Compositio Mathematica

RAHIM ZAARE-NAHANDI
 Seminormality of certain generic projections

Compositio Mathematica, tome 52, no 2 (1984), p. 245-274
http://www.numdam.org/item?id=CM_1984__52_2_245_0
© Foundation Compositio Mathematica, 1984, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

SEMINORMALITY OF CERTAIN GENERIC PROJECTIONS

Rahim Zaare-Nahandi

1. Introduction

Seminormality of generic projections has been conjectured by some authors, such as E. Bombieri [4], A. Andreotti and P. Holm [1]. The major objective of this paper has been in this direction. Our main result is the following.

Theorem: Let X be a nonsingular projective variety of dimension $r \geqslant 6$ over a field k with $\operatorname{char}(k) \neq 2$, 3. Assume that X is suitably embedded. If $\pi: X \rightarrow \mathbb{P}_{k}^{m}$ is a generic projection where $(3 r-3) / 2 \leqslant m \leqslant 2 r$, then $\pi(X)$ is seminormal.

For real varieties, a similar result has been proved when $3 r / 2 \leqslant m \leqslant 2 r$ by Andreotti and Holm [1, Theorem 25.1]. By completely different methods the result has been proved for complex varieties in the range $(3 r-1) / 2 \leqslant m \leqslant 2 r$ by Adkins, Andreotti and Leahy [28, Corollary 7.5]. The case $m=[(3 r-3) / 2]$ is of particular importance. From the geometric point of view, the difficulty is due to appearance of the two following types of singularities: points with several analytic branches where some of them are non-linear, points of $S_{1}^{(2)}$-type singularity. Our theorem covers this case as well. Adkins has recently proved that generic projections in all range are Lipschitz saturated which is a weaker property than seminormality [29, Theorem 5.1].

Our basic method to check the seminormality of generic projections is Proposition (2.10). At some points we have checked the seminormality directly. A condition on the depth of certain modules which is needed to complete the proof of the main theorem, is proved in the following chapter.

An earlier version of this paper formed part of a Ph.D. thesis, written at the University of Minnesota under the direction of Professor Joel Roberts. I wish to thank him for his encouragement and for many valuable suggestions. The appendix is an unpublished result of Professor Roberts which we have used in this paper several times.

We would like to refer to R. Hartshorne's book of algebraic geometry [8] for the notation and the techniques of modern algebraic geometry, which will be used throughout this paper.

2. Preliminaries and some criteria of seminormality

All rings will be assumed to be commutative with identity. Let A be a ring, let B be an overring of A. The conductor of A in B is $(A: B)=\{a \in$ $A: a B \subseteq A\}$ which is also the annihilator of the A-module B / A. Let K be the total ring of quotients of A. We denote by \bar{A} the integral closure of A in $K .(A: \bar{A})$ is called the conductor of A. We will let $R(A)$ denote the Jacobson radical of A, i.e., $R(A)$ is the intersection of all maximal ideals of A. Let M be an A-module, for $P \in \operatorname{Spec}(A)$, we denote by M_{P} the A_{p}-module $S^{-1} M$, where $S=A-P$. If $m \in M$, we let m_{p} denote the image of m under the canonical homomorphism $M \rightarrow M_{P}$. We also let $k(P)=A_{P} / P A_{P}$.
Definition (2.1): Let $A \subset B$ be an integral extension of rings. We define

$$
\stackrel{+A}{B}=\left\{b \in B \mid b_{P} \in A_{P}+R\left(B_{P}\right), \quad \forall P \in \operatorname{Spec}(A)\right\}
$$

${ }_{B}^{+} A$ is called the seminormalization of A in B and if $A={ }_{B}^{+} A$ we say that ${ }_{A}^{B}$ A is seminormal in B. If B is the integral closure of A (in its total ring of quotients) we set $+A={ }_{B}^{+} A$ and we say that A is seminormal if $A=+A$. $+A$ is called the seminormalization of A.
Remark: Some authors for a ring A to be seminormal, besides the condition $A=+A$, require that A to be a Mori ring [7,1.3]. A Mori ring is a ring which is reduced and its integral closure is a finitely generated A-module. Since algebro-geometric rings are Mori rings [27, Vol. I, page 167, Theorem 9, and Vol. II, page 320, Theorem 31], in dealing with varieties the two definitions will coincide.

We recall Traverso's characterization of the operation of seminormalization.
 containing A such that:
(1) For each $P \in \operatorname{Spec}(A)$, there is exactly one $P^{\prime} \in \operatorname{Spec}\left(A^{\prime}\right)$ lying over P, and
(2) The canonical homomorphism $k(P) \rightarrow k\left(P^{\prime}\right)$ is an isomorphism.

The following version of a result of Greco and Traverso will be used in this paper.

Theorem (2.3): (Greco and Traverso [7, Theorem 2.6].) Let B be a finite
overring of the ring A. Then:
(a) The following are equivalent:
(i) A is seminormal in B;
(ii) A_{P} is seminormal in B_{P} for all $P \in \operatorname{Spec}(A)$;
(iii) A_{m} is seminormal in B_{m} for all maximal ideals m of A;
(iv) A_{p} is seminormal in B_{P} for all $P \in \operatorname{Ass}_{A}(B / A)$.
(b) Consider the condition
(*) * every non-zerodivisor of A is a non-zerodivisor in B.
If (*) holds and A is S_{1} then the conditions (i) to (iv) are equivalent to:
(v) $\operatorname{nil}(B) \subset A$ and A_{P} is seminormal in B_{P} whenever $\operatorname{depth}\left(A_{P}\right)=$ 1.
(c) If $\left({ }^{*}\right)$ holds and A is S_{2} then (i) to (v) are equivalent to:
(vi) nil($B) \subset A$ and A_{P} is seminormal in B_{P} whenever P has height 1.

Remark: The formulation of Greco and Traverso is the same as Theorem (2.3) except that in (b) A is not assumed to be S_{1} and the condition $\operatorname{nil}(B) \subset A$ is not imposed in either (v) or (vi). Under such weaker hypothesis the implications (v) \rightarrow (i) and (vi) \rightarrow (i) are not valid. As a counterexample let $A=k$ be a field, let $B=k[x] /\left(x^{2}\right)$. Then (v) and (vi) are satisfied but A is not seminormal in B because $+A=B$. In the B suggested formulation the proof of the mentioned implications follows from the argument given by Greco and Traverso and the following lemma. Observe that Theorem (2.3) applies when B is the normalization of a Mori ring A.

Lemma (2.4): Let K be a ring of dimension zero, and let R be a finite overring of K. If nil $(R) \subset K$ then K is seminormal in R. (By dimension of a ring we mean its Krull dimension).

Proof: Let $C=+K$. We show that $C_{\text {red }}=K_{\text {red }}$, then since $\operatorname{nil}(C) \subset K$, by [7, Proposition 2.5, (ii) \rightarrow (i)] K is seminormal in C, which is not possible unless $C=K$. If P_{1}, \ldots, P_{n} are the prime ideals of K, then $K_{\text {red }} \cong K_{1} \times \ldots \times K_{n}$ where $K_{t}=K / P_{i}$. As C is the seminormalization of $K, \operatorname{Spec}(C)$ consists of Q_{1}, \ldots, Q_{n} where Q_{t} lies over P_{t}, and since Q_{t} are also maximal ideals of $C, C / Q_{1} \cong K_{1}$. But then $C_{\text {red }} \cong C / Q_{\mathrm{i}} \times$ $\ldots \times C / Q_{n} \cong K_{1} \times \ldots \times K_{n} \cong K_{\text {red }}$.

We will need the following result of Orecchia.

Proposition (2.5): (Orecchia [17, the main result $]$.) Let A be a noetherian reduced ring with minimal primes P_{1}, \ldots, P_{n}. Let $A_{1}=A / P_{1}$, and $I=$ $\left(A: \prod_{i=1}^{n} A_{\imath}\right)$. Assume that the ideals $P_{i}+\bigcap_{1 \neq J \leqslant h} P_{J}(i, h=1, \ldots, n)$ all are
unmixed of common pure height whenever $\bigcap_{1 \neq J \leqslant h} P_{J} \neq \emptyset$. Then the following are equivalent:
(i) A is seminormal in $\prod_{t=1}^{n} A_{i}$;
(ii) I is a radical ideal in A;
(iii) For every associated prime P of I, the Zariski tangent space $\Theta_{X, P}$ of $X=\operatorname{Spec}(A)$ at P is the direct sum of the Zariski tangent spaces $\Theta_{X_{t}, P_{t}}$ of $X_{t}=\operatorname{Spec}\left(A_{t}\right)$ corresponding to the minimal primes P_{t} contained in P.

Note: Observe that we have

$$
\begin{equation*}
I=\bigcap_{t=1}^{n}\left(P_{t}+\bigcap_{J \neq t} P_{J}\right) . \tag{2.5.1}
\end{equation*}
$$

We now recall that if R is a noetherian ring, and M is an R-module, an M-regular sequence (or simply M-sequence) of length n is a sequence a_{1}, \ldots, a_{n} of elements in R such that a_{1} is not a zerodivisor of M, and a_{1} is not a zerodivisor of $M /\left(a_{1}, \ldots, a_{t-1}\right) M$ for $i=2, \ldots, n-1$, and $\left(a_{1}, \ldots, a_{n}\right) . M \neq M$. By depth ${ }_{R}(M)$ we mean the length of a maximum M-regular sequence. Also, $\operatorname{dim}_{R}(M)=\sup \operatorname{dim}(R / P)$, for all $P \in$ Ass $_{R}(M)$.

The following result is well-known (c.f. [2, Lemma 1.4], or for similar result [11, page 103, exercise \#14]).

Lemma (2.6): Let A be a local ring, and let

$$
0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0
$$

be an exact sequence of finite A-modules. Then one of the following statements must hold:
(i) depth $L \geqslant$ depth $M=$ depth N
(ii) depth $M \geqslant$ depth $L=1+$ depth N
(iii) depth $N \geqslant$ depth $L=$ depth M.

We will need the following result of J.P. Serre [23, Chapter IV, Proposition 12].

Proposition (2.7): Let (A, m) be a noetherian local ring, let B be a noetherian ring, and let $\varphi: A \rightarrow B$ be a ring homomorphism. Assume that B is a finite A-module via φ, so that B is semilocal. Then $\operatorname{depth}_{A} M=$ $\operatorname{depth}_{B} M$.

Note: In the formulation of Serre B is local ring. However almost the same proof applies when B is semilocal.

Lemma (2.8): Let R be a Mori ring, let S be the integral closure of R. Assume that S is a Cohen-Macaulay ring. Let C be the conductor of R.

Assume that all minimal prime ideals of C have common height t. If P is a prime ideal of R containing C, and of height h, then $\operatorname{depth}_{R_{P}}\left(R_{p}\right) \leqslant h-t$ +1 .

Proof: Consider the exact sequence of R modules $0 \rightarrow R \rightarrow S \rightarrow S / R \rightarrow$ 0 . This gives an exact sequence of R_{P} modules $0 \rightarrow R_{P} \rightarrow S_{R-P} \rightarrow$ $(S / R)_{R-P} \rightarrow 0$. $\left(S_{R-P}\right.$ means $(R-P)^{-1} . S$, and so on). Let $A=R_{P}$, $B=S_{R-P}$. Since S is a Cohen-Macaulay ring, B is a Cohen-Macaulay ring. Since B is the normalization of A, we have $\operatorname{dim}(B)=\operatorname{dim}(A)=$ height $(P)=h$. Thus $\operatorname{depth}_{B}(B)=\operatorname{dim}(B)=h$. Since R is a Mori ring, S is a finite R-module, and hence B is a finite A-module. Therefore by Proposition (2.7) we have $\operatorname{depth}_{A}(B)=h$. We now show that $\operatorname{depth}_{A}\left((S / R)_{R-P}\right) \leqslant h$. Since $C \subseteq P, P$ contains some minimal prime ideals of C in R. Let Q_{1}, \ldots, Q_{n} be all the minimal prime ideals of C contained in P. By assumption height $\left(Q_{i}\right)=t, i=1, \ldots, n$. Since S is a finite R-module, the conductor of A in B is $C \cdot A$ [27, Vol. I, page 269]. The minimal primes of $C \cdot A$ are $Q_{1} \cdot A, \ldots, Q_{n} \cdot A$. Since $(S / R)_{R-P} \cong$ $\left(S_{R-P}\right) / R_{P}=B / A$, and by definition we have $\operatorname{dim}_{A}(B / A)=\operatorname{dim}\left(A / Q_{\mathrm{i}}\right.$ - A), (Krull dimension), and

$$
\begin{aligned}
\operatorname{dim}\left(A / Q_{\imath} \cdot A\right) & =\operatorname{dim}\left(R_{P} / Q_{\imath} R_{P}\right)=\operatorname{dim}\left(R_{P}\right)-\operatorname{height}\left(Q_{\imath} R_{P}\right) \\
& =\operatorname{height}(P)-\operatorname{height}\left(Q_{\imath}\right)=h-t
\end{aligned}
$$

we obtain that $\operatorname{depth}_{A}\left((S / R)_{R-P}\right) \leqslant \operatorname{dim}_{A}(B / A)=h-t \leqslant h$. Now applying Lemma (2.6) for the exact sequence $0 \rightarrow A \rightarrow B \rightarrow B / A \rightarrow 0$, since $\operatorname{depth}_{A}(B / A) \leqslant \operatorname{depth}_{A}(B)$, we obtain

$$
\begin{aligned}
\operatorname{depth}_{A}(A) & =1+\operatorname{depth}_{A}(B / A) \leqslant 1+\operatorname{dim}_{A}(B / A)=1+h-t \\
& =h-t+1
\end{aligned}
$$

Corollary (2.9): Let X be a nonsingular projective variety of dimension r. Let $\pi: X \rightarrow \mathbb{P}_{k}^{m}, r+1 \leqslant m \leqslant 2 r$, be a generic projection. Let ξ be a general point of $X^{\prime}=\pi(X)$ of height h, which lies on $\operatorname{Sing}\left(X^{\prime}\right)$. Then $\operatorname{depth}\left(\hat{\mathcal{O}}_{X^{\prime}, \xi}\right)$ $\leqslant r+h-m+1$.

Proof: By [18, Theorem 1], $\operatorname{Sing}\left(X^{\prime}\right)$ is equidimensional of dimension $2 r-m$. Thus an application of Lemma (2.8) for $t=r-(2 r-m)=m-r$ implies the desired inequality.

We will impose the condition of being a Mori ring as part of the definition of seminormality of a ring. We recall that a scheme (locally noetherian) is said to be seminormal if it can be covered by affine open
sets whose rings are seminormal. This is equivalent to having all local rings seminormal. Also recall that such local rings are seminormal if and only if their completion are seminormal [12, Theorem 1.20].

Proposition (2.10): Let X^{\prime} be a variety of dimension $r \geqslant 2$. Assume that on each irreducible component of $\operatorname{Sing}\left(X^{\prime}\right)$ there is at least one point y such that $\mathcal{O}_{X^{\prime}, y}$ is seminormal. If for every non-generic point ξ of $\operatorname{Sing}\left(X^{\prime}\right)$ we have $\operatorname{depth}\left(\mathcal{O}_{X^{\prime}, \xi}\right) \geqslant 2$, then X^{\prime} is a seminormal variety.

