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1. Introduction

Seminormality of generic projections has been conjectured by some
authors, such as E. Bombieri [4], A. Andreotti and P. Holm [1]. The
major objective of this paper has been in this direction. Our main result
is the following.

THEOREM: Let X be a nonsingular projective variety of dimension r  6 over
a field k with char(k) ~ 2, 3. Assume that X is suitably embedded. If
03C0: X ~ Pmk is a generic projection where (3r - 3)/2  m  2r, then 03C0(X)
is seminormal.

For real varieties, a similar result has been proved when 3r/2  m  2 r
by Andreotti and Holm [1, Theorem 25.1]. By completely different
methods the result has been proved for complex varieties in the range
(3r - 1)/2  m  2r by Adkins, Andreotti and Leahy [28, Corollary 7.5].
The case m = [(3r - 3)/2] is of particular importance. From the geomet-
ric point of view, the difficulty is due to appearance of the two following
types of singularities: points with several analytic branches where some
of them are non-linear, points of S(2)1-type singularity. Our theorem
covers this case as well. Adkins has recently proved that generic projec-
tions in all range are Lipschitz saturated which is a weaker property than
seminormality [29, Theorem 5.1].

Our basic method to check the seminormality of generic projections is
Proposition (2.10). At some points we have checked the seminormality
directly. A condition on the depth of certain modules which is needed to
complete the proof of the main theorem, is proved in the following
chapter.
An earlier version of this paper formed part of a Ph.D. thesis, written

at the University of Minnesota under the direction of Professor Joel
Roberts. 1 wish to thank him for his encouragement and for many
valuable suggestions. The appendix is an unpublished result of Professor
Roberts which we have used in this paper several times.
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We would like to refer to R. Hartshorne’s book of algebraic geometry
[8] for the notation and the techniques of modern algebraic geometry,
which will be used throughout this paper.

2. Preliminaries and some criteria of seminormality

All rings will be assumed to be commutative with identity. Let A be a
ring, let B be an overring of A. The conductor of A in B is ( A : B) = {a E
A : aB ~ A} which is also the annihilator of the A -module B/A . Let K be
the total ring of quotients of A. We denote by A the integral closure of A
in K. (A : A) is called the conductor of A. We will let R(A) denote the
Jacobson radical of A, i.e., R(A) is the intersection of all maximal ideals
of A. Let M be an A-module, for P E Spec(A), we denote by Mp the

Ap-module S-’M, where S = A - P. If m E M, we let mp denote the

image of m under the canonical homomorphism M - Mp. We also let
k(P)=Ap/PAp.
DEFINITION (2.1): Let A c B be an integral extension of rings. We define

+ A is called the seminormalization of A in B and if A = + A we say that
B B
A is seminormal in B. If B is the integral closure of A (in its total ring of
quotients) we set + A = + A and we say that A is seminormal if A = + A.

B
+ A is called the seminormalization of A.
REMARK: Some authors for a ring A to be seminormal, besides the

condition A = +A, require that A to be a Mori ring [7,1.3]. A Mori ring
is a ring which is reduced and its integral closure is a finitely generated
A-module. Since algebro-geometric rings are Mori rings [27, Vol. I, page
167, Theorem 9, and Vol. II, page 320, Theorem 31], in dealing with
varieties the two definitions will coincide.
We recall Traverso’s characterization of the operation of seminormali-

zation.

PROPOSITION (2.2): (Traverso [24]). + A is the largest subring A’ of B
B

containing A such that:
(1) For each P E Spec( A ), there is exactly one P’ E Spec( A’) lying over

P, and

(2) The canonical homomorphism k(P) - k(P’) is an isomorphism.

The following version of a result of Greco and Traverso will be used in
this paper.

THEOREM (2.3): (Greco and Traverso [7, Theorem 2.6].) Let B be a finite
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overring of the ring A. Then :
(a) The following are equivalent:

(i) A is seminormal in B;
( ii ) Apis seminormal in B p for all P E Spec(A);

(iii ) Am is seminormal in Bm for all maximal ideals m of A;
(iv) Ap is seminormal in Bp for all P ~ AssA(B/A).

(b) Consider the condition
(*) every non-zerodivisor of A is a non-zerodivisor in B.

If (*) holds and A is Si then the conditions (i) to (iv) are equivalent
to:

(v) nil(B) c A and A p is seminormal in Bp whenever depth( A p ) =
1.

( c) If (*) holds and A is S2 then (i) to (v) are equivalent to:
(vi) nil(B) ~ A and Ap is seminormal in Bp whenever P has height

1.

REMARK: The formulation of Greco and Traverso is the same as Theorem

(2.3) except that in (b) A is not assumed to be Si and the condition
nil(B) ~ A is not imposed in either (v) or (vi). Under such weaker
hypothesis the implications (v) - (i) and (vi) - (i) are not valid. As a
counterexample let A = k be a field, let B = k[x]/(x2). Then (v) and (vi)
are satisfied but A is not seminormal in B because + A = B. In the

B
suggested formulation the proof of the mentioned implications follows
from the argument given by Greco and Traverso and the following
lemma. Observe that Theorem (2.3) applies when B is the normalization
of a Mori ring A.

LEMMA (2.4): Let K be a ring of dimension zero, and let R be a finite
overring of K. If nil(R) c K then K is seminormal in R. ( By dimension of a
ring we mean its Krull dimension).

PROOF: Let C = + K. We show that Cred = K red’ then since nil(C) c K,
R

by [7, Proposition 2.5, (ii) - (i)] K is seminormal in C, which is not

possible unless C = K. If P1,..., Pn are the prime ideals of K, then

Kred ~ x ... X Kn where K, = K/Pi. As C is the seminormalization of
K, Spec(C) consists of Q1,..., Qn where Q, lies over P,, and since Q, are
also maximal ideals of C, C/Ql ~ K,. But then Cred - C/Qi X
...  C’/Qn ~ K1  ...  Kn ~ Kred.
We will need the following result of Orecchia.

