that

So we get

On the other hand, the lower bound of Lemma 9 shows that the left-hand
side of the above exceeds exp( - C12(1 + |sv|2 )). From (12) we see that

and now the inequality of the lemma follows on appealing to (9).

PROOF: We write

so that
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is an entire function on Ct. Since F vanishes on Zt(S0), Lemma 10 shows
that

Now the upper bound of Lemma 9 together with (12) gives

which by (9) does not exceed Cf6D. Substituting this into (15) and using
(8), we find that for any (s1, ... , st ) in Zt(S) we have

Finally from Lemma 13 we deduce

which leads immediately to the desired estimate for |f(s1,..., st)|, again
using (8).

PROOF: Let 03BE=f(s1,...,st). From (14) and (3) we find easily that

H(03BE)  DC19L. Hence if 03BE ~ 0, we have

Once more using (8), we see that this contradicts the upper bound of
Lemma 14, and so the present lemma follows.
Now the definition of f(z1, ... , zt) together with Lemma 5 for n = g + 1

shows that there exists a non-zero polynomial P * of total degree at most
L such that

for all integers s with 0  s  S. By (7), we have enough zeroes to be able
to apply the Proposition. We deduce that sov is in the period lattice Y for
some integer so with 1  s0  c20L2g+1. Hence, recalling the definition of
v, we see that P = 0398(u) is a torsion point whose order is at most

s0b  c21L2g+1B. By the second inequality of (11) this does not exceed
DÀ. Thus we have completed the proof of the Theorem when A is a

simple abelian variety.
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We start by noting the following simple result. Let A, Ao be abelian
varieties defined over 0 and embedded in (possibly different) projective
spaces, let q, qo be the quadratic parts of the corresponding Néron-Tate
heights, and let d, d0 be the corresponding degree functions.

LEMMA 16: Suppose ~ : A - Ao is a morphism of projective group varieties.
Then there is a constant c, depending only on A, Ao and (p, such that

for all P in A(Q).

PROOF: Let H, Ho denote the absolute Weil heights on A, Ao respectively,
and let d  1 be an integer such that the morphism T can be defined at
each point by homogeneous polynomials of degrees at most d. It is easy
to see (cf. (3)) that there exists a constant C, depending only on A, Ao
and ~, such that H0(~(P))  C(H(P))d for all P in A(O). Then the first
inequality of the lemma follows with c = d by taking logarithms, replac-
ing P by mP, and making m ~ oo . The second inequality is obvious.
Now let A be an arbitrary abelian variety, of dimension g  1, defined

over Q. Let K, À be any real numbers satisfying

We shall prove the Theorem for A with these values of K, À.
It is well-known that we can find k  1 and simple abelian varieties

A1, ... ,Ak, of dimensions g1  1,... ,gk  1 and defined over Q, such that
A is isogenous to A’ = A1 X ... XAk. We suppose A1, ... ,Ak embedded in
suitable projective spaces so that the corresponding quadratic parts
q1, ... , qk of their Néron-Tate heights are well-defined. Let a : A - A’ be
an isogeny defined over Q, and let 03C01,... ,’!Tk be the projections from A’ to
A1, .... ,Ak respectively. Henceforth we use constants C, cl, ... depending
only on A, A1, ... ,Ak and 0, as well as on the choice of K, À. Then by
Lemma 16 applied to the map W, : A ~ Ai given by ~l(P)=03C0l(03C3(P)) we
deduce that

for all P in A(Q). Now let P be a point on A(Q) with d(P)  D and
q(P)  C-1D-K for some D  1 and some sufficiently large constant C.
By Lemma 16 the point Pi = Ti (P) on A, has degree at most Dl  c2 D
(1  i  k ), and therefore we have
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As K &#x3E; 2 g, + 6 + 2 g; (1  i  k ), we deduce from the special case of the
Theorem already proved above that P, is a torsion point on A, of order at
most T,, where

and we choose

Hence a(P) is a torsion point on A’ of order at most

However, we have À,  6g, + (03BB - 6g)/k (1  i  k ), and therefore

So the order of 03C3(P) is at most c6D03BB, and since Q has finite kernel, it

follows that P itself has order at most CDÀ. This completes the proof of
the Theorem.
We note that by using either of the sharper estimates for elliptic curves

mentioned in the introduction the above argument allows 6g to be

replaced by 13g/4 in (16). For we can replace g, + 4 + g-1l by 13g,/4 if
gi  2 and by 1 if gi = 1 (1ik).

_

Finally we prove the Corollary. If P, Q are points on A(O) with
TP = Q for some positive integer T, we have

But if Q is non-torsion, so is P, whence

which gives the first part. The second part is even easier; the order of P
exceeds cT for some c &#x3E; 0 depending only on Q; but on the other hand
the order is at most C(d(P))03BB. This completes the proof of the Corollary.
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