Proof: By Theorem (2.3) we need to show that $\mathcal{O}_{X^{\prime}, y}$ is seminormal for every closed point $y \in X^{\prime}$. If y is a nonsingular point, then $\mathcal{O}_{X^{\prime} y}$ is a regular local ring. Thus assume that $y \in \operatorname{Sing}\left(X^{\prime}\right)$. Let $A=\mathcal{O}_{X^{\prime}, y}$. Since X^{\prime} is a variety, A is a Mori ring. Thus by Theorem (2.3) it is enough to show that A_{p} is seminormal for all $p \in \operatorname{Spec}(A)$, whenever $\operatorname{depth}\left(A_{p}\right)=1$. In other words, it is enough to show that $\mathcal{O}_{X^{\prime}, \xi}$ is seminormal whenever $\operatorname{depth}\left(\mathcal{O}_{X^{\prime}, \xi}\right)=1$ for every general point ξ on $\operatorname{Sing}\left(X^{\prime}\right)$. By the hypothesis this may happen only whenever ξ is a generic point of $\operatorname{Sing}\left(X^{\prime}\right)$. Each irreducible component of $\operatorname{Sing}\left(X^{\prime}\right)$ contains at least one point y such that $\mathcal{O}_{X^{\prime}, y}$ is seminormal. For any generic point ξ of $\operatorname{Sing}\left(X^{\prime}\right), \mathcal{O}_{x^{\prime}, \xi}$ is a localization of $\mathcal{O}_{X^{\prime}, y}$ for some y such that $\mathcal{O}_{X^{\prime}, y}$ is seminormal. Thus $\mathcal{O}_{X^{\prime}, \xi}$ is seminormal.
Remark: Let $r \geqslant 2$. For generic projections as considered in corollary (2.9), we saw that depth $\left(\mathcal{O}_{X^{\prime}, \xi}\right) \leqslant r+h-m+1$, for every general point ξ of height h which lies on $\operatorname{Sing}\left(X^{\prime}\right)$. For $h=m-r, \xi$ is a generic point of $\operatorname{Sing}\left(X^{\prime}\right)$, and since X^{\prime} is a variety we have depth $\left(\mathcal{O}_{X^{\prime}, \xi}\right)=1$. If ξ is not a generic point of $\operatorname{Sing}\left(X^{\prime}\right)$, then $h \geqslant m-r+1$ and hence $r+h-m+1 \geqslant$ 2. For X^{\prime} to be seminormal, by Proposition (2.10) we require that $\operatorname{depth}\left(\mathcal{O}_{X^{\prime}, \xi}\right) \geqslant 2$ for all such ξ. This condition is weaker than assuming that X^{\prime} is S_{2} variety. We also require that each component of $\operatorname{Sing}\left(X^{\prime}\right)$ contains at least one point y such that $\mathcal{O}_{x^{\prime}, y}$ is seminormal. We will check these conditions for certain generic projections. However we first like to give an example to show that for "less generic" maps, it is possible that there is no point y on $\operatorname{Sing}\left(X^{\prime}\right)$ such that $\mathcal{O}_{x^{\prime}, y}$ is seminormal.
Example (2.11): Let X^{\prime} be the surface given by $f(x, y, z)=3 x^{2} y-y^{3}+$ $\left(x^{2}+y^{2}\right)^{2}=0$ in \mathbb{C}^{3}, and let X be the normalization of X^{\prime}. The singular locus of X^{\prime} is the " z-axis" $\{x=y=0\}$. We claim that on no point P on $\operatorname{Sing}\left(X^{\prime}\right), \mathcal{O}_{X^{\prime}, P}$ is seminormal. It is enough to check the claim for the origin $P=(0,0,0)$, as for any other point Q on $\operatorname{Sing}\left(X^{\prime}\right)$ we have $\mathcal{O}_{X^{\prime}, Q} \cong \mathcal{O}_{X^{\prime}, P}$. Let $A=\hat{\mathcal{O}}_{X^{\prime}, P} \cong \mathbb{C}[[x, y, z]] /(f)$. Since f does not involve z, and the curve given by f in \mathbb{C}^{2} has three simple analytic branchesat the point $(0,0), X^{\prime}$ has three simple analytic branches at P and hence by (2.5.1) the expression of the conductor of A is the same as the expression of the conductor of $\mathbb{C}[[x, y]] /(f)$. It is clear that the curve f is not seminormal (Fig. 2.11.1), hence by Proposition (2.5), the conductor of $\mathbb{C}[[x, y]] /(f)$ is not a radical ideal of $\mathbb{C}[[x, y]] /(f)$. Thus the conductor

Fig. 2.11.1.
of A is not a radical ideal in A and hence A is not seminormal. Also observe that $\operatorname{depth}(A)=2$.

We now prove a partial converse of Proposition (2.10).
Proposition (2.12): Let $X^{\prime} \subseteq \mathbb{P}_{k}^{m}$ be a variety of dimension $r \geqslant 2$, where k is an algebraically closed field. Let $r+1 \leqslant m \leqslant 2 r-1$. Assume that $\operatorname{Sing}\left(X^{\prime}\right)$ is equidimensional of dimension $2 r-m$. If X^{\prime} is seminormal then $\left.\operatorname{depth} \mathcal{O}_{X^{\prime}, y}\right) \geqslant 2$ for every closed point $y \in X^{\prime}$.
Proof: Let $A=\hat{\mathcal{O}}_{X^{\prime}, y}$ and let \mathscr{M} be the maximal ideal of A. Since $\operatorname{depth}\left(\mathcal{O}_{X^{\prime}, y}\right)=\operatorname{depth}(A)$, and A is a complete noetherian local ring, if we show that A has rational normalization (i.e., $A /\left(\mathscr{M}_{1} \cap A\right) \cong B / \mathscr{M}_{1}$ for every maximal ideal \mathscr{M}_{1} of B), and $\operatorname{Spec}(A)-\{\mathscr{M}\}$ is connected, then by a recent result of M . Vitulli [25, Proposition 3.4] we will have $\operatorname{depth}\left(\mathcal{O}_{X^{\prime}, y}\right) \geqslant 2$. If B is the normalization of A, and \mathscr{M}_{1} is a maximal ideal of B, then \mathscr{M}_{1} lies over \mathscr{M} and B / \mathscr{M}_{1} is a finite extension of $A / \mathscr{M}=k$. Since k is algebraically closed, $B / \mathscr{M}_{1}=k$, thus A has rational normalization. To show that $\operatorname{Spec}(A)-\{\mathscr{M}\}$ is connected, we use a result of R. Hartshorne [9, Proposition 1.1). Let $A=k\left[\left[t_{1}, \ldots, t_{m}\right]\right] / P_{1} \cap$ $\ldots \cap P_{n}$ for some integer n. It is well-known that the prime ideals P_{1}, \ldots, P_{n} all have height $m-r$. (For example this follows from more general results in [15]. Because $\mathcal{O}_{X^{\prime}, y}$ is dominated by A in the sense of [15, page 14], and hence the theorem of transition [15, page 64, (19.1)] holds for $\mathcal{O}_{X^{\prime}, y}$ and A, and therefore by [15, page 75 , (22.9)], the extension of the zero ideal of $\mathcal{O}_{X^{\prime}, y}$ in A is equidimensional of dimension r). Let $V_{i}=\operatorname{Spec}\left(A / P_{\mathrm{i}}\right), i=1, \ldots, n$. These are the irreducible components of $V=\operatorname{Spec}(A)$. Since $\operatorname{codim}(\{\mathscr{M}\}, V)=r>r-1$, we need to show that $\operatorname{codim}\left(V_{i} \cap V_{J}, V\right) \leqslant r-1$ for $i, j=1, \ldots, n$ and $i \neq j$. This is equivalent to prove that $\sqrt{P_{i}+P_{j}} \neq \mathscr{M}$ for all $i \neq j$. But since $a=k\left[\left[t_{1}, \ldots, t_{m}\right]\right] / P_{1} \cap$ $\ldots \cap P_{n}$ and $k\left[\left[t_{1}, \ldots, t_{m}\right]\right]$ is a regular local ring, by a result of J.P. Serre [23, ch. V, Theorem 3] if Q is any minimal prime ideal over $P_{t}+P_{J}$, we have

$$
\operatorname{height}(Q) \leqslant \operatorname{height}\left(P_{t}\right)+\operatorname{height}\left(P_{J}\right)=2(m-r)
$$

Since $m<2 r, 2 m-2 r<m$ and hence Q is not a maximal ideal of $k\left[\left[t_{1}, \ldots, t_{m}\right]\right]$. Therefore $\operatorname{Spec}(A)-\{\mathscr{M}\}$ is connected.

Corollary (2.13): Let X be a nonsingular variety of dimension $r \geqslant 2$, and let $\pi: X \rightarrow X^{\prime} \subset \mathbb{P}_{k}^{2 r-1}$ be a finite birational morphism of varieties such that $\operatorname{Sing}\left(X^{\prime}\right)$ is equidimensional of dimension one. Then X^{\prime} is seminormal if and only if each irreducible component of $\operatorname{Sing}\left(X^{\prime}\right)$ contains at least one point y such that $\mathcal{O}_{X^{\prime}, y}$ is seminormal, and for every closed point $z \in \operatorname{Sing}\left(X^{\prime}\right)$ we have $\operatorname{depth}\left(\mathcal{O}_{X^{\prime}, z}\right)=2$.

Proof: By Lemma (2.8), depth $\left(\mathcal{O}_{X^{\prime}, z}\right) \leqslant r-(r-1)+1=2$. Thus the corollary follows from propositions (2.10) and (2.12).

Proposition (2.14): Let $X \subset \mathbb{P}_{k}^{n}$ be a nonsingular variety of dimension r, embedded properly. Let $\pi: X \rightarrow \mathbb{P}^{m}$ be a generic projection, $m=2 r$ or $m=2 r-1$. Then $X^{\prime}=\pi(X)$ is a seminormal variety.

Proof: For $m=2 r$, by [18, theorem 2], $\operatorname{Sing}\left(X^{\prime}\right)$ consists of finitely many points, and if $y \in \operatorname{Sing}\left(X^{\prime}\right)$, then $\hat{\mathcal{O}}_{X^{\prime}, y} \cong k\left[\left[t_{1}, \ldots, t_{2 r}\right]\right] / I$, where $I=\left(t_{1}, \ldots, t_{r}\right) \cap\left(t_{r+1}, \ldots, t_{2 r}\right)$. Observe that here $\operatorname{depth}\left(\hat{\mathcal{O}}_{X^{\prime}, y}\right)=1$. However $\hat{\mathcal{O}}_{X^{\prime}, y}$ is seminormal by Proposition (2.5), because the conductor is $\left(t_{1}, \ldots, t_{2 r}\right) / I$ which is a prime ideal of $\hat{\mathcal{O}}_{X^{\prime}, y}$. For $m=2 r-1$ if $r=2$, then $2 r-1=r+1$ and this case is proved by Bombieri [4]. Thus assume that $r \geqslant 3$. By [18, Theorem 3], Sing (X^{\prime}) is purely of dimension 1, and for all closed points on a dense open subset of $\operatorname{Sing}\left(X^{\prime}\right)$, we have $\hat{\mathcal{O}}_{X^{\prime}, y} \equiv$ $k\left[\left[t_{1}, \ldots, t_{2 r-1}\right]\right] / I$, where $I=\left(t_{1}, \ldots, t_{r-1}\right) \cap\left(t_{r}, \ldots, t_{2 r-\mathrm{r}}\right)$. The latter ring is seminormal again by Proposition (2.5). By Proposition (2.10) to prove the seminormality of X^{\prime} we only need to show that for the remaining points on $\operatorname{Sing}\left(X^{\prime}\right)$, we have depth $\left(\mathcal{O}_{X^{\prime}, y}\right) \geqslant 2$. For these points if $\operatorname{char}(k)$ $\neq 2$, then $\hat{\mathcal{O}}_{X^{\prime}, y} \cong k\left[\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}, \ldots, t_{r-1} t_{r}, t_{r}^{2}\right]\right]$, and if $\operatorname{char}(k)=2$, then $\hat{\mathcal{O}}_{X^{\prime}, y}=k\left[\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}, \ldots, t_{r-1} t_{r}, t_{r}^{2}+t_{r}^{3}\right]\right]$. We will show that $\operatorname{depth}\left(\hat{\mathcal{O}}_{X^{\prime}, y}\right) \geqslant 2$ by computing \mathscr{C} the conductor of $\hat{\mathcal{O}}_{X^{\prime}, y^{\prime}}$.

Char $(k) \neq 2$. Let $A=k\left[\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}, \ldots, t_{r-1} t_{r}, t_{r}^{2}\right]\right]$. The normalization of A is $B=k\left[\left[t_{1}, \ldots, t_{r}\right]\right]$. Let $A_{0}=k\left[\left[t_{1}, \ldots, t_{r-1}, t_{r}^{2}\right]\right]$ and let m be the maximal ideal of A_{0}. Since B is a finite A_{0}-module and $B / m \cdot B$ is generated by $\overline{1}$ and \bar{t}_{r} as a k-vector space, by Nakayama's lemma B is generated by $1, t_{r}$ as an A_{0}-module. The prime ideal $\left(t_{1}, \ldots, t_{r-1}\right) \cdot B$ is contained in the conductor because if $g+h t_{r}$ is any element of B, where $g, h \in A_{0}$, then $t_{1}\left(g+h t_{r}\right)=g t_{1}+h t_{1} t_{r} \in A$, for all $i=1, \ldots, r-1$. On the other hand since $\operatorname{dim}\left(\operatorname{Sing}\left(X^{\prime}\right)\right)=1$ and X is nonsingular, \mathscr{C} has height $r-1$. Therefore $\mathscr{C}=\left(t_{1}, \ldots, t_{r-1}\right) \cdot B$. Now we consider the exact sequence of A-modules $0 \rightarrow A \rightarrow B \rightarrow B / A \rightarrow 0$. If we show that $\operatorname{depth}_{A}(B / A) \geqslant 1$, by Corollary (2.9) and part (ii) of Lemma (2.6) we have $\operatorname{depth}(A) \geqslant 2$. We claim athat t_{r}^{2} is a non-zerodivisor of B / A. let $f=g+h t_{r} \in B-A, g, h \in A_{0}$. Then $h \notin \mathscr{C}$ because otherwise $f \in A$. As-
sume that $f t_{r}^{2} \in A$, then $g t_{r}^{2}+h t_{r}^{2} t_{r} \in A$, thus $h t_{r}^{2} t_{r} \in A$. Since $h t_{r}^{2} \in A$, we have $h t_{r}^{2} \in \mathscr{C}$. But $h \notin \mathscr{C}$ and \mathscr{C} is a prime ideal of B, therefore $t_{r} \in \mathscr{C}$. This is a contradiction.

Char $(k)=2$. Let $A=\mathrm{k}\left[\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{\mathrm{r}}, \ldots, t_{r-1} t_{r}, t_{r}^{2}+t_{r}^{3}\right]\right]$ and $A_{0}=$ $k\left[\left[t_{1}, \ldots, t_{r-1}, t_{r}^{2}+t_{r}^{3}\right]\right]$. Again the normalization of A is $B=k\left[\left[t_{1}, \ldots, t_{r}\right]\right]$. By the same argument as above B is generated by $1, t_{r}$ as an A_{0}-module, and $\mathscr{C}=\left(t_{1}, \ldots, t_{r-1}\right) . t_{r}^{2}+t_{r}^{3}$ is a non-zerodivisor of B / A, because if $f=g+h t_{r}, g, h \in A_{0}, h \notin \mathscr{C}$ and $f\left(t_{r}^{2}+t_{r}^{3}\right) \in A$, then $h\left(t_{r}^{2}+t_{r}^{3}\right) t_{r} \in \mathscr{C}$, thus $\left(1+t_{r}\right) h t_{r}^{3} \in \mathscr{C}$, hence $h t_{r}^{3} \in \mathscr{C},(\mathscr{C}$ as an ideal of $B)$, therefore $t_{r} \in \mathscr{C}$, which is a contradiction.