PROPOSITION (2.5): (Orecchia [17, the main result].) Let A be a noetherian
reduced ring with minimal primes PI,...,Pn’ Let A, = A/P,, and I =
( A : 03A0ni=1 Al). Assume that the ideals Pi + ~l~JhPJ ( i, h = 1,...,n) all are
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unmixed of common pure height whenever ~l~JhPJ ~ Ø. Then the following
are equivalent: 

(i) A is seminormal in 03A0nl=1 Al;
(ii) I is a radical ideal in A ;
(iii) For every associated prime P of I, the Zariski tangent space OX,P of

X = Spec(A) at P is the direct sum of the Zariski tangent spaces
0398Xl,Pl of Xl = Spec(A,) corresponding to the minimal primes P,
contained in P.

NOTE: Observe that we have

We now recall that if R is a noetherian ring, and M is an R-module, an
M-regular sequence (or simply M-sequence) of length n is a sequence

al, ... , an of elements in R such that a, is not a zerodivisor of M, and al is
not a zerodivisor of M/(a1,...,al-1)M for i = 2,..., n - 1, and

(a1,..., an). M =1= M. By depthR (M) we mean the length of a maximum
M-regular sequence. Also, dim R ( M ) = sup dim(R/P), for all P E

AssR(M).
The following result is well-known (c.f. [2, Lemma 1.4], or for similar

result [11, page 103, exercise # 14]).

LEMMA (2.6): Let A be a local ring, and let

be an exact sequence of finite A-modules. Then one of the following
statements must hold:

(i) depth L  depth M = depth N
(ii) depth M  depth L = 1 + depth N
(iii) depth N  depth L = depth M.

We will need the following result of J.P. Serre [23, Chapter IV,
Proposition 12].

PROPOSITION (2.7) : Let (A, m) be a noetherian local ring, let B be a
noetherian ring, and let cp: A - B be a ring homomorphism. Assume that B
is a finite A-module via T, so that B is semilocal. Then depthA M =

depthB M.

NOTE: In the formulation of Serre B is local ring. However almost the
same proof applies when B is semilocal.

LEMMA (2.8): Let R be a Mori ring, let S be the integral closure of R.
Assume that S is a Cohen-Macaulay ring. Let C be the conductor of R.
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Assume that all minimal prime ideals of C have common height t. If P is a
prime ideal of R containing C, and of height h, then depthRp(Rp)  h - t
+ 1.

PROOF: Consider the exact sequence of R modules 0 ~ R ~ S ~ S/R ~
0. This gives an exact sequence of R p modules 0 ~ RP ~ SR-P ~
(S/R)R-P ~ 0. ( SR _ P means (R - P)-1. S, and so on). Let A = R p,
B = SR-P. Since S is a Cohen-Macaulay ring, B is a Cohen-Macaulay
ring. Since B i s the normalization of A, we have dim(B) = dim(A) =
height(P) = h. Thus depthB(B) = dim(B) = h. Since R is a Mori ring, S
is a finite R-module, and hence B is a finite A-module. Therefore by
Proposition (2.7) we have depthA(B) = h. We now show that

depthA((S/R)R-P)  h. Since C c P, P contains some minimal prime
ideals of C in R. Let Q1, ... , Qn be all the minimal prime ideals of C
contained in P. By assumption height(Qi) = t, i = 1, ... , n . Since S is a
finite R-module, the conductor of A in B is C · A [27, Vol. I, page 269].
The minimal primes of C · A are Q1·A,...,Qn·A. Since (S/R)R-p ~
(SR-P)/RP = B/A, and by definition we have dim, (BIA) = dim(A/Qi
· A), (Krull dimension), and

we obtain that depthA((S/R)R-P)  dimA ( B/A) = h - t  h. Now

applying Lemma (2.6) for the exact sequence 0 - A - B ~ B/A ~ 0,
since depthA(B/A)  depthA(B), we obtain

COROLLARY (2.9): Let X be a nonsingular projective variety of dimension r.
Let 03C0: X - Pmk, r + 1  m  2r, be a generic projection. Let e be a general
point of X’= 03C0(X) of height h, which lies on Sing( X’). Then depth(OX’,03BE)
 r + h - m + 1.

PROOF: By [18, Theorem 1], Sing( X’) is equidimensional of dimension
2 r - m. Thus an application of Lemma (2.8) for t = r - (2 r - m) = m - r
implies the desired inequality.
We will impose the condition of being a Mori ring as part of the

definition of seminormality of a ring. We recall that a scheme (locally
noetherian) is said to be seminormal if it can be covered by affine open
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sets whose rings are seminormal. This is equivalent to having all local
rings seminormal. Also recall that such local rings are seminormal if and
only if their completion are seminormal [12, Theorem 1.20].

PROPOSITION (2.10): Let X’ be a variety of dimension r  2. Assume that
on each irreducible component of Sing(X’) there is at least one point y such
that OX’,y is seminormal. If for every non-generic point e of Sing(X’) we
have depth(OX’,03BE)  2, then X’ is a seminormal variety.

PROOF: By Theorem (2.3) we neéd to show that (9xl,y is seminormal for
every closed point y ~ X’. If y is a nonsingular point, then OX’y is a

regular local ring. Thus assume that y E Sing( X’). Let A = OX’,y. Since X’
is a variety, A is a Mori ring. Thus by Theorem (2.3) it is enough to show
that Ap is seminormal for all p E Spec(A), whenever depth(Ap) = 1. In
other words, it is enough to show that (9x,@t is seminormal whenever

depth(OX’,03BE) = 1 for every general point t on Sing( X’). By the hypothesis
this may happen only whenever t is a generic point of Sing( X’). Each
irreducible component of Sing(X’) contains at least one point y such that
(9xl,y is seminormal. For any generic point 03BE of Sing(X’), Ox’,03BE is a

localization of OX’,y for some y such that OX’,y is seminormal. Thus (9x,, 4
is seminormal. 