3. Seminormality of some strongly generic projections

In this chapter we will examine seminormality through the theory of singularity subschemes. For basic properties of singularity subschemes we refer to [21]. Let $f: X \rightarrow Y$ be a morphism of nonsingular varieties over a field, with $\operatorname{dim}(X)=r, \operatorname{dim}(Y)=m$. Let x be a closed point of X and $y=f(x)$. For $i \geqslant 0$, the first order singularity subscheme of $f, S_{l}(f)$, is defined by $(i-1)$-st Fitting ideal of $\Omega_{X / Y}^{1}$, where $\Omega_{X / Y}^{1}$ is the sheaf of relative Kähler differentials of X over $Y . S_{t}(f)$ is a closed subscheme of X such that $x \in S,(f)$ if and only if $\operatorname{dim}_{k(x)}\left(\Omega_{X / Y}^{1}(x)\right) \geqslant i$. If k is algebraically closed and x is a closed point of X, then $x \in S_{l}(f)$ if and only if the linear map of Zariski tangent spaces $\Theta_{X, x} \rightarrow \Theta_{Y, f(x)}$ has rank $\leqslant r-i$, where $r=\operatorname{dim}_{k}\left(\Theta_{X, x}\right)$. The higher order singularity subscheme $S_{1}^{(q)}(f) \subset X-S_{2}(f)$ is defined by the q-th Fitting ideal of \mathcal{O}_{X}-algebra of q-th order relative principal parts corresponding to f. Then $S_{1}^{(0)}(f)=X$ $-S_{2}(f)$. For $q \geqslant 1$ if k is algebraically closed, and if x is a closed point of X, then $x \in S_{1}^{(q)}(f)$ if and only if:
(i) $\operatorname{dim}_{k}\left[m_{x} /\left(f^{\#}\left(m_{y}\right) \cdot \mathcal{O}_{x}+m_{x}^{2}\right)\right]=1$, and
(ii) $\operatorname{dim}_{k}\left[\mathcal{O}_{x} / f^{\#}\left(m_{y}\right) \cdot \mathcal{O}_{x}\right] \geqslant q+1$,
where $\left(\mathcal{O}_{x}, m_{x}\right)=\mathcal{O}_{X, x},\left(\mathcal{O}_{y}, m_{y}\right)=\mathcal{O}_{Y, y}$ and $f^{\#}: \mathcal{O}_{y} \rightarrow \mathcal{O}_{x}$ is induced by f.
For $d \geqslant 1$, let $\Sigma_{d}(f) \subset X \times{ }_{Y} \ldots \times_{Y} X$ (d-fold fibre product) be the complement of the union of all diagonals. If q_{1}, \ldots, q_{d} are non-negative integers, we regard $S_{1}^{\left(q_{1}\right)}(f) \times{ }_{Y} \ldots \times{ }_{Y} S_{1}^{\left(q_{d}\right)}(f)$ as a subscheme of X $\times_{Y} \ldots \times_{Y} X$. Then by definition

$$
\Sigma_{d}\left(f ; q_{1}, \ldots, q_{d}\right)=\Sigma_{d}(f) \cap\left(S_{1}^{\left(q_{1}\right)}(f) \times{ }_{Y} \ldots{ }_{Y} S_{1}^{\left(q_{d}\right)}(f)\right) .
$$

On can regard $\Sigma_{d}\left(f ; q_{1}, \ldots, q_{d}\right)$ as consisting of all d-tuples $\left(x_{1}, \ldots, x_{d}\right)$ of distinct closed points of X such that (a) $x_{j} \in S_{1}^{\left(q_{j}\right)}(f), j=1, \ldots, d$, and (b) $f\left(x_{1}\right)=\ldots=f\left(x_{d}\right)$.

By [21, Theorem A], if X is a nonsingular projective variety of dimension r, and $r+1 \leqslant m \leqslant 2 r$, then there is an embedding $X \subseteq \mathbb{P}_{k}^{n}$ for some n such that if $\pi: X \rightarrow \mathbb{P}_{k}^{m}$ is a generic projection, then $\Sigma_{d}\left(\pi ; q_{1}, \ldots, q_{d}\right)$ is either empty or of pure dimension $l=d r-(d-1) m$
$-(m-r+1) \sum_{j=1}^{d} q_{j}$. If $\operatorname{char}(k)+\left(q_{j}+1\right)$ for all j, and if π is "strongly" generic, then $\Sigma_{d}\left(\pi ; q_{1}, \ldots, q_{d}\right)$ is nonsingular too. By [21, Theorem 12.1] if $x_{J} \in S_{1}^{\left(\mathrm{q}_{j}\right)}(\pi)-\mathrm{S}_{1}^{\left(q_{j}+1\right)}(\pi), j=1, \ldots, d$, and if $X^{\prime}=\pi(X), y=f\left(x_{j}\right)$, $j=1, \ldots, d$, then identifying $\hat{\mathcal{O}}_{X, x}$ by $k\left[\left[t_{1}, \ldots, t_{r}\right]\right]$ and $\hat{\mathcal{O}}_{\mathrm{P}^{m}}$ by $k\left[\left[u_{1}, \ldots, u_{m}\right]\right]$, the induced map $\hat{\mathcal{O}}_{\mathbb{P}^{m}, y}^{X, x,} \rightarrow \prod_{j=1}^{d} \hat{\mathcal{O}}_{X, x}$, will be identified by $g=\left(g_{1}, \ldots, g_{d}\right)$, where $g_{j}: k\left[\left[u_{1}, \ldots, u_{m}\right]\right] \rightarrow k\left[\left[t_{1}, \ldots, t_{r}\right]\right], j=1, \ldots, d$ are defined as

$$
\left\{\begin{array}{l}
g_{J}\left(u_{t}\right)=t_{t}, \quad i=1, \ldots, r-1 \tag{3.0.1}\\
g_{\jmath}\left(u_{r}\right)=t_{r}^{q+1}+\sum_{\nu=1}^{q-1} t_{q(m-r)+\nu} t_{r}^{\nu} \\
g_{J}\left(u_{r+\prime}\right)=\sum_{\nu=1}^{q} t_{q(t-1)+\nu} t_{r}^{\nu}, \quad i=1, \ldots, m-r
\end{array}\right.
$$

This gives the canonical form of $\hat{\mathcal{O}}_{X^{\prime}, y}$ for those points y such that if $y=\pi(x)$, then $x \notin S_{2}(\pi)$. By [21, Corollary 7.5] for generic projections $S_{2}(\pi)$ is either empty or of pure codimension $2(m-r+2)$ in X. We will consider those values of m for which $S_{2}(\pi)$ is empty, namely $m>(3 r-$ $4) / 2$. For r even we get $m \geqslant(3 r-2) / 2$, for r odd we get $m \geqslant(3 r-3) / 2$.

For $m=r+1$ the assertion is proved by Greco and Traverso when $\operatorname{char}(k)=0$ [7, Theorem 3.7]. The inequalities $m \geqslant r+2$ and $m>(3 r-$ 4)/2 are admissible for $r \geqslant 6$. So we will always assume that $r \geqslant 6$ and $m>(3 r-4) / 2$.

Observe that by [21, Corollary 1.2] for $q \geqslant 0$, and for strongly generic projections $S_{1}^{(q)}(\pi)$ is either empty or of pure codimension $q(m-r+$ 1), and if $\operatorname{char}(k)+(q+1), S_{1}^{(q)}(\pi)$ is smooth. If r is even and $m \geqslant(3 r-$ $2) / 2$, then $q(m-r+1) \geqslant(q r) / 2$. Thus if $q \geqslant 3, S_{1}^{(q)}(\pi)=\emptyset$. If r is odd and $m \geqslant(3 r-3) / 2$, then $q(m-r+1) \geqslant q(r-1) / 2$. hence for $q \geqslant 3$ again $S_{1}^{(q)}(\pi)=\varnothing$. Therefore in the range $(3 r-4) / 2<m \leqslant 2 r$, we will only deal with $S_{1}^{(1)}(\pi)$ and $S_{1}^{(2)}(\pi)$. We also will always assume that $\operatorname{char}(k) \neq 2,3$ so that these subschemes are smooth.

Also observe that since $S_{2}(\pi)=\varnothing, S_{1}^{(1)}(\pi)=S_{1}(\pi)$ and hence if $x \in X$ $-S_{1}^{(1)}(\pi)$, the map of Zariski tangent spaces $\Theta_{X, x} \rightarrow \Theta_{\mathbb{P}^{m}, y}$ has rank r, where $y=\pi(x)$. Therefore if $X^{\prime}=\pi(X)$ is analytically irreducible at y, we have $\mathcal{O}_{X, x} \cong \mathcal{O}_{X^{\prime}, y}$.

We will need the following proposition.

Proposition (3.1): Let A be a Mori ring. Then A is seminormal if and only if $A[x]$ is seminormal.

Proof: By a result of Traverso [24, Theorem 3.6], a ring B is seminormal if and only if the canonical homomorphism $\operatorname{Pic}(B) \rightarrow \operatorname{Pic}(B[T])$ is an isomorphism for any finite set of in determinants T, where $\operatorname{Pic}(B)$ is the group of isomorphism classes of invertible sheaves on $\operatorname{Spec}(B)$ under the operation \otimes. (cf. [8, page 143]). Also recall that a Mori ring B is
seminormal if $b \in \bar{B}, b^{2}, b^{3} \in B$, then $b \in B$, where \bar{B} is the normalization of B [12, Proposition 1.4]. Let A be seminormal. Consider the following commutative diagram:

f and g are isomorphisms, thus h is an isomorphism and hence $A[x]$ is seminormal. Conversely assume that $A[x]$ is seminormal. Observe that the normalization of $A[x]$ is $\bar{A}[x]$, where \bar{A} is the normalization of A. Let $b \in \bar{A}$ and $b^{2}, b^{3} \in A$. Then $b \in A[x]$ and hence $b \in A$. Therefore A is seminormal.

Theorem (3.2): Let X be a nonsingular projective variety of dimension r, $r \geqslant 6$, embedded appropriately. Then strongly generic projections $\pi: X \rightarrow \mathbb{P}_{k}^{m}$ are seminormal for all $m,(3 r-3) / 2 \leqslant m \leqslant 2 r$.

Proof: For $m=2 r$ and $m=2 r-1$ we have already proved this in fact with no restriction on $\operatorname{char}(k)$ or r. Thus we assume that $m \leqslant 2 r-2$. We will divide the proof of this theorem into four cases. Case $1 ; m \geqslant 3 r / 2$. Case 2; r odd, $m=(3 r-1) / 2$. Case 3; r even, $m=(3 r-2) / 2$. Case 4; r odd, $m=(3 r-3) / 2$.

Case 1. $m \geqslant 3 r / 2$. Let $l=\operatorname{dim} \Sigma_{d}\left(\pi ; q_{1}, \ldots, q_{d}\right)$. If $\Sigma_{j=1}^{d} q_{\mathrm{j}} \geqslant 1$, then

$$
\begin{aligned}
l & =d r-(d-1) m-(m-r+1) \sum_{j+1}^{d} q_{J} \\
& \leqslant d r-(d-1)(3 r / 2)-(r+2) / 2=(r / 2)(2-d)-1
\end{aligned}
$$

Thus for $d \geqslant 2, \Sigma_{d}\left(\pi ; q_{1}, \ldots, q_{d}\right)=\varnothing$. Therefore by the fact that the number of analytic branches at a point $y \in X^{\prime}=\pi(X)$ and the number of points as $x \in X$ such that $\pi(x)=y$ are equal [16, Theorem 1], X^{\prime} is analytically irreducible at every point $x \in S_{1}^{(q)}(\pi), q \geqslant 1$. Since

$$
\operatorname{codim}\left(S_{1}^{(q)}(\pi)\right)=q(m-r+1) \geqslant q(r+2) / 2 .
$$

$S_{1}^{(2)}(\pi)=\varnothing$ and $\operatorname{dim}\left(S_{1}^{(1)}(\pi)\right)=(r-2) / 2$. We will apply Proposition (2.10). By [18, Theorem 1], every irreducible component of $\operatorname{Sing}\left(X^{\prime}\right)$ contains a dense open subset such that on this set $\hat{\mathcal{O}}_{X^{\prime}, y} \cong k\left[\left[u_{1}, \ldots, u_{m}\right]\right] / I$, where $I=\left(u_{1}, \ldots, u_{m-r}\right) \cap\left(u_{m-r+1}, \ldots, u_{2(m-r)}\right)$. Thus $\hat{\mathcal{O}}_{X^{\prime}, y}$ is seminor-
mal by Proposition (2.5). Let $x \in S_{1}^{(1)}(\pi)$ and $y=\pi(x)$, and let $A=\hat{\mathcal{O}}_{X^{\prime}, y}$. By (3.0.1) we have

$$
A \cong k\left[\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}, \ldots, t_{m-r} t_{r}, t_{r}^{2}\right]\right]
$$

Let $B=K\left[\left[t_{1}, \ldots, t_{r}\right]\right]$. Since by [18, Theorem 1] $\operatorname{Sing}\left(X^{\prime}\right)$ has pure codimension $m-r$ in X^{\prime}, and X is nonsingular, the conductor of A is $\mathscr{C}=\left(t_{1}, \ldots, t_{m-r}\right) \cdot B$. Thus by similar method as in Proposition (2.14), we have $\operatorname{depth}(A) \geqslant 2$. Thus X^{\prime} is seminormal by Proposition (2.10).

Case 2. r odd, $m=(3 r-1) / 2$. If $\sum_{j=1}^{d} q_{J} \geqslant 1$, then

$$
l \leqslant d r-(d-1)(3 r-1) / 2-(r+1) / 2=(r-1)(2-d) / 2
$$

Hence $\Sigma_{d}\left(\pi ; q_{1}, \ldots, q_{d}\right)=\emptyset$ for $d \geqslant 3$. For $d=2, l=\left[1-\left(q_{1}+q_{2}\right)\right](r+$ $1) / 2$, which is negative if $q_{1}+q_{2} \geqslant 2$. If $q_{1}+q_{2}=1$, then $l=0$, i.e., there are only finitely many points as y on X^{\prime} such that X^{\prime} has two analytic branches at y, and if $\pi^{-1}(y)=\left\{x_{1}, x_{2}\right\}$, then $x_{1} \in S_{1}^{(1)}(\pi)-S_{1}^{(2)}(\pi)$ and $x_{2} \in X-S_{1}^{(1)}(\pi)$. By (3.0.1) this means that one of the two analytic branches is simple and another has an ordinary pinch point. Both of these branches are seminormal. If $q_{1}=q_{2}=0$, then $l=(r+1) / 2$. We will directly prove that $\mathcal{O}_{X^{\prime}, y}$ is seminormal for such closed points $y \in X^{\prime}$ by using Proposition (2.5). Let $q_{1}=1, q_{2}=0$. The integral closure of $\hat{\mathcal{O}}_{X^{\prime}, y}$ is
 $\left(g_{1}, g_{2}\right): \hat{\mathcal{O}}_{\mathbb{P}^{m}, y} \rightarrow \hat{\mathcal{O}}_{X, x_{1}} \times \hat{\mathcal{O}}_{X, x_{2}}$ is the map given in (3.0.1), then $\hat{\mathcal{O}}_{X^{\prime}, y} \cong$ $k\left[\left[u_{1}, \ldots, u_{m}\right]\right] /\left(\operatorname{Ker}\left(g_{1}\right) \cap \operatorname{Ker}\left(g_{2}\right)\right)$. By [21, Theorem 12.1], g_{1} and g_{2} are defined by:

$$
\begin{aligned}
& \begin{cases}g_{1}\left(u_{t}\right)=t_{t}, & i=1, \ldots, r-1 \\
g_{1}\left(u_{r}\right)=t_{r}^{2} \\
g_{1}\left(u_{r+1}\right)=t_{t} t_{r}, & i=1, \ldots, m-r\end{cases} \\
& \begin{cases}g_{2}\left(u_{t}\right)=t_{t}, & i=1, \ldots, m-r \\
g_{2}\left(u_{r+1}\right)=t_{m-r+1+t}, & i=0, \ldots, m-r \\
g_{2}\left(u_{t}\right)=0, & i=m-r+1, \ldots, r-1\end{cases}
\end{aligned}
$$

Let $P_{1}=\operatorname{Ker}\left(g_{1}\right), P_{2}=\operatorname{Ker}\left(g_{2}\right)$. By the appendix P_{1} is a prime ideal of $k\left[\left[u_{1}, \ldots, u_{m}\right]\right]$ generated by certain elements which only involve $u_{1}, \ldots, u_{m-r}, u_{r}, u_{r+1}, \ldots, u_{m}$. Clearly $P_{2}=\left(u_{m-r+1}, \ldots, u_{r-1}\right)$. This would imply that $P_{1}+P_{2}$ is a prime ideal of $k\left[\left[u_{1}, \ldots, u_{m}\right]\right]$. If $a b \in P_{1}+P_{2}$, we can write $a=a_{1}+a_{2}$ and $b=b_{1}+b_{2}$ where a_{1}, b_{1} do not have any term involving $u_{m-r+1}, \ldots, u_{r-1}$ and $a_{2}, b_{2} \in P_{2}$. Thus $a b \in P_{1}+P_{2}$ implies that $a_{1} b_{1} \in P_{1}+P_{2}$. But $a_{1} b_{1}$ does not have any term involving $u_{m-r+1}, \ldots, u_{r-1}$, thus $a_{1} b_{1} \in P_{1}$ and hence $a_{1} \in P_{1}$ or $b_{1} \in P_{1}$. Therefore
$a \in P_{1}+P_{2}$ or $b \in P_{1}+P_{2}$. Therefore the conductor $\mathscr{C}=\left(P_{1}+P_{2}\right) /\left(P_{1}\right.$ $\left.\cap P_{2}\right)$ is a prime ideal of $\hat{\mathcal{O}}_{X^{\prime}, y}$. Since $k\left[\left[u_{1}, \ldots, u_{m}\right]\right] / P_{1}$ is seminormal by case 1 and $k\left[\left[u_{1}, \ldots, u_{m}\right]\right] / P_{2}$ is a regular local ring, $\hat{\mathcal{O}}_{X^{\prime}, y}$ is seminormal by Proposition (2.5). If $q_{1}=q_{2}=0$, then again by [21, Theorem 12.1], $g=\left(g_{1}, g_{2}\right)$ will be defined as

$$
\begin{aligned}
& \begin{cases}g_{1}\left(u_{t}\right)=t_{t}, & i=1, \ldots, r \\
g_{1}\left(u_{t}\right)=0, & i=r+1, \ldots, m .\end{cases} \\
& \begin{cases}g_{2}\left(u_{t}\right)=0, & i=1, \ldots, m-r \\
g_{2}\left(u_{m-r+t}\right)=t_{t}, & i=1, \ldots, r .\end{cases}
\end{aligned}
$$

Thus $\hat{\mathcal{O}}_{X^{\prime}, y} \cong k\left[\left[u_{1}, \ldots, u_{m}\right]\right] / I$ where $I=\left(u_{1}, \ldots, u_{m-r}\right) \cap\left(u_{r+1}, \ldots, u_{m}\right)$. Since $m-r=(r-1) / 2<r+1, \hat{\mathcal{O}}_{X^{\prime} . y}$ is seminormal by Proposition (2.5). For $d=1$, since $\operatorname{codim}\left(S_{1}^{(2)}(\pi)\right)=2(m-r+1) \geqslant r+1$, we have $S_{1}^{(2)}(\pi)$ $=\varnothing$. If $y=\pi(x)$ and $x \in S_{1}^{(1)}(\pi)$, then $\hat{\mathcal{O}}_{X^{\prime}, y}$ is seminormal again as in case 1. If $x \in X-S_{1}^{(1)}(\pi)$, then $\hat{\mathcal{O}}_{X^{\prime}, y}$ is a regular local ring and hence is seminormal. Therefore X^{\prime} is a seminormal variety.

Case 3. r even, $m=(3 r-2) / 2$. If $\sum_{j=1}^{d} q_{j} \geqslant 1$, then $l \leqslant d r-(d-1)$ $(3 r-2) / 2-r / 2=[(r-2)(2-d) / 2]+1$. Thus if $d \geqslant 3$, then $\Sigma_{d}\left(\pi ; q_{1}, \ldots, q_{d}\right)=\varnothing$. Let $d=2$, then $l=(r / 2)+1-r\left(q_{1}+q_{2}\right) / 2=r$ $\left[1-\left(q_{1}+q_{2}\right)\right]+1$ which is negative if $q_{1}+q_{2} \geqslant 2$. Let $q_{1}+q_{2}=1$, then $l=1$. Thus $\Sigma_{2}(\pi ; 1,0)$ is one dimensional, and if $\left(x_{1}, x_{2}\right) \in \Sigma_{2}(\pi ; 1,0)$ and $y=\pi\left(x_{1}\right)=\pi\left(x_{2}\right)$, then $\hat{\mathcal{O}}_{x^{\prime}, y}$ is seminormal. To see this observe that with similar notation as previous cases, here g_{2} will be defined as

$$
\begin{cases}g_{2}\left(u_{t}\right)=t_{\imath}, & i=1, \ldots, m-r+1 \\ g_{2}\left(u_{r+t}\right)=t_{m-r+2+\iota}, & i=0, \ldots, m-r \\ g_{2}\left(u_{t}\right)=0, & i=m-r+2, \ldots, r-1\end{cases}
$$

Thus $P_{2}=\left(u_{m-r+1}, \ldots, u_{r-1}\right)$. The rest of the proof of $\hat{\mathcal{O}}_{X^{\prime}, y}$ being seminormal is the same as the proof of similar part in case 2 considering only this change in P_{2}. If $q_{1}=q_{2}=0$ by the same proof as in case $2, \hat{\mathcal{O}}_{X^{\prime}, y}$ is seminormal. Now assume that $d=1$. If $y=\pi(x)$ and $x \in S_{1}^{(1)}(\pi), \hat{\mathcal{O}}_{X^{\prime}, y}$ is seminormal as before. However in this case $\operatorname{dim}\left(S_{1}^{(2)}(\pi)\right)=r-2(m-r+$ $1)=0$. Thus there are finitely many points as y on X^{\prime} such that if $y=\pi(x), x \in S_{1}^{(2)}(\pi)$. Since we have proved that $\hat{\mathcal{O}}_{x^{\prime}, y}$ is seminormal for all closed points $y \in X^{\prime}$ except for points y such that $x=\pi^{-1}(y) \in S_{1}^{(2)}(\pi)$, and since any localization of a seminormal ring is seminormal, all local rings $\mathcal{O}_{X^{\prime}, \xi}$ are seminormal, where ξ is any general point of X^{\prime} except these closed points y. Thus by Theorem (2.3) and Proposition (2.12) X^{\prime} is seminormal if and only if $\operatorname{depth}\left(\hat{\mathcal{O}}_{X^{\prime}, y}\right) \geqslant 2$ for these finitely many points.

By (3.0.1) we have

$$
\hat{\mathcal{O}}_{X^{\prime}, y} \equiv k\left[\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}+t_{2} t_{r}^{2}, \ldots, t_{r-3} t_{r}+t_{r-2} t_{r}^{2}, t_{r-1} t_{r}+t_{r}^{3}\right]\right] .
$$

By Corollary (2.9) the statement (ii) of Lemma (2.6) holds for the corresponding exact sequence of modules, so it is enough to show that

$$
\operatorname{depth}_{\hat{\mathscr{O}}_{X^{\prime}, y}}\left(k\left[\left[t_{1}, \ldots, t_{r}\right]\right] / \hat{\mathcal{O}}_{X^{\prime}, y}\right) \geqslant 1 .
$$

Let $A=k\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}+t_{2} t_{r}^{2}, \ldots, t_{r-1} t_{r}+t_{r}^{3}\right]$ and $B=k\left[t_{1}, \ldots, t_{r}\right]$. We need to show that $\operatorname{depth}_{A}(B / A) \geqslant 1$. This is a very delicate work to do and requires more information about the structure of A. In Chapter 4 we will set up the required machinery of the theory of double point schemes to compute the conductor of A and then using this together with some more finer constructions we will prove that $\operatorname{depth}_{A}(B / A) \geqslant 1$. Therefore X^{\prime} again would be seminormal. This in particular would imply that the local ring $k\left[\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}+t_{2} t_{r}^{2}, \ldots, t_{r-1} t_{r}+t_{r}^{3}\right]\right]$ is seminormal.

Case 4. r odd, $m=(3 r-3) / 2$. We will discuss this in two subcases $r \geqslant 9$ and $r=7$.
(a). $r \geqslant 9$. If $\sum_{j=1}^{d} q_{j} \geqslant 1$, then $l \leqslant d r-(d-1)(3 r-2) / 2=[(r-3)(2-$ d)/2]+2. Since $r \geqslant 9$, for $d \geqslant 3$ we have $l<0$. For $d=2$ we have $l=(r+3) / 2-(r-1)\left(q_{1}+q_{2}\right) / 2=\left[(r-1)\left[1-\left(q_{1}+q_{2}\right)\right] / 2\right]+2$, which is again negative for $q_{1}+q_{2} \geqslant 2$. Let $q_{1}+q_{2}=1$, then $l=2$. Thus $\Sigma_{2}(\pi ; 1,0)$ is two dimensional. The situation is similar to case 3 . The map g_{2} will be defined as

$$
\begin{cases}g_{2}\left(u_{t}\right)=t_{t}, & i=1, \ldots, m-r+2 \\ g_{2}\left(u_{r+t}\right)=t_{m-r+3+\imath}, & i=0, \ldots, m-r \\ g_{2}\left(u_{t}\right)=0, & i=m-r+3, \ldots, r-1\end{cases}
$$

Thus $P_{2}=\left(t_{m-r+3}, \ldots, t_{r-1}\right)$. Therefore similar proof as case 3 works. If $q_{1}+q_{2}=0$, again by the proof as case 2 , the local rings at corresponding points on X^{\prime} are seminormal. Assume that $d=1$. If $y=\pi(x)$ and $x \in S_{1}^{(1)}(\pi), \hat{\mathcal{O}}_{X^{\prime}, x}$ is seminormal. In this case $\operatorname{dim}\left(S_{1}^{(2)}(\pi)\right)=r-2(m-r$ $+1)=1$. If $y=\pi(x)$ and $x \in S_{1}^{(2)}(\pi)$, by (3.0.1) we have

$$
\hat{\mathscr{O}}_{X^{\prime}, y} \cong k\left[\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}+t_{2} t_{r}^{2}, \ldots, t_{r-4} t_{r}+t_{r-3} t_{r}^{2}, t_{r-2} t_{r}+t_{r}^{3}\right]\right]
$$

Thus $\hat{\mathcal{O}}_{x^{\prime}, y} \cong\left[\left[t_{1}, \ldots, t_{r-2}, t_{1} t_{r}+t_{2} t_{r}^{2}, \ldots, t_{r-2} t_{r}+t_{r}^{3}\right]\right]\left[\left[t_{r-1}\right]\right]$. Since by case 3 the ring $k\left[t_{1}, \ldots, t_{r-2}, t_{1} t_{r}+t_{2} t_{r}^{2}, \ldots, t_{r-2} t_{r}+t_{r}^{3}\right]$ is seminormal, by Proposition (3.1) and [12, Theorem (1.20)] $\hat{\mathcal{O}}_{X^{\prime}, y}$ is seminormal.
(b) $r=7,(m=9)$. If $\sum_{j=1}^{d} q_{J} \geqslant 1$, then $l \leqslant 6-2 d$ which is negative if $d \geqslant 4$. If $d=3$, then $l=3-3\left(q_{1}+q_{1}+q_{3}\right)$. Thus if $q_{1}+q_{2}+q_{3} \geqslant 2$, again $l<0$. For $q_{1}+q_{2}+q_{3}=1$ we have $l=0$. Thus there are finitely
many points as y on X^{\prime}, such that X^{\prime} has three analytic branches at y, one branch is an ordinary pinch point and two branches are simple. With the notation introduced in (3.0.1), by [21, Theorem 12.1], the homomorphism g_{1}, g_{2}, g_{3} on $k\left[\left[u_{1}, \ldots, u_{9}\right]\right]$ into $k\left[\left[t_{1}, \ldots, t_{7}\right]\right]$ are defined as:

$$
\begin{aligned}
& \left\{\begin{array}{lr}
g_{1}\left(u_{t}\right)=t_{t}, & i=1, \ldots, 6 \\
g_{1}\left(u_{7}\right)=t_{7}^{2} \\
g_{1}\left(u_{8}\right)=t_{1} t_{7} \\
g_{1}\left(u_{9}\right)=t_{2} t_{7}
\end{array}\right. \\
& \begin{cases}g_{2}\left(u_{t}\right)=t_{t}, & i=1,2 \\
g_{2}\left(u_{t}\right)=0, & i=3,4 \\
g_{2}\left(u_{4}+i\right)=t_{2+\imath}, & i=1, \ldots, 5\end{cases} \\
& \begin{cases}g_{3}\left(u_{t}\right)=t_{i}, & i=1, \ldots, 4 \\
g_{3}\left(u_{t}\right)=0, & i=5,6 \\
g_{3}\left(u_{6+\imath}\right)=t_{4+i}, & i=1,2,3 .\end{cases}
\end{aligned}
$$

Let $P_{t}=\operatorname{Ker}\left(g_{1}\right), i=1,2,3$. By the appendix we have $P_{1}=\left(u_{1} u_{9}-\right.$ $\left.u_{2} u_{8}, u_{1}^{2} u_{7}-u_{8}^{2}, u_{2}^{2} u_{7}^{2}-u_{9}^{2}, u_{1} u_{2} u_{7}-u_{8} u_{9}\right)$. Clearly $P_{2}=\left(u_{3}, u_{4}\right), P_{3}=$ $\left(u_{5}, u_{6}\right)$. Let $B=k\left[\left[u_{1}, \ldots, u_{9}\right]\right]$. Since $B / P_{i}, i=1,2,3$ are seminormal, by Proposition (2.5), to show that $\hat{\mathcal{O}}_{X^{\prime}, y} \cong B /\left(P_{1} \cap P_{2} \cap P_{3}\right)$ is seminormal it is enough to show that the ideals $P_{1}+P_{2}, P_{1}+P_{3}, P_{2}+P_{3}$, $P_{1}+P_{2} \cap P_{3}, P_{2}+P_{1} \cap P_{3}, P_{3}+P_{1} \cap P_{2}$ are radical ideals of B with common pure height 4. It is clear that the ideals $P_{1}+p_{2}, P_{1}+P_{3}, P_{2}+P_{3}$ are in fact prime ideals. By the appendix, P_{1} has height 2 , and by [23, Ch. V , Theorem 3] we have height $\left(P_{1}+P_{2}\right) \leqslant 4$. Since $P_{1}+P_{2}$ contains a subset of a system of parameters of B which consists of 4 elements, we have height $\left(P_{1}+P_{2}\right)=4$. Similarly height $\left(P_{1}+P_{3}\right)=4$. It is also clear that height $\left(P_{2}+P_{3}\right)=4$. Now we show that the ideal $P_{2}+P_{1} \cap P_{3}$ is radical. Let $f^{n} \in P_{2}+P_{1} \cap P_{3}$. We can write $f=g+h$ such that $g \in P_{2}$ and h does not have any term involving u_{3}, u_{4}. Then $f^{n}=g g_{1}+h^{n}$ for some $g_{1} \in B$. Thus $f^{n} \in P_{2}+P_{2} \cap P_{3}$ implies that $h^{n} \in P_{2}+P_{1} \cap P_{3}$. Since $P_{2}=\left(u_{3}, u_{4}\right)$ and h^{n} does not involve u_{3} and u_{4}, we have $h^{n} \in P_{1} \cap P_{3}$, thus $h \in P_{1} \cap P_{2}$, and hence $f=g+h \in P_{2}+P_{1} \cap P_{3}$. Similarly $P_{3}+P_{1} \cap$ P_{2} is a radical ideal of B. To show that $P_{1}+P_{2} \cap P_{3}$ is a radical ideal consider the homomorphism $g_{1}: B \rightarrow k\left[\left[t_{1}, \ldots, t_{7}\right]\right]$, let $Q_{2}=\left(t_{3}, t_{4}\right), Q_{3}=$ $\left(t_{5}, t_{6}\right)$. Then $P_{2}=g_{1}^{-1}\left(Q_{2}\right), P_{3}=g_{1}^{-1}\left(Q_{3}\right)$ and hence $g_{1}^{-1}\left(Q_{2} \cap Q_{3}\right)=P_{2}$ $\cap P_{3}$. Thus g_{1} induces a homomorphism $B /\left(P_{2} \cap P_{3}\right) \rightarrow$ $k\left[\left[t_{1}, \ldots, t_{7}\right]\right] /\left(Q_{2} \cap Q_{3}\right)$. The kernel of this map is a radical ideal, because $k\left[\left[t_{1}, \ldots, t_{7}\right]\right] /\left(Q_{2} \cap Q_{3}\right)$ is a reduced ring. But the kernel of this map is $P_{1}+P_{2} \cap P_{3}$. Therefore $P_{1}+P_{2} \cap P_{3}$ is also radical. Any minimal
prime ideal over $P_{1}+P_{2} \cap P_{3}$ or $P_{2}+P_{1} \cap P_{3}$ or $P_{3}+P_{1} \cap P_{2}$ has height $\leqslant 4$, and since any of these three ideals contain a 4-element subset of a system of parameters of B, such a minimal prime has height 4 . Therefore these ideals all are of pure height 4. Hence Proposition (2.5) now applies to imply seminormality of $\hat{\mathcal{O}}_{X^{\prime}, y}$. The seminormality of the local rings of X^{\prime} at the other points were covered at part (a).