REMARK: Let r  2. For generic projections as considered in corollary
(2.9), we saw that depth (OX’,03BE)  r + h - m + 1, for every general point 03BE
of height h which lies on Sing(X’). For h = m - r, e is a generic point of
Sing( X’), and since X’ is a variety we have depth (OX’,03BE) = 1. If e is not a
generic point of Sing( X’), then h  m - r + 1 and hence r + h - m + 1 
2. For X’ to be seminormal, by Proposition (2.10) we require that

depth(OX’,03BE)  2 for all such 03BE. This condition is weaker than assuming
that X’ is S2 variety. We also require that each component of Sing( X’)
contains at least one point y such that (0,,,y is seminormal. We will check
these conditions for certain generic projections. However we first like to
give an example to show that for "less generic" maps, it is possible that
there is no point y on Sing(X’) such that (9x,@y is seminormal. 
EXAMPLE (2.11 ) : Let X’ be the surface given by f(x, y, z ) = 3x2y - y3 +
( x 2 + y2)2 = 0 in C3 , and let X be the normalization of X’. The singular
locus of X’ is the "z-axis" f x = y = 0}. We claim that on no point P on
Sing(X’), (9x,@p is seminormal. It is enough to check the claim for the
origin P = (0, 0, 0), as for any other point Q on Sing(X’) we have
(9 X, ’Q ~ OX’,P. Let = (!Jx’,p C [[ x, y, z ]]/( f ). Since f does not involve z,
and the curve given by f in C2 has three simple analytic branchesat the
point (0, 0), X’ has three simple analytic branches at P and hence by
(2.5.1) the expression of the conductor of A is the same as the expression
of the conductor of C[[x, y]]/(f). It is clear that the curve f is not
seminormal (Fig. 2.11.1), hence by Proposition (2.5), the conductor of
C[[x, y]]/(f) is not a radical ideal of C[[x, y]]/(f). Thus the conductor
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Fig. 2.11.1.

of A is not a radical ideal in A and hence A is not seminormal. Also
observe that depth( A ) = 2.
We now prove a partial converse of Proposition (2.10).

PROPOSITION (2.12): Let X’ c Pkm be a variety of dimension r  2, where k
is an algebraically closed field. Let r + 1  m  2r - 1. Assume that

Sing( X’) is equidimensional of dimension 2 r - m. If X’ is seminormal then

depthOX’,y)  2 for every closed point y E X’.
PROOF: Let A = X’,y and let W be the maximal ideal of A. Since

depth(OX’,y) = depth(A), and A is a complete noetherian local ring, if we
show that A has rational normalization (i.e., A/(M1 ~ A) ~ B/M1 for
every maximal ideal M1 of B), and Spec(A) - ( M} is connected, then by
a recent result of M. Vitulli [25, Proposition 3.4] we will have

depth(OX’y)  2. If B is the normalization of A, and M1 is a maximal
ideal of B, then M1 lies over M and B/M1 is a finite extension of

A/M = k. Since k is algebraically closed, B/M1 = k, thus A has rational
normalization. To show that Spec(A) - {M} is connected, we use a
result of R. Hartshorne [9, Proposition 1.1). Let A = k[[t1,..., tm]]/P1 ~
...~Pn for some integer n. It is well-known that the prime ideals

Pl, ... , Pn all have height m - r. (For example this follows from more
general results in [15]. Because (9xl,y is dominated by A in the sense of
[15, page 14], and hence the theorem of transition [15, page 64, (19.1)]
holds for (9xl,y and A, and therefore by [15, page 75, (22.9)], the extension
of the zero ideal of (9x"y in A is equidimensional of dimension r). Let
Vi = Spec(A/Pi), i = 1,..., n. These are the irreducible components of
V = Spec(A). Since codim ({M}, V) = r &#x3E; r - 1, we need to show that
codim (Vi r1 V, V)  r - 1 for i, j = 1,..., n and i ~ j. This is equivalent
to prove that Pi + PJ ~ M for all i ~ j. But since a = k[[t1,..., tm]]/P1 ~
... ~ Pn and k[[t1,...,tm]] is a regular local ring, by a result of J.P. Serre
[23, ch. V, Theorem 3] if Q is any minimal prime ideal over P, + PJ, we
have
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Since m  2r, 2m - 2r  m and hence Q is not a maximal ideal of

k[[t1,...,tm]]. Therefore Spec(A) - {M} is connected.

COROLLARY (2.13): Let X be a nonsingular variety of dimension r  2, and
let qr : X ~ X’ c P2r-1k be a finite birational morphism of varieties such that
Sing( X’) is equidimensional of dimension one. Then X’ is seminormal if
and only if each irreducible component of Sing(X’) contains at least one
point y such that OX’,y is seminormal, and for every closed point z E Sing(X’)
we have depth(OX’,z) = 2.

PROOF: By Lemma (2.8), depth(OX’, z)  r - ( r - 1 ) + 1 = 2. Thus the

corollary follows from propositions (2.10) and (2.12).

PROPOSITION (2.14): Let X c pn be a nonsingular variety of dimension r,
embedded properly. Let 03C0: X ~ Pm be a generic projection, m = 2 r or
m = 2r - 1. Then X’ = 03C0(X) is a seminormal variety.

PROOF: For m = 2r, by [18, theorem 2], Sing(X’) consists of finitely
many points, and if y E Sing( X’), then X’,y ~ k[[t1, ..., t2r]]/I, where
I = (t1,...,tr) ~ (tr+1,...,t2r). Observe that here depth(OX’, y) = 1.
However X’, v is seminormal by Proposition (2.5), because the conductor
is (t1,...,t2r)/I which is a prime ideal of X’,y. For m = 2 r - 1 if r = 2,
then 2r - 1 = r + 1 and this case is proved by Bombieri [4]. Thus assume
that r  3. By [18, Theorem 3], Sing(X’) is purely of dimension 1, and for
all closed points on a dense open subset of Sing( X’), we have X’,y ~
k[[t1,...,t2r-1]]/I, where I = (tl,...,tr-I) ~ (tr,...,t2r-r). The latter ring
is seminormal again by Proposition (2.5). By Proposition (2.10) to prove
the seminormality of X’ we only need to show that for the remaining
points on Sing(X’), we have depth(OX’,y)  2. For these points if char(k)
~ 2, then X’,y ~ k[[t1,...,tr-1, t1tr,...,tr-1tr, t2]], and if char(k) = 2,
then X’,y = k[[t1,...,tr-1,t1tr,...,tr-1tr,t2r + t3r]]. We will show that

depth(X’,y)  2 by computing B the conductor of OX’,y.
Char (k) ~ 2. Let A = k[[t1,...,tr-1, t1tr,...,tr-1tr, t2r]]. The normali-

zation of A is B = k[[t1,...,tr]]. Let A0 = k[[t1,..., tr-1, t2r]] and let m be
the maximal idéal of A0. Since B is a finite A.-module and B/m · B is
generated by 1 and tr as a k-vector space, by Nakayama’s lemma B is
generated by 1, tr as an Ao-module. The prime ideal (tl,...,tr-I)’B is
contained in the conductor because if g + htr is any element of B, where
g, h ~ A0, then tl (g + htr) = gtl + htltr ~ A, for all i = 1,...,r - 1. On the
other hand since dim(Sing(X’)) = 1 and X is nonsingular, B has height
r - 1. Therefore B=(t1,...,tr-1)·B. Now we consider the exact se-

quence of A -modules 0 - A - B - B/A ~ 0. If we show that

depthA(B/A)  1, by Corollary (2.9) and part (ii) of Lemma (2.6) we
have depth(A)  2. We claim athat t2r is a non-zerodivisor of B/A . let
f=g+htrEB-A, g, h E Ao. Then h ~ B because otherwise f ~ A. As-
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sume that ft2r ~ A, then gtr + ht2rtr ~ A, thus ht2rtr ~ A. Since ht2r ~ A, we
have htr E B. But h ~ B and B is a prime ideal of B, therefore tr E B.
This is a contradiction.

Char (k) = 2. Let A = k[[t1,..., tr-1, t1tr,...,tr-1tr,t2r + t3r]] and A0 =
k[[t1,..., tr-1, t2r + t3r]]. Again the normalization of A is B = k[[t1,...,tr]].
By the same argument as above B is generated by 1, Ir as an Ao-module,
and B = (t1,...,tr-1), t2r + t3r is a non-zerodivisor of B/A, because if

f = g + htr, g, h E A0, h ~ B and f(t2r + t3r) ~ A, then h(t2r + t3r)tr ~ B,
thus (1 + tr)ht3r ~ B, hence ht3r ~ B, (B as an ideal of B), therefore

tr ~ B, which is a contradiction.

3. Seminormality of some strongly generic projections

In this chapter we will examine seminormality through the theory of
singularity subschemes. For basic properties of singularity subschemes
we refer to [21]. Let f : X ~ Y be a morphism of nonsingular varieties
over a field, with dim(X) = r, dim(Y) = m. Let x be a closed point of X
and y = f(x). For i  0, the first order singularity subscheme of f, Sl(f),
is defined by ( i - l)-st Fitting ideal of 03A91X/Y, where 03A91X/Y is the sheaf of
relative Kahler differentials of X over Y. Sl(f) is a closed subscheme of
X such that x ~ Sl(f) if and only if dimk(x)(03A91X/Y(x))  i. I f k is

algebraically closed and x is a closed point of X, then x ~ Sl(f) if and
only if the linear map of Zariski tangent spaces 0398X,x ~ 0398Y,f(x) has rank
 r - i, where r = dimk(0398X,x). The higher order singularity subscheme
S(q)1(f) c X - S2(f) is defined by the q-th Fitting ideal of OX-algebra of
q-th order relative principal parts corresponding to f. Then S(0)1(f) = X
- S2 ( f ). For q  1 if k is algebraically closed, and if x is a closed point
of X, then x E S(q)1(f) if and only if:

(i) dimk[mx/(f#(my)·Ox + m2x)] = 1, and
(ii) dimk[Ox/f#(my)·Ox]  q + 1,

where (Ox, mx) = OX,x, (my, my) = OY,y and f#: Oy ~ mx is induced by f.
For d  1, let 03A3d(f) ~ X  Y...  YX (d-fold fibre product) be the

complement of the union of all diagonals. If q1,...,qd are non-negative
integers, we regard S(q1)1(f)  Y...  YS(qd)1(f) as a subscheme of X
x 

Y... 
x y X. Then by définition

On can regard 03A3d(f ; q1,...,qd) as consisting of all d-tuples (x1,...,xd)
of distinct closed points of X such that (a) xJ ~ S(qJ)1(f), j = 1,..., d, and
(b)f(x1)= ... = f(Xd)’

By [21, Theorem A], if X is a nonsingular projective variety of

dimension r, and r + 1  m  2 r, then there is an embedding X c p k n for
some n such that if 03C0: X - Pr is a generic projection, then

03A3d(03C0; ql"" qd ) is either empty or of pure dimension 1 = dr - ( d - 1)m
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- ( m - r + 1) 03A3dJ=1qJ. If char(k) + (qJ + 1) for all j, and if 7r is " strongly"
generic, then 03A3d(03C0; q1,..., qd) is nonsingular too. By [21, Theorem 12.1]
if xJ ~ S(qJ)1(03C0) - S(qJ+1)1(03C0), j = 1,...,d, and if X’ = 03C0(X), y=f(x)),
i = 1, ... , d, then identifying X,xJ by k[[t1,..., tr]] and Pm by
k[[u1,...,um]], the induced map Pm,y ~ 03A0dJ=1X,xJ will be identified by
g = (g1,...,gd), where gj: k[[u1,...,um)] ~ k[[t1,...,tr]], j =1,...,d are
defined as

This gives the canonical form of &#x26; X’,y for those points y such that if

y = qr(x), then x ft S2(03C0). By [21, Corollary 7.5] J for generic projections
S2(03C0) is either empty or of pure codimension 2( m - r + 2) in X. We will
consider those values of m for which S2(03C0) is empty, namely m &#x3E; (3r -
4)/2. For r even we get m  (3r - 2)/2, for r odd we get m  (3r - 3)/2.