The proof of Theorem (3.2) is now complete.

4. Calculation of some conductors

In proving the seminormality of strongly generic projections we encountered with the fact that if $y=\pi(x)$ and $x \in S_{1}^{(1)}(\pi)$, the conductor of $\hat{\mathcal{O}}_{X^{\prime}, y}$ is a prime ideal of the normalization of this ring. We also found an explicit expression for the conductor. It is therefore tempting to ask this question when $x \in S_{1}^{(2)}(\pi)$.

Let X be a nonsingular projective variety of dimension r. Let r be even and $r \geqslant 6$, and let $m=(3 r-2) / 2$. We consider a strongly generic projection $\pi: X \rightarrow \mathbb{P}_{k}^{m}$. Let $X^{\prime}=\pi(X)$. If $y=\pi(x), x \in S_{1}^{(2)}(\pi)$ and X^{\prime} is analytically irreducible at y, then we have

$$
\hat{\mathscr{O}}_{X^{\prime}, y} \cong k\left[\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}+t_{2} t_{r}^{2}, \ldots, t_{r-1} t_{r}+t_{r}^{3}\right]\right] .
$$

If r is odd, $r \geqslant 7$ and $m=(3 r-3) / 2$, then

$$
\hat{\mathcal{O}}_{X^{\prime}, y} \cong k\left[\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}+t_{2} t_{r}^{2}, \ldots, t_{r-2} t_{r}+t_{r}^{3}\right]\right] .
$$

Our result will give explicit expressions for the conductors of these rings. We will then prove the result needed in Theorem (3.2).

We need to recall some properties of the blowing up of an affine variety along a closed subscheme of the variety which is a complete intersection.

Let $Y=\operatorname{Spec}(B)$ be a nonsingular affine variety. Let $Z=\operatorname{Spec}(A) \subset Y$ be a nonsingular closed subvariety of Y which is a complete intersection. Thus $A \cong B / I$ where $I=\left(f_{1}, \ldots, f_{d}\right)$ and $d=\operatorname{Codim}(Z ; Y)$. Let $\tilde{Y}=$ $\operatorname{Proj}(\tilde{B})$ be the blowing up of Y along Z, where $B=B \oplus \mathrm{I} \oplus I^{2} \oplus \ldots$ Let $\varphi: \tilde{Y} \rightarrow Y$ be the canonical projection. The closed subscheme of \tilde{Y}, $E=\operatorname{Proj}(\tilde{B} / I \cdot \tilde{B})$ is called the exceptional locus of the blowing up. The underlying topological space of E is $\varphi^{-1}(Z)$. Observe that since

$$
\begin{aligned}
\tilde{B} / I \cdot B & \equiv \tilde{B} \otimes_{B} B / I=(B \oplus I \oplus \ldots) \otimes_{B}(B / I) \\
& \cong\left(B \otimes_{B} B / I\right) \oplus\left(I \otimes_{B} B / I\right) \oplus \ldots \subseteq B / I \oplus I / I^{2} \oplus \ldots=g r_{I}(B)
\end{aligned}
$$

where $g r_{I}(B)$ is the associated graded ring of B with respect to I, we have $E=\operatorname{Proj}\left(g r_{I}(B)\right)$. The ring \tilde{B}, as a graded B-algebra is generated by
degree one elements f_{1}, \ldots, f_{d}. Thus $\tilde{Y}=\operatorname{Proj}(\tilde{B})$ is a union of affine open subsets $D_{+}\left(f_{1}\right), \ldots, D_{+}\left(f_{d}\right)$, where $D_{+}\left(f_{i}\right)=\operatorname{Spec}\left(\tilde{B}_{\left(f_{i}\right)}\right)$, and $\tilde{B}_{\left(f_{t}\right)}$ is the degree zero part of $\tilde{B}_{f_{1}}, i=1, \ldots, d$. Let us fix $i=1$. Observe that $\tilde{B}_{\left(f_{1}\right)} \cong B\left[f_{2} / f_{1}, \ldots, f_{d} / f_{1}\right]$, because the elements of $\tilde{B}_{\left(f_{1}\right)}$ are finite sum of elements of the form h / f_{1}^{m} where $h \in I^{m}$ for some m, thus the elements of $\tilde{B}_{\left(f_{1}\right)}$ are polynomials in $f_{2} / f_{1}, \ldots, f_{d} / f_{1}$. Therefore $D_{+}\left(f_{1}\right) \cong$ $\operatorname{Spec}\left(B\left[f_{2} / f_{1}, \ldots, f_{d} / f_{1}\right]\right)=\operatorname{Spec}\left(B\left[g_{1}, \ldots, g_{d}\right]\right)$ where $g_{t} \in K$, the ring of quotients of B, and $f_{1} g_{i}=f_{i}, i=2, \ldots, d$.

We now restrict ourselves to a special case. Let $X=\mathbb{A}_{k}^{r}$ be the r-dimensional affine space. Let $Y=X \times{ }_{k} X=\mathbb{A}_{k}^{2 r}$ and let $Z=\Delta_{X}$ be "the diagonal" in $X \times{ }_{k} X . Z$ is a complete intersection. Let r be even and $r \geqslant 6$, and $m=(3 r-2) / 2$. Define the morphism $f: \mathbb{A}_{k}^{r} \rightarrow \mathbb{A}_{k}^{m}$ by $f\left(t_{1}, \ldots, t_{r}\right)=\left(u_{1}, \ldots, u_{m}\right)$ where

$$
\left\{\begin{array}{l}
u_{t}=t_{t}, \\
u_{r}=t_{r-1} t_{r}+t_{r}^{3} \\
u_{r+1}=t_{1} t_{r}+t_{2} t_{r}^{2} \\
\vdots \\
u_{m}=t_{r-3} t_{r}+t_{r-2} t_{r}^{2} .
\end{array}\right.
$$

Consider the morphism $f \times f: \mathbf{A}_{k}^{2 r} \rightarrow \mathbf{A}_{k}^{2 m}$ where $(f \times f)$ $\left(t_{1}, \ldots, t_{r}, s_{1}, \ldots, s_{r}\right)=\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m}\right), v_{1}, \ldots, v_{m}$ are given in terms of s_{1}, \ldots, s_{r} in the manner that u_{1}, \ldots, u_{m} are given in terms of t_{1}, \ldots, t_{r}. $\Delta_{\mathbf{A}^{m}} \subset \mathbf{A}_{k}^{2 m}$ is given by the equations $u_{t}-v_{t}=0, i=1, \ldots, m$. Thus $(f \times$ $f)^{-1}\left(\Delta_{\mathbf{A}^{m}}\right)$ is given by

$$
\left\{\begin{array}{l}
t_{t}-s_{t}=0, \\
t_{r-1} t_{r}+t_{r}^{3}-s_{r-1} s_{r}-s_{r}^{3}=0 \\
t_{1} t_{r}+t_{2} t_{r}^{2}-s_{1} s_{r}-s_{2} s_{r}^{2}=0 \\
\vdots \\
t_{r-3} t_{r}+t_{r-2} t_{r}^{2}-s_{r-3} s_{r}-s_{r-2} s_{r}^{2}=0 .
\end{array} \quad i=1, \ldots, r-1\right.
$$

Now consider \tilde{Y}, the blowing up of Y along Δ_{X}, and the canonical projection $\varphi: \tilde{Y} \rightarrow Y$. While $Y=\operatorname{Spec}\left(k\left[t_{1}, \ldots, t_{r}, s_{1}, \ldots, s_{r}\right]\right), \bar{Y}$ is the union of r affine varieties $D_{+}\left(t_{i}-s_{i}\right), i=1, \ldots, r$. Let $\xi_{i}=\left(t_{i}-s_{i}\right) /\left(t_{r}-\right.$ $\left.s_{r}\right), \quad i=1, \ldots, r-1$. Let $U=D_{+}\left(t_{r}-s_{r}\right)$. Then $U=$ Spec $\left(k\left[t_{1}, \ldots, t_{r}, s_{1}, \ldots, s_{r}\right]\left[\xi_{1}, \ldots, \xi_{r-1}\right]\right)=\operatorname{Spec}\left(k\left[t_{1}, \ldots, t_{r}, s_{r}, \xi_{1}, \ldots, \xi_{r-1}\right]\right) . U$ is the $2 r$-dimensional affine space. $E \cap U$ is given by $t_{r}-s_{r}=0$. If J is the ideal defining the subscheme $\varphi^{-1}\left((f \times f)^{-1}\left(\Delta_{\mathbf{A}^{m}}\right)\right)$, then $J \subseteq\left(t_{r}-s_{r}\right)$. Let $Z_{1} \subseteq U$ be the closed subscheme defined by the ideal $\left(t_{r}-s_{r}\right)^{-1} J$.

Observing that

$$
\begin{aligned}
& t_{r-1} t_{r}-s_{r-1} s_{r}+t_{r}^{3}-s_{r}^{3}=\left[t_{r-1}+t_{r}^{2}+s_{r}\left(t_{r}+s_{r}\right)+s_{r} \xi_{r-1}\right]\left(t_{r}-s_{r}\right) \\
& t_{1} t_{r}-s_{1} s_{r}+t_{2} t_{r}^{2}-s_{2} s_{r}^{2}=\left[t_{1}+t_{2} t_{r}+t_{2} s_{r}+s_{r} \xi_{1}+s_{r}^{2} \xi_{2}\right]\left(t_{r}-s_{r}\right) \\
& \vdots
\end{aligned}
$$

the ideal of $k\left[t_{1}, \ldots, t_{r}, s_{r}, \xi_{1}, \ldots, \xi_{r-1}\right]$ which defines Z_{1} is

$$
\begin{aligned}
& \left(\xi_{1}, \ldots, \xi_{r-1}, t_{r-1}+t_{r}^{2}+t_{r} s_{r}+s_{r}^{2}+s_{r} \xi_{r-1}, t_{1}+t_{2} t_{r}+t_{2} s_{r}\right. \\
& \left.\quad+s_{r} \xi_{1}+s_{r}^{2} \xi_{2}, \ldots\right)
\end{aligned}
$$

which is the same as

$$
\begin{aligned}
J_{1} & =\left(\xi_{1}, \ldots, \xi_{r-1}, t_{r-1}+t_{r}^{2}+t_{r} s_{r}+s_{r}^{2}, t_{1}+t_{2} t_{r}+t_{2} s_{r}, \ldots, t_{r-3}\right. \\
& \left.+t_{r-2} t_{r}+s_{r-2} s_{r}\right)
\end{aligned}
$$

We claim that $Z_{1} \cong \AA_{k}^{(r+2) / 2}$. The coordinate ring of Z_{1} is $k\left[t_{1}, \ldots, t_{r}, s_{r}, \xi_{1}, \ldots, \zeta_{r-1}\right] / J_{1} \cong k\left[t_{1}, \ldots, t_{r}, s_{r}\right] / P$ where

$$
P=\left(t_{r-1}+t_{r}^{2}+t_{r} s_{r}+s_{r}^{2}, t_{1}+t_{2} t_{r}+t_{2} s_{r}, \ldots, t_{r-3}+t_{r+2} t_{r}+t_{r-2} s_{r}\right)
$$

But $k\left[t_{1}, \ldots, t_{r}, s_{r}\right] / P=k\left[t_{2}, t_{4}, \ldots, t_{r-2}, t_{r}, s_{r}\right]$ because P is the kernel of the homomorphism $k\left[t_{1}, \ldots, t_{r}, s_{r}\right] \rightarrow k\left[t_{2}, t_{4}, \ldots, t_{r-2}, t_{r}, s_{r}\right]$ where $t_{2}, t_{4}, \ldots, t_{r}, s_{r}$ are fixed and

$$
\begin{cases}t_{1} & \mapsto-t_{2} t_{r}-t_{2} s_{r} \\ \vdots & \\ t_{r-3} & \mapsto-t_{r-2} t_{r}-t_{r-2} s_{r} \\ t_{r-1} & \mapsto-t_{r}^{2}-t_{r} s_{r}-s_{r}^{2}\end{cases}
$$

Consider the morphism $g: Z_{1} \rightarrow \mathbf{A}_{k}^{r}$ where $g\left(t_{1}, \ldots, t_{r}, s_{r}, \xi_{1}, \ldots, \xi_{r-1}\right)$ $=\left(t_{1}, \ldots, t_{r}\right)$, and let $W=g\left(Z_{1}\right)$. Then the following are known
(a) g is a finite morphism,
(b) W is the set of points of \mathbf{A}_{k}^{r} where f is not one-to-one,
(c) Z_{1} is the normalization of W, W has an ordinary pinch point at the origin, $S_{1}^{(1)}(g)$ is smooth.
Notice that by our definition of f, the origin belongs to $S_{1}^{(2)}(f)$. For these results we refer to [22, in particular Theorem 4.5], together with the following explanations.

Observe that $\varphi^{-1}\left[(f \times f)^{-1}\left(\Delta_{\mathbf{A}^{m}}\right)\right]=Z(f) \cap E$, where $Z(f)$ is the "double point scheme of $f ", E$ is the exceptional locus. The following
diagram commutes

where p_{2} is the projection to the second factor. On the open set U, introduced before, Z_{1} and $Z(f)$ are identical.

Now observing that the subvariety W is given by the prime ideal $P \cap k\left[t_{1}, \ldots, t_{r}\right]$ where $P=\left(t_{r-1}+t_{r}^{2}+t_{r} s_{r}+s_{r}^{2}, t_{1}+t_{2} t_{r}+t_{2} s_{r}, \ldots, t_{r-3}\right.$ $\left.+t_{r-2} t_{r}+t_{r-2} s_{r}\right)$ in $k\left[t_{1}, \ldots, t_{r}, s_{r}\right]$, we can state our theorem. In the proof we will use the results discussed above. We also assume that $\operatorname{char}(k) \neq 2,3$.