For m = r + 1 the assertion is proved by Greco and Traverso when
char(k) = 0 [7, Theorem 3.7]. The inequalities m  r + 2 and m &#x3E; (3r -
4)/2 are admissible for r  6. So we will always assume that r  6 and
m &#x3E; (3r - 4)/2.

Observe that by [21, Corollary 1.2] for q  0, and for strongly generic
projections S(q)1(03C0) is either empty or of pure codimension q(m - r +
1),and if char(k) + ( q + 1), siq)(11") is smooth. If r is even and m  (3r -
2)/2, then q(m - r + 1)  (qr)/2. Thus if q  3, S(q)1(03C0) =)1. If r is odd
and m  (3r - 3)/2, then q( m - r + 1)  q( r - 1)/2. hence for q  3

again S(q)1(03C0) =)1. Therefore in the range (3r - 4)/2  m  2 r, we will
only deal with S(1)1(03C0) and S(2)1(03C0). We also will always assume that
char(k) ~ 2, 3 so that these subschemes are smooth.

Also observe that since S2(77) = Ø, S(1)1(03C0) = S1(03C0) and hence if x E X
- S(1)1(03C0), the map of Zariski tangent spaces 0398X,x ~ 0398Pm,y has rank r,
where y = 03C0(x). Therefore if X’ = 03C0(X) is analytically irreducible at y,
we have OX,x ~ OX’,y.
We will need the following proposition.

PROPOSITION (3.1): Let A be a Mori ring. Then A is seminormal if and only
if A[x] is seminormal.

PROOF: By a result of Traverso [24, Theorem 3.6], a ring B is seminormal
if and only if the canonical homomorphism Pic(B) - Pic(B[T]) is an

isomorphism for any finite set of in determinants T, where Pic( B ) is the
group of isomorphism classes of invertible sheaves on Spec( B ) under the
operation 0. (cf. [8, page 143]). Also recall that a Mori ring B is
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seminormal if b E if, b2, b3 ~ B, then b E B, where B is the normalization
of B [12, Proposition 1.4]. Let A be seminormal. Consider the following
commutative diagram:

f and g are isomorphisms, thus h is an isomorphism and hence A[x] is
seminormal. Conversely assume that A[x] is seminormal. Observe that
the normalization of A[x] is A[x], where A is the normalization of A. Let
b E A and b2, b3 ~ A. Then b E A[x] ] and hence b ~ A. Therefore A is

seminormal.

THEOREM (3.2): Let X be a nonsingular projective variety of dimension r,
r  6, embedded appropriately. Then strongly generic projections 03C0: X - Pmk
are seminormal for all m, (3r - 3)/2  m  2r.

PROOF : For m = 2 r and m = 2 r - 1 we have already proved this in fact
with no restriction on char(k) or r. Thus we assume that m  2 r - 2. We
will divide the proof of this theorem into four cases. Case 1; m  3r/2.
Case 2; r odd, m = (3r - 1)/2. Case 3; r even, m = (3r - 2)/2. Case 4; r
odd, m = (3r - 3)/2.

Case 1. m  3r/2. Let l = dim 03A3d(03C0; q1,...,qd). If 03A3dj=1qj1, then

Thus for d  2, 03A3d(03C0; q1,...,qd) = Ø. Therefore by the fact that the
number of analytic branches at a point y E X’ = 03C0(X) and the number of
points as x ~ X such that 03C0(x) = y are equal [16, Theorem 1 ], X’ is

analytically irreducible at every point x E S(q)1(03C0), q  1. Since

S(2)1(03C0) = Ø and dim(S(1)1(03C0)) = (r - 2)/2. We will apply Proposition
(2.10). By [18, Theorem 1], every irreducible component of Sing(X’)
contains a dense open subset such that on this set X’,y ~ k[[u1,..., um ]]/I,
where I = (u1,...,um-r) ~ (um-r+1,...,u2(m-r)). Thus (!J X’,y is seminor-
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mal by Proposition (2.5). Let x E S(1)1(03C0) and y = 03C0(x), and let A = &#x26; x’ .
By (3.0.1) we have

Let B = K [[t1,...,tr]]. Since by [18, Theorem 1] Sing(X’) has pure
codimension m - r in X’, and X is nonsingular, the conductor of A is
B = (t1,..., tm-r)· B. Thus by similar method as in Proposition (2.14), we
have depth(A)  2. Thus X’ is seminormal by Proposition (2.10).

Case 2. r odd, m = (3r - 1)/2. If 03A3dJ=1qJ 1, then

Hence 03A3d(03C0; q1,...,qd) = Ø for d  3. For d = 2, l = [1 - (q1 + q2)](r +
1)/2, which is negative if ql + q2  2. If ql + q2 = 1, then 1 = 0, i.e., there
are only finitely many points as y on X’ such that X’ has two analytic
branches at y, and if 03C0-1(y) = {x1, x2}, then x1 ~ S(1)1(03C0) - S(2)1(03C0) and
x2 ~ X - S(1)1(03C0). By (3.0.1) this means that one of the two analytic
branches is simple and another has an ordinary pinch point. Both of
these branches are seminormal. If ql = q2 = 0, then 1 = ( r + 1)/2. We will
directly prove that OX’,y is seminormal for such closed points y E X’ by
using Proposition (2.5). Let q, = 1, q2 = 0. The integral closure of (fl X’,y is
tbX’’1T-l(y) ~ X,x1  X,x2 ~ If g =
(g1, 92): Pm,y ~ X,x1 X (fl X’X2 is the map given in (3.0.1), then X’,y ~
k[[u1,..., um]]/(Ker(g1) ~ Ker( g2 )). By [21, Theorem 12.1], gl and g2 are
defined by:

Let Pl = Ker(g1), P2 = Ker(g2)’ By the appendix Pl is a prime ideal of
k[[ul,...,u.1] generated by certain elements which only involve

u1,...,um-r, Ur, Ur+1,...,um. Clearly P2 = (um-r+1,...,ur-1). This would
imply that Pl + P2 is a prime ideal of k[[u1,..., um]]. If ab E Pl + P2, we
can write a = al + a2 and b = bl + b2 where a,, bl do not have any term
involving um-r+1,...,ur-1 and a 2 , b2 E P2 . Thus abEPI+P2 implies
that albl E Pl + P2. But albl does not have any term involving
um-r+1,...,ur-1, thus al bl E Pl and hence ai E Pl or b1 ~ P1. Therefore
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a E Pl + P2 or b E Pl + P2. Therefore the conductor W= ( Pl + P2)/(P1
n P2) is a prime ideal of t9x’,y, Since k[[u1,...,um]]/P1 is seminormal by
case 1 and k[[u1,...,um]]/P2 is a regular local ring, X’,y is seminormal
by Proposition (2.5). If ql = q2 = 0, then again by [21, Theorem 12.1],
g = ( gl, g2 ) will be defined as

Thus X’,y ~ k[[u1,...,um]]/I where I = (u1,...,um-r) ~ (ur+1,...,um).
Since m - r = (r - 1)/2  r + 1, bx,@y is seminormal by Proposition (2.5).
For d = 1, since codim(S(2)1(03C0)) = 2( m - r + 1)  r + 1, we have S(2)1(03C0)
= Ø. I f y = 03C0(x) and x E S(1)1(03C0), then X’,y is seminormal again as in
case 1. If x E X - S(1)1(03C0), then m X’,y is a regular local ring and hence is
seminormal. Therefore X’ is a seminormal variety.

Case 3. r even, m = (3r - 2)/2. If 03A3dJ=1qJ1, then l  dr - (d - 1)
(3r - 2)/2 - r/2 = [(r-2)(2 - d )/2] + 1. Thus if d  3, then

03A3d(03C0; q1,...,qd) = Ø. Let d = 2, then l = (r/2) + 1 - r(ql + q2)/2 = r
[1 - ( ql + q2)] + 1 which is negative if ql + q2  2. Let ql + q2 = 1, then
1 = 1. Thus 03A32(03C0; 1, 0) is one dimensional, and if (x1, x2) ~ 03A32(03C0; 1, 0)
and y = 03C0(x1) = 03C0(x2), then X’,y is seminormal. To see this observe that
with similar notation as previous cases, here g2 will be defined as

Thus P2 = (Um-r+1,...,ur-1). The rest of the proof of X’,y being semi-
normal is the same as the proof of similar part in case 2 considering only
this change in P2. If ql = q2 = 0 by the same proof as in case 2, X’,y is
seminormal. Now assume that d = 1. If y = 03C0(x) and x E S(1)1(03C0), mX’,y is
seminormal as before. However in this case dim(S(2)1(03C0)) = r - 2( m - r +
1) = 0. Thus there are finitely many points as y on X’ such that if

y = 03C0(x), x ~ S(2)1(03C0). Since we have proved that f9x’,y is seminormal for
all closed points y E X’ except for points y such that x = 03C0-1(y) e S(2)1(03C0),
and since any localization of a seminormal ring is seminormal, all local
rings OX’,03BE are seminormal, where t is any general point of X’ except these
closed points y. Thus by Theorem (2.3) and Proposition (2.12) X’ is

seminormal if and only if depth(X’,y)  2 for these finitely many points.
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By (3.0.1) we have

By Corollary (2.9) the statement (ii) of Lemma (2.6) holds for the

corresponding exact sequence of modules, so it is enough to show that

Let A = k[t1,...,tr-1, t1tr + t2t2r,...,tr-1tr +t3r]and B = k[t1,...,tr]. We
need to show that depthA(B/A)  1. This is a very delicate work to do
and requires more information about the structure of A. In Chapter 4 we
will set up the required machinery of the theory of double point schemes
to compute the conductor of A and then using this together with some
more finer constructions we will prove that depthA(B/A)  1. Therefore
X’ again would be seminormal. This in particular would imply that the
local ring k[[t1,..., tr-1, t1tr + t2t2r,..., tr-1tr + t3r]] is seminormal.

Case 4. r odd, m = (3r - 3)/2. We will discuss this in two subcases
r  9 and r = 7.

(a). r  9. If 03A3dJ=1qJ 1, then 1  dr - ( d - 1)(3r - 2)/2 = [(r - 3)(2 -
d )/2] + 2. Since r  9, for d  3 we have l0. For d = 2 we have
1 = ( r + 3)/2 - (r - 1)(q1 + q2)/2 = [(r - 1)[1 - (q1 + q2)]/2] + 2. which
is again negative for qi + q2  2. Let ql + q2 = 1, then 1 = 2. Thus

03A32(03C0; 1, 0) is two dimensional. The situation is similar to case 3. The
map g2 will be defined as

Thus P2 = (tm-r+3,...,tr-1). Therefore similar proof as case 3 works. If
ql + q2 = 0, again by the proof as case 2, the local rings at corresponding
points on X’ are seminormal. Assume that d = 1. If y = 03C0(x) and
x E S(1)1(03C0), &#x26;x"x is seminormal. In this case dim(S(2)1(03C0)) = r - 2( m - r
+ 1) = 1. If y = 03C0(x) and x ~ S(2)1(03C0), by (3.0.1) we have

Thus x’,y ~ [[t1,...,tr-2, tl tr + t2t2r,..,tr-2tr + t3r]][[tr-1]]. Since by case
3 the ring k[t1,...,tr-2, t1tr + t2t2r,...,tr-2tr + t3r] ] is seminormal, by
Proposition (3.1) and [12, Theorem (1.20)] X’,y is seminormal.