Theorem (4.1): Let C be the conductor of $A=k\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}+\right.$ $\left.t_{2} t_{r}^{2}, \ldots, t_{r-1} t_{r}+t_{r}^{3}\right]$. As an ideal of $B=k\left[t_{1}, \ldots, t_{r}\right], C$ is the determinantal ideal of the matrix

$$
M=\left[\begin{array}{lc}
t_{1} & t_{2} \\
t_{3} & t_{4} \\
\vdots & \vdots \\
t_{r-3} & t_{r-2} \\
t_{2} t_{r-1}+t_{1} t_{r}+t_{2} t_{r}^{2} & -t_{1} \\
t_{4} t_{r-1}+t_{3} t_{r}+t_{4} t_{r}^{2} & -t_{3} \\
\vdots & \vdots \\
t_{r-2} t_{r-1}+t_{r-3} t_{r}+t_{r-2} t_{r}^{2} & -t_{r-3}
\end{array}\right]
$$

i.e., the ideal generated by all 2×2 minors of M. C is a prime ideal of B of height $(r-2) / 2$.

Proof: Consider the homomorphism $h: k\left[u_{1}, \ldots, u_{m}\right] \rightarrow B$ defined by

$$
\begin{cases}h\left(u_{t}\right)=t_{i}, & i=1, \ldots, r-1 \\ h\left(u_{r}\right)=t_{r-1} t_{r}+t_{r}^{3} & \\ h\left(u_{r+1}\right)=t_{1} t_{r}+t_{2} t_{r}^{2} & \text { (Recall, } r \text { is even and } \\ \vdots & m=(3 r-2) / 2) . \\ h\left(u_{m}\right)=t_{r-3} t_{r}+t_{r-2} t_{r}^{2} . & \end{cases}
$$

Then $A \equiv k\left[u_{1}, \ldots, u_{m}\right] / \operatorname{Ker}(h)$. Let (M) be the determinantal ideal of M. It is easy to see that $(M) \subseteq C$. By Nakayama's Lemma B is generated by $1, t_{r}, t_{r}^{2}$ as an A-module. Thus $b \in C$ if $b, b t_{r}, b t_{r}^{2} \in A$. Considering the relations

$$
\left\{\begin{array}{l}
h\left(u_{r-1}\right)=t_{1} t_{r}+t_{2} t_{r}^{2} \\
h\left(u_{r+2}\right)=t_{3} t_{r}+t_{4} t_{r}^{2}
\end{array}\right.
$$

by Cramer's rule we have

$$
\left\{\begin{array}{l}
\left(t_{1} t_{4}-t_{2} t_{3}\right) t_{r}=h\left(u_{4} u_{r+1}-u_{2} u_{r+2}\right) \\
\left(t_{1} t_{4}-t_{2} t_{3}\right) t_{r}^{2}=h\left(u_{1} u_{r+2}-u_{3} u_{r+1}\right) .
\end{array}\right.
$$

Hence $t_{1} t_{4}-t_{2} t_{3} \in C$. Using the expression of $h\left(u_{r}\right)$ together with others, we get the following relations

$$
\left\{\begin{array}{l}
h\left(u_{2} u_{r}\right)=h\left(u_{2} u_{r-1}+u_{r+1}\right) t_{r}-h\left(u_{1}\right) t_{r}^{2} \\
\quad=\left(t_{2} t_{r-1}+t_{1} t_{r}+t_{2} t_{r}^{2}\right) t_{r}-t_{1} t_{r}^{2} \\
h\left(u_{4} u_{r}\right)=h\left(u_{4} u_{r-1}+u_{r+2}\right) t_{r}-h\left(u_{3}\right) t_{r}^{2} \\
\quad=\left(t_{4} t_{r-1}+t_{3} t_{r}+t_{4} t_{r}^{2}\right) t_{r}-t_{3} t_{r}^{2} \\
\vdots \\
h\left(u_{r-2} u_{r}\right)=h\left(u_{r-2} u_{r-1}+u_{m}\right) t_{r}-h\left(u_{r-3}\right) t_{r}^{2} \\
\quad=\left(t_{r-2} t_{r-1}+t_{r-3} t_{r}+t_{r-2} t_{r}^{2}\right) t_{r}-t_{r-3} t_{r}^{2}
\end{array}\right.
$$

Thus by Cramer's rule as shown, we see that $(M) \subseteq C$.
To show the other inclusion we first show that $P \cap k\left[t_{1}, \ldots, t_{r}\right] \subseteq(M)$, where P is the prime ideal introduced before. Consider the inclusion $k\left[t_{1}, \ldots, t_{r}\right] \subset k\left[t_{1}, \ldots, t_{r}, s_{r}\right]$, and the following change of variables in these two rings

$$
\left\{\begin{array}{l}
t_{2 l}=T_{2 ı}, \\
t_{1}=-T_{1}-T_{2} T_{r} / 2 \\
\vdots \\
t_{r-3}=-T_{r-3}-T_{r-2} T_{r} / 2 \\
t_{r-1}=-T_{r-1}-3\left(T_{r} / 2\right)^{2} \\
s_{r}=S_{r}-T_{r} / 2
\end{array} \quad i=1, \ldots, r / 2\right.
$$

These define isomorphisms of rings. In $k\left[T_{1}, \ldots, T_{r}, S_{r}\right]$ we have $P=$
$\left(-T_{r-1}+S_{r}^{2},-T_{1}+T_{2} S_{r}, \ldots,-T_{r-3}+T_{r-2} S_{r}\right)$. Thus if we consider the composition

$$
k\left[T_{1}, \ldots, T_{r}\right] \stackrel{\psi_{1}}{\hookrightarrow} k\left[T_{1}, \ldots, T_{r}, S_{r}\right] \xrightarrow{\psi_{0}} k\left[T_{2}, T_{4}, \ldots, T_{r-2}, T_{r}, S_{r}\right],
$$

where ψ_{1} is the inclusion, and ψ_{0} is defined by

$$
\left\{\begin{array}{l}
\psi_{0}\left(T_{2 ı}\right)=T_{2 ı}, \quad i=1, \ldots, r / 2 \\
\psi_{0}\left(S_{r}\right)=S_{r} \\
\psi_{0}\left(T_{1}\right)=T_{2} S_{r} \\
\vdots \\
\psi_{0}\left(T_{r-3}\right)=T_{r-2} S_{r} \\
\psi_{0}\left(T_{r-1}\right)=S_{r}^{2},
\end{array}\right.
$$

then $P=\operatorname{Ker}\left(\psi_{0}\right), P \cap k\left[T_{1}, \ldots, T_{r}\right]=\operatorname{Ker}\left(\psi_{0} \circ \psi_{1}\right)$. Since $\psi_{0} \circ \psi_{1}\left(T_{r}\right)=$ T_{r} and T_{r} is not used in defining ψ_{0} or ψ_{1}, we can apply the result of the appendix for the homomorphism

$$
\varphi_{0}: k\left[T_{1}, T_{2}, \ldots, T_{r-1}\right] \rightarrow k\left[T_{2}, T_{4}, \ldots, T_{r-2}, S_{r}\right]
$$

where φ_{0} is the restriction of $\psi_{0}{ }^{\circ} \psi_{1}$. Therefore $\operatorname{Ker}\left(\varphi_{0}\right)$ is generated by $(r-2)^{2} / 4$ elements

$$
\begin{align*}
& \left\{\begin{array}{llll}
T_{2} T_{3}-T_{4} T_{1}, & T_{4} T_{5}-T_{6} T_{3} & \ldots, & T_{r-4} T_{r-3}-T_{r-2} T_{r-5} \\
T_{2} T_{5}-T_{6} T_{1} & \vdots \\
\vdots & T_{4} T_{r-3}-T_{r-2} T_{3} \\
T_{2} T_{r-3}-T_{r-2} T_{1}
\end{array}\right. \tag{1}\\
& \left\{\begin{array}{llll}
T_{2}^{2} T_{r-1}-T_{1}^{2}, & T_{4}^{2} T_{r-1}-T_{3}^{2} & \ldots, & T_{r-2}^{2} T_{r-1}-T_{r-3}^{2}
\end{array}\right. \tag{2.a}\\
& \left\{\begin{array}{lll}
T_{2} T_{4} T_{r-1}-T_{1} T_{3}, & T_{4} T_{6} T_{r-1}-T_{3} T_{5} & , \ldots, \\
T_{2} T_{6} T_{r-1}-T_{1} T_{5} & \vdots \\
\vdots & T_{r-4} T_{r-2} T_{r-1}-T_{r-5} T_{r-3} \\
T_{2} T_{r-2} T_{r-1}-T_{1} T_{r-3} & T_{4} T_{r-2} T_{r-1}-T_{3} T_{r-3}
\end{array}\right. \tag{2.b}
\end{align*}
$$

Thus $P \cap k\left[T_{1}, \ldots, T_{r}\right]$ will be generated by these elements in $k\left[T_{1}, \ldots, T_{r}\right]$. Now by changing the variables back to t_{1}, \ldots, t_{r}, we find out that $P \cap k\left[t_{1}, \ldots, t_{r}\right]$ is generated by certain elements in (M). A typical element of group (1) is

$$
T_{2} T_{3}-T_{4} T_{1}=t_{2}\left(-t_{3}-t_{4} t_{r} / 2\right)-t_{4}\left(-t_{1}-t_{2} t_{r} / 2\right)=t_{1} t_{4}-t_{2} t_{3} .
$$

A typical element of group (2.a) is

$$
\begin{aligned}
T_{4}^{2} T_{r-1}-t_{3}^{2} & =t_{4}^{2}\left(-t_{r-1}-3 t_{r}^{2} / 2\right)-\left(-t_{3}-t_{4} t_{r} / 2\right)^{2} \\
& =-t_{3}^{2}-t_{4}\left(t_{4} t_{r-1}+t_{3} t_{r}+t_{4} t_{r}^{2}\right)
\end{aligned}
$$

A typical element of group (2.b) is

$$
\begin{aligned}
T_{4} & T_{6} T_{r-1}-T_{3} T_{5} \\
& =t_{4} t_{6}\left(-t_{r-1}-3 t_{r}^{2} / 2\right)-\left(-t_{3}-t_{4} t_{r} / 2\right)\left(-t_{5}-t_{6} t_{r} / 2\right) \\
& =-t_{3} t_{5}-t_{4}\left(t_{6} t_{r-1}+t_{6} t_{r}^{2}\right)-\left(t_{3} t_{6}+t_{4} t_{5}\right) t_{r} / 2 \\
& =\left[-t_{3} t_{5}-t_{4}\left(t_{6} t_{r-1}+t_{5} t_{r}+t_{6} t_{r}^{2}\right)\right]-\left(t_{3} t_{6}-t_{4} t_{5}\right) t_{r} / 2
\end{aligned}
$$

The first two elements are minors of M and the third element is generated by two minors of M. Therefore we have

$$
P \cap k\left[t_{1}, \ldots, t_{r}\right] \subseteq(M)
$$

Now we have $P \cap k\left[t_{1}, \ldots, t_{r}\right] \subseteq(M) \subseteq C$. By [18, Theorem 1], any minimal prime over C has height $m-r=(r-2) / 2$. By the result of the appendix $P \cap k\left[t_{1}, \ldots, t_{r}\right]$ has height $(r-2) / 2$. Therefore we have $C=$ $(M)=P \cap k\left[t_{1}, \ldots, t_{r}\right]$. The proof of Theorem (4.1) is now complete.

Corollary (4.2): Let A, B and C be as in Theorem (4.1). Then $C=$ $\mathrm{Ann}_{A}\left(\bar{t}_{r}\right)$, where \bar{t}_{r} denotes the class of t_{r} in B / A.

Proof: B is an A-module generated by $1, t_{r}, t_{r}^{2}$. Thus $C=\operatorname{Ann}_{A}\left(\bar{t}_{r}\right) \cap$ $\operatorname{Ann}_{A}\left(\overline{t_{r}^{2}}\right)$. Let $a \in A$ and $a t_{r} \in A$. Then since A is a ring, $a^{2} t_{r} \in A$ and $a^{2} t_{r}^{2} \in A$. Thus $a^{2} \in C$, but C is a prime ideal, so we have $a \in C$. Conversely assume that $a \in A$ and $a t_{r}^{2} \in A$. Then $a^{2} t_{r}^{2} \in A$ and $a^{2} t_{r}^{4} \in A$. Let $v=t_{r-1} t_{r}+t_{r}^{3},(v \in A)$. Then $t_{r}^{3}=v-t_{r-1} t_{r}$ and $t_{r}^{4}=v t_{r}-t_{r-1} t_{r}^{2}$. Since $a^{2} t_{r}^{4} \in A$, we have $a^{2} v t_{r}-t_{r-1}\left(a^{2} t_{r}^{2}\right) \in A$. Since $a^{2} t_{r}^{2} \in A$, we get $a^{2} v t_{r} \in A$. We also have $a^{2} v t_{r}^{2} \in A$. Therefore $a^{2} v \in C$, i.e., $a^{2} t_{r}\left(t_{r-1}-t_{r}^{2}\right)$ $\in C . C$ is a prime ideal of B and $t_{r} \notin C, t_{r-1}-t_{r}^{2} \notin C$, thus we get $a \in C$.

We now prove the result which we used in Theorem (3.2).
Theorem (4.3): As in Theorem (4.1), let $A=k\left[t_{1}, \ldots, t_{r-1}, t_{1} t_{r}+\right.$ $\left.t_{2} t_{r}^{2}, \ldots, t_{r-1} t_{r}+t_{r}^{3}\right], B=k\left[t_{1}, \ldots, t_{r}\right]$. Then

$$
\operatorname{depth}_{A}(B / A) \geqslant 1
$$

Proof: Recall that we have assumed that r is even, $r \geqslant 6$, and $m=(3 r-$ 2)/2. Let $v=t_{r-1} t_{r}+t_{r}^{3}, w_{1}=t_{1} t_{r}+t_{2} t_{r}^{2}, \ldots, w_{m-r}=t_{r-3} t_{r}+t_{r-2} t_{r}^{2}$. Let $A_{0}=k\left[t_{1}, \ldots, t_{r-1}, v\right]$. We will find a "nice" generating set for A as an A_{0}-module, and we then will use them to prove the theorem. Let K_{0} and K be fields of quotients of A_{0} and B respectively. K is an algebraic extension of K_{0} of degree three. Thus every element of K satisfies a monic polynomial of degree three in $K_{0}[x]$. However B is integral over A_{0}, so for each $i=1, \ldots, m-r, w_{l}$ would satisfy a monic polynomial in $A_{0}[x]$. By the uniqueness of the minimal polynomial of w_{t} in $K_{0}[x]$, the minimal monic polynomial of w_{t} in $A_{0}[x]$ is the same as the minimal polynomial of w_{t} in $K_{0}[x]$. In fact by direct calculation one can find the minimal polynomial of w_{i} in $A_{0}[x]$. For example consider $w_{1}=t_{1} t_{r}+t_{2} t_{r}^{2}$. By expanding $\left(t_{1} t_{\mathrm{r}}+t_{2} t_{r}^{2}\right)^{3},\left(t_{1} t_{r}+t_{2} t_{r}^{2}\right)^{2}$ and multiplying out of $\left(t_{r-1} t_{\mathrm{r}}\right.$ $\left.+t_{r}^{3}\right)\left(t_{1} t_{r}+t_{2} t_{r}^{2}\right)$ we find that w_{1} satisfies the following polynomial in $A_{1}[x]$

$$
\begin{aligned}
x^{2} & =2 t_{2} t_{r-1} x^{2}-\left(3 t_{1} t_{2} v-t_{2}^{2} t_{r-1}^{2}-t_{1}^{2} t_{r-1}\right) x \\
-t_{1}^{3} v-t_{1} t_{2}^{2} t_{r-1} v-t_{2}^{3} v^{2} & =0
\end{aligned}
$$

The elements w_{2}, \ldots, w_{m-r} satisfy similar polynomials of degree three in $A_{0}[x]$. This proves that the elements

$$
\begin{equation*}
w_{1}^{t_{1}} \cdot w_{2}^{i_{2}} \cdot \ldots \cdot w_{m-r}^{i_{m-r}}, \mathrm{w}, \quad 0 \leqslant \mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{m}-\mathrm{r}} \leqslant 2 \tag{4.3.1}
\end{equation*}
$$

generate A as an A_{0}-module. We will produce another set of generators for A. To demonstrate the techniques we first consider the "key" case $r=6, m=8$. Let

$$
\begin{aligned}
& z_{1}=\left(t_{2} v-t_{1} t_{5}\right) t_{2} t_{6}+t_{1}^{2} t_{6}^{2} \\
& z_{2}=\left(t_{4} v-t_{3} t_{5}\right) t_{4} t_{6}+t_{3}^{2} t_{6}^{2} \\
& z_{12}=\left(t_{2} v-t_{1} t_{5}\right) t_{4} t_{6}+t_{1} t_{3} t_{6}^{2} .
\end{aligned}
$$

We claim that $1, w_{1}, w_{2}, z_{1}, z_{2}, z_{12}$ generate A as an A_{0}-module. Observe that

$$
\begin{aligned}
& \left\{\begin{array}{l}
w_{1}^{2}-2 t_{1} t_{2} v+t_{2} t_{5} w_{1}=z_{1} \\
w_{2}^{2}-2 t_{3} t_{4} v+t_{4} t_{5} w_{2}=z_{2} \\
w_{1} w_{2}-\left(t_{1} t_{4}+t_{2} t_{3}\right) v+t_{2} t_{5} w_{2}=z_{12}
\end{array}\right. \\
& \left\{\begin{array}{l}
w_{1}^{2} w_{2}-2 t_{1} t_{2} v w_{2}+t_{2} t_{5} w_{1} w_{2}=z_{1} w_{2} \\
w_{1} w_{2}^{2}-2 t_{3} t_{4} v w_{1}+t_{4} t_{5} w_{1} w_{2}=z_{2} w_{1} \\
w_{1}^{2} w_{2}^{2}-2 t_{3} t_{4} v w_{1}^{2}+t_{4} t_{5} w_{1}^{2} w_{2}=z_{2} w_{1}^{2}
\end{array}\right.
\end{aligned}
$$

These relations imply that $1, w_{1}, w_{2}, z_{1}, z_{2}, z_{12}, z_{1} w_{2}, z_{2} w_{1}, z_{2} w_{1}^{2}$ generate A as an A_{0}-module. We show that the last three elements are extra. Replacing t_{6}^{3} by $v-t_{5} t_{6}$ and t_{6}^{4} by $v t_{6}-t_{5} t_{6}^{2}$ in the product $z_{1} w_{2}=$ $\left[\left(t_{2}^{2} v-t_{1} t_{2} t_{5}\right) t_{6}+t_{1}^{2} t_{6}^{2}\right]\left(t_{3} t_{6}+t_{4} t_{6}^{2}\right)$, we get $z_{1} w_{2}=\left(t_{1}^{2} t_{3} v+t_{2}^{2} t_{4} v^{2}\right.$ $\left.-t_{1} t_{2} t_{4} t_{5} v\right)+\left(-t_{1}^{2} t_{3} t_{5}-t_{2}^{2} t_{4} t_{5} v+t_{1} t_{2} t_{4} t_{5}^{2}+t_{1}^{2} t_{4} v\right) t_{6}+\left(t_{3} t_{2}^{2} v-t_{1} t_{2} t_{3} t_{5}\right.$ $\left.-t_{1}^{2} t_{4} t_{5}\right) t_{6}^{2}$.
Now replacing $t_{2} t_{6}^{2}$ by $w_{1}-t_{1} t_{6}$ and $t_{1}^{2} t_{6}^{2}$ by $z_{1}-\left(t_{2} v-t_{1} t_{5}\right) t_{2} t_{6}$ we get

$$
\begin{aligned}
z_{1} w_{2}= & \left(t_{1}^{2} t_{3} v+t_{2}^{2} t_{4} v^{2}-t_{1} t_{2} t_{4} t_{5} v\right)+\left(t_{1} t_{4}-t_{2} t_{3}\right) t_{1} v t_{6}-t_{2} t_{3} v w_{1} \\
& -t_{1} t_{3} t_{5} w_{1}-t_{4} t_{5} z_{1}
\end{aligned}
$$

Finally since $\left(t_{1} t_{4}-t_{2} t_{3}\right) t_{6}=t_{4} w_{1}-t_{2} w_{2}$, we have

$$
\begin{aligned}
z_{1} w_{2}= & \left(t_{1}^{2} t_{3} v+t_{2}^{2} t_{4} v^{2}-t_{1} t_{2} t_{4} t_{5} v\right)+\left(t_{1} t_{4} v+t_{2} t_{3} v-t_{1} t_{3} t_{5}\right) w_{1} \\
& -t_{1} t_{2} v w_{2}-t_{4} t_{5} z_{1}
\end{aligned}
$$

A similar computation shows that

$$
\begin{aligned}
z_{2} w_{1}= & \left(t_{1} t_{3}^{2} v+t_{2} t_{4}^{2} v^{2}-t_{2} t_{3} t_{4} t_{5} v\right)+\left(t_{1} t_{4} v-t_{2} t_{3} v-t_{1} t_{3} t_{5}\right) w_{2} \\
& +t_{3} t_{4} v w_{1}-t_{2} t_{5} z_{2}
\end{aligned}
$$

Thus $z_{1} w_{2}$ and $z_{2} w_{1}$ are extra. We also have

$$
\begin{aligned}
z_{2} w_{1}^{2}= & \left(z_{2} w_{1}\right) w_{1}=\left(t_{1} t_{3}^{2} v+t_{2} t_{4}^{2} v^{2}-t_{2} t_{3} t_{4} t_{5}\right) w_{1} \\
& +\left(t_{1} t_{4} v-t_{2} t_{3} v-t_{1} t_{3} t_{5}\right)\left(w_{1} w_{2}\right)+t_{3} t_{4} v w_{1}^{2}-t_{2} t_{5} z_{2} w_{1} .
\end{aligned}
$$

Therefore by above calculations $z_{2} w_{1}^{2}$ is also extra. The set $\left\{1, w_{1}, w_{2}, z_{1}, z_{2}, z_{12}\right\}$ is the favorable generating set for A as an A_{0}-module. Observe that the coefficient of t_{6}^{2} in each of the elements w_{1}, w_{2}, z_{1}, z_{2}, z_{12} does not involve t_{5}. This is the main point which makes the proof of the theorem work. Incidently in this particular but important case of $r=6$, it seems that the set $\left\{1, w_{1}, w_{2}, z_{1}, z_{2}, z_{12}\right\}$ is a minimal generating set for A as an A_{0}-module. To check this for example one needs to show that $\operatorname{dim}_{k}\left(A /\left(m_{A_{0}} \cdot A\right)\right) \geqslant 6$, where $m_{A_{0}}$ is the maximal ideal of A_{0}. However we will not use this.

For general r, consider w_{1}, \ldots, w_{m-r} as before and let

$$
\begin{aligned}
& z_{\imath}=\left(t_{2,} v-t_{2 t-1} t_{r-1}\right) t_{2 t} t_{r}+t_{2 i-1}^{2} t_{r}^{2}, \quad 1 \leqslant i \leqslant m-r, \\
& z_{i J}=\left(t_{2 \iota} v-t_{2 t-1} t_{r-1}\right) t_{2 j} t_{r}+t_{2 i-1} t_{2 J-1} t_{r}^{2}, \quad 1 \leqslant i<j \leqslant m-r .
\end{aligned}
$$

We first claim that $1, w_{1}, \ldots, w_{m-r}, z_{1}, \ldots, z_{m-r}, z_{\iota \jmath}, w_{1}^{t_{1}} \cdot w_{2}^{\iota_{2}} \cdot \ldots . w_{m-r}^{\iota_{m-r}}$;
$1 \leqslant i<j \leqslant m-r, 0 \leqslant i_{1}, \ldots, i_{m-r} \leqslant 1, i_{1}+\ldots+i_{m-r} \geqslant 3$, generate A as an A_{0}-module. The relations

$$
w_{t}^{2}-2 t_{2 \iota-1} t_{2 \imath} v+t_{2 l} t_{r-1} w_{1}=z_{l}, \quad i=1, \ldots, m-r
$$

show that in the list (4.3.1), $w_{1}^{2}, \ldots, w_{m-r}^{2}$ can be replaced by z_{1}, \ldots, z_{m-r}. The relations

$$
w_{\imath} w_{j}-\left(t_{2 \imath-1} t_{2 \jmath}+t_{2 \imath} t_{2 J-1}\right) v+t_{2 \imath} t_{r-1} w_{J}=z_{\imath \jmath}, \quad 1 \leqslant 2<j \leqslant m-r,
$$

imply that in the list (4.3.1) $w_{t} w_{j}$ can be replaced by $z_{i j}$. The relations

$$
\begin{aligned}
z_{1} w_{J}= & \left(t_{1}^{2} t_{2 J-1} v+t_{2}^{2} t_{2,} v^{2}-t_{1} t_{2} t_{2 J} t_{r-1} v\right) \\
& +\left(t_{1} t_{2 J} v+t_{2} t_{2 J-1} v-t_{1} t_{2 J-1} t_{r-1}\right) w_{1} \\
& -t_{1} t_{2} v w_{J}-t_{2,} t_{r-1} z_{1}, \quad z_{1} w_{j}^{2}=\left(z_{1} w_{j}\right) w_{J}, \quad 2 \leqslant j \leqslant m-r
\end{aligned}
$$

would imply that in the list (4.3.1) all the elements

$$
w_{1}^{i_{1}} \cdot w_{2}^{t_{2}} \cdot \ldots \cdot w_{m-r}^{i_{m-r}}, \quad i_{1}+\ldots+i_{m-r} \geqslant 3, \quad i_{l}=2
$$

for some l, are extra. To show this we may assume that $i_{1}=2$ and $i_{3}, \ldots, i_{s}=1$ or 2 for some s, and $i_{s+1}=\cdots=i_{m-r}=0$. Then $w_{1}^{2} \cdot w_{2}^{i_{2}}$. $\cdots \cdot w_{s}^{t_{s}}=2 t_{1} t_{2} v w_{2}^{i_{2}} \ldots w_{s}^{t_{s}}-t_{2} t_{r-1} w_{1} w_{2}^{t_{2}} \ldots w_{s}^{t_{s}}+z_{1} w_{2}^{L_{2}} \ldots w_{s}^{i_{s}}$. Replacing $z_{1} w_{2}$ or $z_{1} w_{2}^{2}$ (according to whether $i_{1}=1$ or 2), from relations above in $z_{1} w_{2}^{t_{2}} \ldots w_{s}^{t_{s}}$ and repeating this process for $z_{1} w_{3}^{t_{3}}, \ldots, z_{1} w_{s}^{t_{s}}$ we find that $w_{1}^{2} w_{2}^{t_{2}} \ldots w_{s}^{i_{s}}$ is generated by elements of the form $w_{1}^{J_{1}} \cdot w_{2}^{j_{2}} \ldots w_{s}^{j_{s}}$ and z_{1} where $j_{1}, \ldots, j_{s}=0,1,2$ but the number of j_{l} 's with $j_{l}=2$ is less than the number of i_{l} 's with $i_{l}=2$ in the monomial $w_{1}^{t_{1}} \ldots w_{s}^{t_{s}}$ we had started with. Thus by induction on the number of i_{s} 's with $i_{s}=2$ we find that $w_{1}^{i_{1}} \ldots w_{s}^{l_{s}}$ is generated by $w_{1}^{j_{1}} \ldots w_{s}^{j_{s}}$'s with $j_{l}=0,1, j_{1}+\ldots+j_{s} \geqslant 3$ and z_{1}, \ldots, z_{s}. Therefore the elements $w_{1}^{l_{1}} \ldots w_{m-r}^{l_{m-r}}$ with $i_{1}+\ldots+i_{m-r} \geqslant 3, i_{l}=2$ for some l, are extra. The second thing we do, we replace the elements $w_{1}^{L_{1}} \ldots w_{m-r}^{\iota_{m-r}}, 0 \leqslant i_{1}, \ldots, i_{m-r} \leqslant 1, i_{1}+\ldots+i_{m-r} \geqslant 3$ by another element of the form $g t_{r}$ where $g \in A_{0}$. This will also be proved by induction on the number of $w_{J}^{\iota_{J}}$'s with $i_{j}=1$, (this number is $\geqslant 3$ by assumption). For the first step observe that by

$$
w_{1} w_{2}=\left(t_{1} t_{4}+t_{2} t_{3}\right) v+t_{2} t_{r-1} w_{2}+z_{12}
$$

we have

$$
w_{1} w_{2} w_{3}=\left(t_{1} t_{4}+t_{2} t_{3}\right) v w_{3}+t_{2} t_{r-1} w_{2} w_{3}+z_{12} w_{3}
$$

and we also have

$$
\begin{aligned}
z_{12} w_{3}= & \left(t_{2} t_{4} t_{6} v^{2}-t_{1} t_{4} t_{6} t_{r-1} v+t_{1} t_{3} t_{5} v\right) \\
& +\left(-t_{2} t_{4} t_{6} t_{r-1} v-t_{1} t_{4} t_{6} t_{r-1}^{2}+t_{1} t_{3} t_{5} t_{r-1}\right) t_{r} \\
& +\left(t_{2} t_{4} t_{5} v-t_{1} t_{4} t_{5} t_{r-1}-t_{1} t_{3} t_{5} t_{r-1}\right) t_{r}^{2}
\end{aligned}
$$

Since $t_{4} t_{r}^{2}=w_{2}-t_{3} t_{r}$ and $t_{6} t_{r}^{2}=w_{3}-t_{5} t_{4}$, we see that $w_{1} w_{2} w_{3}$ can be replaced by $g t_{r}$ with $g \in A_{0}$. For inductive step it is enough to show that if $g_{1} t_{r} \in A$ with $g_{1} \in A_{0}$, then $g_{1} t_{r} w_{1}$ can be replaced by $g_{2} t_{r}$ with $g_{2} \in A_{0}$. We have

$$
g_{1} t_{r} w_{1}=g_{1} t_{2} v-g_{1} t_{1} t_{2} t_{r}+g_{1} t_{1} t_{r}^{2}
$$

We can impose the condition that g_{1} does not have constant term or a term which is only a power of v as part of our induction hypothesis. Consider each monomial in g_{1}, if it has a factor of t_{2}, for some j, replace $t_{2,} t_{r}^{2}$ by $w_{j}-t_{2 J-1} t_{r}$, if it has a factor of $t_{2 J-1}$ for some j, replace $t_{2 j-1} t_{1} t_{r}^{2}$ by $z_{1,}-\left(t_{2} v-t_{1} t_{r-1}\right) t_{2} t_{r}$. Thus $g_{1} t_{r} w_{1}$ can be replaced by $g_{2} t_{r}$ where $g_{2} \in A_{0}$ and g_{2} satisfies the imposed condition on g_{1}.

We have now produced a generating set for A as an A_{0}-module which was desired. Namely $1, w_{1}, \ldots, w_{m-r}, z_{1}, \ldots, z_{m-r}, z_{i j}, 1 \leqslant i<j \leqslant m-r$ and some elements of the form $g t_{r}$ with $g \in A_{0}$.