(b) r = 7, ( m = 9). If 03A3dJ=1 qJ  1, then 1  6 - 2 d which is negative if
d  4. If d = 3, then 1= 3 - 3(q1 + ql + q3). Thus if ql + q2 + q3  2,
again 1  0. For ql + q2 + q3 = 1 we have 1 = 0. Thus there are finitely
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many points as y on X’, such that X’ has three analytic branches at y, one
branch is an ordinary pinch point and two branches are simple. With the
notation introduced in (3.0.1), by [21, Theorem 12.1], the homomorphism
gl, g2, g3 on k[[u1,...,u9]] into k[[t1,..., t7]] are defined as:

Let Pl = Ker(gl), i = 1, 2, 3. By the appendix we have P1 = (u1u9 -
u2ug, UlU7 - U28, u2u7 2 2 _ U9 2 u1u2u7 - ugu9). Clearly P2 = (u3, u4), P3 =
( us, u6). Let B = k[[u1,...,u9]]. Since B/Pl, i = 1, 2, 3 are seminormal,
by Proposition (2.5), to show that X’,y = B/(P1 ~ P2 n P3) is seminor-
mal it is enough to show that the ideals P1 + P2, Pl + P3, P2 + P3,
Pl + P2 n P3, P2 + Pl n P3, P3 + Pl n P2 are radical ideals of B with
common pure height 4. It is clear that the ideals Pl + p2, Pl + P3, P2 + P3
are in fact prime ideals. By the appendix, Pl has height 2, and by [23, Ch.
V, Theorem 3] we have height( Pl + P2 )  4. Since Pl + P2 contains a
subset of a system of parameters of B which consists of 4 elements, we
have height( Pl + P2 ) = 4. Similarly height( Pl + P3 ) = 4. It is also clear
that height( P2 + P3) = 4. Now we show that the ideal P2 + Pl r1 P3 is
radical. Let fn E P2 + Pl n P3. We can write f = g + h such that g E P2
and h does not have any term involving u3, U4. Then fn = ggl + h" for
some gl E B. Thus fn ~ P2 + P2 n P3 implies that h" E P2 + Pl n P3. Since
P2 = (u3, u4) and h" does not involve U3 and U4, we have h" e Pl n P3,
thus h E Pl n P2, and hence f = g + h E P2 + Pl n P3. Similarly P3 + Pl n
P2 is a radical ideal of B. To show that Pl + P2 n P3 is a radical ideal
consider the homomorphism g1 : B ~ k[[t1,..., t7]], let Q2 = ( t3, t4), Q3 =

(ts, t6)’ Then P2 = gi l(Q2), P3 = g-11(Q3) and hence 91 ’(Q2 n Q3) = P2
n P3. Thus gi induces a homomorphism B/(P2 ~ P3) ~
k[[t1,..., t7]]/(Q2 ~ Q3). The kernel of this map is a radical ideal,
because k [[ tl, ... , t7]]/(Q2 ~ Q3) is a reduced ring. But the kernel of this
map is Pl + P2 n P3. Therefore Pl + P2 n P3 is also radical. Any minimal



260

prime ideal over Pl + P2 n P3 or P2 + Pl ~ P3 or P3 + Pl ~ P2 has height
 4, and since any of these three ideals contain a 4-element subset of a

system of parameters of B, such a minimal prime has height 4. Therefore
these ideals all are of pure height 4. Hence Proposition (2.5) now applies
to imply seminormality of 19x’,y, The seminormality of the local rings of
X’ at the other points were covered at part (a).

The proof of Theorem (3.2) is now complete.

4. Calculation of some conductors

In proving the seminormality of strongly generic projections we encoun-
tered with the fact that if y = 03C0(x) and x ~ S(1)1(03C0), the conductor of
19 X’,y is a prime ideal of the normalization of this ring. We also found an
explicit expression for the conductor. It is therefore tempting to ask this
question when x E S(2)1(03C0).

Let X be a nonsingular projective variety of dimension r. Let r be even
and r  6, and let m = (3r - 2)/2. We consider a strongly generic projec-
tion 03C0: X ~ Pmk. Let X’ = 03C0(X). If y = 03C0(x), x ~ S(2)1(03C0) and X’ is

analytically irreducible at y, then we have

Our result will give explicit expressions for the conductors of these rings.
We will then prove the result needed in Theorem (3.2).
We need to recall some properties of the blowing up of an affine

variety along a closed subscheme of the variety which is a complete
intersection.

Let Y = Spec( B ) be a nonsingular affine variety. Let Z = Spec( A ) c Y
be a nonsingular closed subvariety of Y which is a complete intersection.
Thus A ~ B/I where I=(f1,...,fd) and d = Codim(Z; Y). Let  =
Proj() be the blowing up of Y along Z, where B = B ~ I ~ I 2 ~ .... Let
~: ~ Y be the canonical projection. The closed subscheme of ,
E = Proj(/I. B ) is called the exceptional locus of the blowing up. The
underlying topological space of E is ~-1(Z). Observe that since

where grl(B) is the associated graded ring of B with respect to I, we have
E = Proj(grl(B)). The ring B, as a graded B-algebra is generated by
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degree one elements f1,..., fd. Thus Y = Proj() is a union of affine open
subsets D+(f1),...,D+(fd), where D+(h)= Spec((fl)). and (fl) is the
degree zero part of fl, i = 1,..., d. Let us fix i = 1. Observe that

(fl) ~ B[f2/f1,... ,fd/f1], because the elements of (f1) are finite sum of
elements of the form h/fl where h E lm for some m, thus the elements
of (f1) are polynomials in f2/f1,...,fd/f1. Therefore D+(f1) ~
Spec(B[f2/f1,...,fd/f1]) = Spec(B[g1,...,gd]) where gl ~ K, the ring of
quotients of B, and flgl = h, i = 2,..., d.
We now restrict ourselves to a special case. Let X= Ark be the

r-dimensional affine space. Let Y = X  k X = A2rk and let Z = 0394X be " the
diagonal" in X  kX. Z is a complete intersection. Let r be even and
r  6, and m = (3r - 2)/2. Define the morphism f : Ark ~ Amk by
f(t1,...,tr)=(u1,...,um) where