We now prove that $\operatorname{depth}_{A}(B / A) \geqslant 1$. Observe that since B is generated by $1, t_{r}, t_{r}^{2}$ as an A_{0}-module, by a result due to J.P. Serre [23, Ch. IV, Proposition 22], B is a free A_{0}-module of rank three. We show that t_{r-1} is a non-zerodivisor of B / A. Let $f \in B-A$ and $f t_{r-1} \in A$. For convenience let us denote all the non-constant elements we just obtained as a generating set for A as an A_{0}-module, by $w_{t}, i=1, \ldots, n$. Then $f t_{r-1}=\alpha_{0}$ $+\alpha_{1} w_{1}+\ldots+\alpha_{n} w_{n}$ with $\alpha_{0}, \ldots, \alpha_{n} \in A_{0}$. We may assume that $\alpha_{0}, \ldots, \alpha_{n}$ $\in k\left[t_{1}, \ldots, t_{r-2}, v\right]$, because if $\alpha_{i}=\beta_{i}+t_{r-1} \gamma_{i}$ with $\beta_{t} \in k\left[t_{1}, \ldots, t_{r-2}, v\right]$ and $\gamma_{i} \in A_{0}$. then $\left[f-\left(\gamma_{0}+\gamma_{1} w_{1}+\ldots+\gamma_{n} w_{n}\right)\right] t_{r-1}=\beta_{0}+\beta_{1} w_{1}+$ $\ldots+\beta_{n} w_{n} \in A$, and if we show that $f-\left(\gamma_{0}+\ldots+\gamma_{n} w_{n}\right) \in A$, then $f \in A$. Thus assume that $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \in k\left[t_{1}, \ldots, t_{r-2}, v\right]$. Since the coefficient of t_{r}^{2} in each w_{i} only involves t_{1}, \ldots, t_{r-2}, the coefficient of t_{r}^{2} in the sum $\alpha_{0}+\alpha_{1} w_{1}+\ldots+\alpha_{n} w_{n}$ only involves $t_{1}, \ldots, t_{r-2}, v$. Now let $f=g_{0}+g t_{r}+$ $h t_{r}^{2}$ with $g_{0}, g, h \in A_{0}$. We may assume that $g_{0}=0$, because $\left(f-g_{0}\right) t_{r-1}$ $\in A$ and if $f-g_{0} \in A$, then $f \in A$. Thus we have

$$
\begin{aligned}
f t_{r-1} & =\left(g t_{r-1}\right) t_{r}+\left(h t_{r-1}\right) t_{r}^{2} \\
& =\alpha_{0}+\left(\alpha_{1} t_{1}+\alpha_{2} t_{3}+\ldots\right) t_{r}+\left(\alpha_{1} t_{2}+\alpha_{2} t_{4}+\ldots\right) t_{r}^{2}
\end{aligned}
$$

Since $1, t_{r}, t_{r}^{2}$ is a free basis for B as an A_{0}-module, we have $\alpha_{0}=0$ and
$\alpha_{1} t_{2}+\alpha_{2} t_{4}+\alpha_{3} t_{6}+\ldots=h t_{r-1}$. Since the L.H.S. only involves $t_{1}, \ldots, t_{r-2}, v$, and B is a free A_{0}-module, no element of A_{0} is a zerodivisor of B / A_{0}, thus we have $h=0$. Therefore $g t_{r-1} \in \mathrm{Ann}_{A}\left(\overline{t_{r}}\right)$. But by Corollary (4.2) $\mathrm{Ann}_{A}\left(\overline{t_{r}}\right)=C$, the conductor of A in B. By Theorem (4.1) C is a prime ideal of B and $t_{r-1} \notin C$, thus $g \in C$. Therefore $f=g t_{r} \in A$, as desired. The proof of Theorem (4.3) is now complete.

Corollary (4.4): Let X be a nonsingular projective variety of dimension r, $r \geqslant 6$. Let $\pi: X \rightarrow \mathbb{P}_{k}^{m}$ be a strongly generic projection. Let $X^{\prime}=\pi(X)$ be analytically irreducible at $y=\pi(x)$, where $x \in S_{1}^{(2)}(\pi),(x, y$ closed points $)$. Let \mathscr{C} be the conductor of $\hat{\mathcal{O}}_{X^{\prime}, y}$. Consider \mathscr{C} as an ideal of $k\left[\left[t_{1}, \ldots, t_{r}\right]\right]$. If r is even and $m=(3 r-2) / 2$, then $\mathscr{C}=\left(M_{1}\right)$, and if r is odd and $m=(3 r-$ 3)/2, then $\mathscr{C}=\left(M_{2}\right)$, where $\left(M_{1}\right)$ and $\left(M_{2}\right)$ are determinantal ideals of the following matrices in $k\left[\left[t_{1}, \ldots, t_{r}\right]\right]$

$$
\begin{aligned}
& M_{1}=\left[\begin{array}{ll}
t_{1} & t_{2} \\
\vdots & \vdots \\
t_{r-3} & t_{r-2} \\
t_{2} t_{r-1}+t_{1} t_{r}+t_{2} t_{r}^{2} & -t_{1} \\
\vdots & \vdots \\
t_{r-2} t_{r-1}+t_{r-3} t_{r}+t_{r-2} t_{r}^{2} & -t_{r-3}
\end{array}\right], \\
& M_{2}=\left[\begin{array}{ll}
t_{1} & t_{2} \\
\vdots & \vdots \\
t_{r-4} & t_{r-3} \\
t_{2} t_{r-2}+t_{1} t_{r}+t_{2} t_{r}^{2} & -t_{1} \\
\vdots & \vdots \\
t_{r-3} t_{r-2}+t_{r-4} t_{r}+t_{r-3} t_{r}^{2} & -t_{r-4}
\end{array}\right] .
\end{aligned}
$$

Proof: Using the notation of Theorem (4.1) we have $\mathscr{C}=C \cdot k\left[\left[t_{1}, \ldots, t_{r}\right]\right]$. Now the corollary follows from (3.0.1) and Theorem (4.1) for both cases of r even and r odd.
Remarks: In Theorem (4.1) we showed that C is a prime ideal of $k\left[t_{1}, \ldots, t_{r}\right]$. Thus by known results [27, vol. II, page 320, Theorem 32], \mathscr{C} is a radical ideal of $k\left[\left[t_{1}, \ldots, t_{r}\right]\right]$. This also follows from Theorem (3.2), because the conductor of a seminormal ring is radial in the normalization of the ring.

Also note that to prove that some determinantal ideal of a matrix with entries in $B=k\left[t_{1}, \ldots, t_{r}\right]$ is a prime ideal of B in general is a difficult task. In Theorem (4.1) we proved that (M) is a prime ideal of B. A direct
computation shows that if we discard some of the last $r / 2$ rows (not all of them), the determinantal ideal of the remaining matrix will no longer be a prime ideal of B. There are beautiful results concerning the determinantal ideals by many authors as J.A. Eagon, D.G. Northcott and M. Hochster. (See the references of [10].)

Appendix

The following unpublished result due to Joel Roberts, was originally given to serve as examples of prime ideals in power series rings which require a large number of generator (cf. [14, remark 4]). In this thesis we have used this result several times. To make it a convenient reference we will rewrite this result.

Construction. Let k be a field, $r \geqslant 2$ an integer. Let $A_{0}=$ $k\left[t_{1}, \ldots, t_{r-1}, u_{1}, \ldots, u_{r-1}, v\right]$ and $B=k\left[t_{1}, \ldots, t_{r}\right]$ be polynomial rings, and let $A=k\left[\left[t_{1}, \ldots, t_{r-1}, u_{1}, \ldots, u_{r-1}, v\right]\right]$ and $B=k\left[\left[t_{1}, \ldots, t_{r}\right]\right]$ be formal power series rings. Let $\varphi_{0}: A_{0} \rightarrow B_{0}$ and $\varphi: A \rightarrow B$ be determined by:

$$
\begin{array}{ll}
t_{t} \mapsto t_{t} & i=1, \ldots, r-1 \\
u_{t} \mapsto t_{t} t_{r} & i=1, \ldots, r-1 \\
v \mapsto t_{r}^{2} . & \tag{1.3}
\end{array}
$$

Let $P_{0}=\operatorname{Ker}\left(\varphi_{0}\right)$ and $P=\operatorname{Ker}(\varphi)$. Since B_{0} and B are integral over $\varphi_{0}\left(A_{0}\right)$ and $\varphi(A)$ respectively, it follows that P_{0} and P are prime ideals of height $r-1$.

Geometric discussion. Let k be algebraically closed and let $V=$ $\operatorname{Spec}\left(A_{0} / P_{0}\right)$. Then φ_{0} defines a finite birational morphism $\pi: \mathbb{A}_{k}^{r} \rightarrow V$, so that \mathbf{A}_{k}^{r} is the normalization of V. Then $V \subset \mathbf{A}_{k}^{2 r-1}$, and the singular locus of V is the line where all coordinates except v are zero. At all points except the origin, V looks analytically like two r-dimensional subspaces of $\mathbf{A}_{k}^{2 r-1}$ meeting transversally. It follows that the Zariski tangent space of V at any singular point has dimension $2 r-1$. From this and the fact that π^{-1} (origin in $\mathbf{A}_{k}^{2 r-1}$) $=\left(\right.$ origin in \mathbf{A}_{k}^{r}), we find:

$$
\begin{equation*}
P_{0} \cdot A=P \tag{2}
\end{equation*}
$$

P does not contain any element of order 1.
Of course these results continue to hold if we drop the assumption $k=\bar{k}$. A subset of a minimal generating set. It is clear that P_{0} contains the following elements:

$$
\begin{array}{ll}
t_{i} u_{J}-t_{j} u_{i} & 1 \leqslant i<j \leqslant r-1 \\
t_{i}^{2} v-u_{i}^{2} & 1 \leqslant i \leqslant r-1 \\
t_{t} t_{j} v-u_{t} u_{j} & 1 \leqslant i<j \leqslant r-1
\end{array}
$$

Using (3) and the fact that these elements are linearly independent modulo m^{3} (where $m=$ maximal ideal of A), we see that they form a subset of a minimal generating set of P. In this way we have \$hown that a minimal generating set of P must have at least $(r-1)^{2}$ elements.

We claim that (4.1) and (4.2) generate P.
Proof of the claim. By (2), it suffices to show that the elements in question generate P_{0}. Let I be the ideal generated by these elements. We observe that $\varphi_{0}\left(A_{0}\right)$ is generated by monomials; therefore $\operatorname{Ker}\left(\varphi_{0}\right)$ is spanned as k-vector space by the elements $M-N$, where M and N are monomials such that $\varphi_{0}(M)=\varphi_{0}(N)$. Therefore it will suffice to show that $M-N \in I$.

Let $f_{1} g_{1} v^{a}-f_{2} g_{2} v^{b} \in \operatorname{Ker}\left(\varphi_{0}\right)$, where f_{1}, f_{2} are monomials in u_{1}, \ldots, u_{r-1}, and g_{1}, g_{2} are monomials in t_{1}, \ldots, t_{r-1}. We must show that $f_{1} g_{1} v^{a}-f_{2} g_{2} v^{b} \in I$. We reduce to the case where degree $\left(f_{1}\right) \leqslant 1$ and degree $\left(f_{2}\right) \leqslant 1$ by using the fact that $u_{i} u_{j}-t_{t} t_{j} v \in I$ for all i, j. In this case we may also assume that degree $\left(f_{1}\right)=\operatorname{degree}\left(f_{2}\right)$ and $a=b$, because $\varphi_{0}\left(f_{1} g_{1} v^{a}\right)$ and $\varphi_{0}\left(f_{2} g_{2} v^{b}\right)$ must have the same degree in t_{r}. If $f_{1}=f_{2}=1$, or if $f_{1}=f_{2}=u_{i}$, we must have $g_{1}=g_{2}$. Finally if $f_{1}=u_{1}$ and $f_{2}=u_{\text {, with }}$ $i \neq j$, we observe that $t_{t}\left|g_{2}, t_{j}\right| g_{1}$. We then use the fact that $t_{i} u_{j}-t_{j} u_{t} \in I$ to conclude that $f_{1} g_{1} v^{a}-f_{2} g_{2} v^{b} \in I$.

References

[1] A. Andreotti and P. Holm: Quasi analytic and parametric spaces, Real and Complex Singularities, Oslo (1976); Sijthoff and Noordhoff, The Netherlands (1977) 13-97.
[2] M. Artin and M. Nagata: Residual intersections in Cohen-Macaulay rings, J. Math. Kyoto Univ. 12-2 (1972) 307-323.
[3] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, AddisonWesley (1969).
[4] E. Bombieri: Sulla seminormalità e Singularità ordinarie, Symposia Mathematica XI, Academic Press (1973) 205-210.
[5] N. Bouraki: Algèbre Commutative, Ch. IV and V, Hermann, Paris, (1961 and 1964).
[6] P. Freyd: Abelian Categories, Harper \& Row, New York (1964).
[7] S. Greco and C. Traverso: On seminormal schemes, Comp. Math. 40 (1980) 325-365.
[8] R. Hartshorne: Algebraic Geometry, Springer GMT 52, New York (1977).
[9] R. Hartshorne: Complete intersection and connectedness, Am. J. Math. 84 (1962) 497-508.
[10] M. Hochster and J.A. Eagon: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Am. J. Math. 93 (1971) 1020-1058.
[11] I. Kaplansky: Commutative Rings, Boston: Allyn and Bacon (1970).
[12] J.V. Leahy and M.A. Vitulli: Seminormal rings and weakly normal varieties, Nagoya Math. J. 82 (1981) 27-56.
[13] H. Matsumura: Commutative Algebra, Massachusetts; Benjamin/Cummings (1980).
[14] T.T. Мон: On the unboundedness of generators of prime ideals in power series rings of three variables, J. Math. Soc. Japan 26 (1974) 722-734.
[15] M. Nagata: Local Rings, New York: Interscience (1962).
[16] D.G. Northcott: The number of analytic branches of a variety, J. Lond. Math. Soc. 25 (1950) 275-279.
[17] F. Orecchia: Sulla seminormalità di certe varietà affini ridicibili, Boll. Un. Mat. Ital. 13-B (1976) 558-600.
[18] J. Roberts: Generic projections of algebraic geometry, Am. J. Math. 93 (1971) 191-214.
[19] J. Roberts: Hypersurfaces with nonsingular normalization and their double loci, J. Algebra 53 (1978) 253-267.
[20] J. Roberts: Ordinary singularities of projective varieties, Thesis, Harvard University, May (1969).
[21] J. Roberts: Singularity subschemes and generic projections, Trans. Am. Math. Soc. 212 (1975) 229-268.
[22] J. Roberts: Some properties of double point schemes, Compt. Math. 41 (1980) 61-94.
[23] J.P. Serre: Algèbre Locale. Multiplicités, Springer Lecture Notes in Math. 11 (1965).
[24] C. Traverso: Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa 24 (1970) 585-595.
[25] M.A. Vitulli: On grade and formal connectivity for weakly normal varieties (preprint of University of Oregon).
[26] O. Zariski: An Introduction to the Theory of Algebraic Surfaces, Springer Lecture Notes in Math. 83 (1969).
[27] O. Zariski and P. Samuel: Commutative Algebra, Vol. I and II, New York: Van Nostrand (1958).
[28] W. Adkins, A. Andreotti and J. Leahy: Weakly normal complex spaces, Accad. Naz. Lincei Contributi del Cen. Interdisciplinare di Scienze Mat. 55, (1981) 2-56.
[29] W. AdKINS: Weak normality and Lipschitz saturation for ordinary singularities (preprint of Louisiana State University).
(Oblatum 10-VI-1982)
Department of Mathematics
Faculty of Science
University of Tehran
Tehran 14
Iran