Consider the morphism f  f : A2rk ~ A2km where (f  f)
(t1,...,tr, s1,...,sr) = (u1,...,um, vl,...,vm), vl,...,vm are given in terms
of s1,...,sr in the manner that u1,..., Um are given in terms of t1,..., tr.
0394Am ~ A2mk is given by the equations u1 - v1 = 0, i = 1,...,m. Thus (fx
f)-1(0394Am) is given by

Now consider Y, the blowing up of Y along 0394X, and the canonical
projection ~:  ~ Y. While Y = Spec(k[t1,...,tr,s1,...,sr]), Y is the

union of r af fine varieties D+(ti - si), i = 1,..., r. Let 1; = (ti - si)/(tr -
sr), i = 1,..., r - 1. Let U = D+(tr - sr). Then U = Spec
(k[t1,...,tr, s1,...,sr][03BE1,...,03BEr-1)= Spec(k[t1,...,tr, sr,03BE1,...,03BEr-1]). U
is the 2r-dimensional affine space. E n U is given by tr - Sr = 0. If J is
the ideal defining the subscheme ~-1((f f)-1(0394Am)), then J c (tr - sr ).
Let Z, c U be the closed subscheme defined by the ideal ( tr - sr)-1J.
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Observing that

the ideal of which defines Z, is

which is the same as

We claim that Z1 ~ A(r+2)/2k. The coordinate ring of Z1 is

k[t1,...,tr,sr,03BE1,...,03B6r-1]/J1 ~ K[t1,...,tr,sr]/P where

P = (tr-1 + t2r + trSr + S;-, t + t2tr + t2sr, ..., tr-3 + tr+2tr + t r - 2 Sr ) .
But k[t1,..., tr, sr]/P = k[t2, t4, ... , tr-2, tr, Sr] because P is the kernel of
the homomorphism k[t1,..., tr, sr ~ k[t2, t4, ... , ,tr-2’ tr, sr ] where

t2, t4,..., tr, sr are fixed and

Consider the morphism g: Z1 ~ A£ where g( t 1, .. .,t,., Sr, 03BE1,..,.03BEr-1)
= (tl, ... , tr), and let W = g(Z1). Then the following are known

(a) g is a finite morphism,
(b) W is the set of points of Ark where f is not one-to-one,
(c) Zi is the normalization of W, W has an ordinary pinch point at the

origin, S(1)1(g) is smooth.
Notice that by our definition of f, the origin belongs to sj2)(f). For these
results we refer to [22, in particular Theorem 4.5], together with the
following explanations.

Observe that ~-1[(f  f)-1(0394Am)] = Z(f) ~ E, where Z(f) is the

"double point scheme of f ", E is the exceptional locus. The following
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diagram commutes

where P2 is the projection to the second factor. On the open set U,
introduced before, Zl and Z(f) are identical.
Now observing that the subvariety W is given by the prime ideal

P ~ k[t1,..., tr] where P = (t r - 1 + tr + t rS r + s2r, tl + t2t, + t 2 Sr’ ..., t r - 3
+ tr-2tr + tr-2sr) in k[t1,..., tr, sr], we can state our theorem. In the
proof we will use the results discussed above. We also assume that

char( k) =1= 2, 3.

THEOREM (4.1): Let C be the conductor of A = k[t1,..., tr-1, t1tr +
t2t;,... tr-1tr + t3r]. As an ideal of B = k [ ti , ... , tr], C is the determinantal
ideal of the matrix

i. e., the ideal generated by all 2 X 2 minors of M. C is a prime ideal of B of
height ( r - 2)/2.

PROOF : Consider the homomorphism h : k[u1,..., um] ~ B defined by

(Recall, r is even and
m = (3r - 2)/2).
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Then A ~ k [u1,..., um]/Ker(h). Let (M) be the determinantal ideal of
M. It is easy to see that ( M ) ç C. By Nakayama’s Lemma B is generated
by 1, tr, tr as an A-module. Thus b E C if b, btr, bt2r ~ A. Considering the
relations

by Cramer’s rule we have

Hence t1t4 - t2t3 ~ C. Using the expression of h(ur) together with others,
we get the following relations

Thus by Cramer’s rule as shown, we see that ( M ) c C.
To show the other inclusion we first show that P ~ k[t1,..., tr ] ~ ( M ),

where P is the prime ideal introduced before. Consider the inclusion
k[t1,...,tr] ~ k[t1,..., tr, sr], and the following change of variables in
these two rings

These define isomorphisms of rings. In k[T1,..., Ts, Sr] ] we have P =
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( - Tr-1 + S2r, - T1 + T2Sr,..., - Tr-3 + Tr-2Sr). Thus if we consider the
composition

where 4,, is the inclusion, and 03C80 is defined by

then P = Ker(03C80), P ~ k[T1,..., Tr ] = Ker(03C80 ° 03C81). Since 03C80 ° 03C81(Tr) =
Tr and Tr is not used in defining 03C80 or 03C81, we can apply the result of the
appendix for the homomorphism

where ~0 is the restriction of 03C80 ° 03C81. Therefore Ker(~0) is generated by
( r - 2)2/4 elements

Thus P ~ k[T1,..., Tr] will be generated by these elements in k[T1,..., T, 1.
Now by changing the variables back to t1,..., tr, we find out that

P ~ k[t1,..., tr] is generated by certain elements in (M). A typical
element of group (1) is
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A typical element of group (2.a) is

A typical element of group (2.b) is

The first two elements are minors of M and the third element is

generated by two minors of M. Therefore we have

Now we have P ~ k[t1,..., tr] ~ (M) ~ C. By [18, Theorem 1], any
minimal prime over Chas height m - r = ( r - 2)/2. By the result of the
appendix P ~ k[t1,..., tr] has height( r - 2)/2. Therefore we have C =
(M) = P ~ k[t1,..., tr]. The proof of Theorem (4.1) is now complete.

COROLLARY (4.2): Let A, B and C be as in Theorem (4.1). Then C =
Ann A (1), where tr denotes the class of t r in B/A .

PROOF : B is an A -module generated by 1, tr, t;. Thus C = AnnA(tr) ~
AnnA(t2r). Let a ~ A and atr ~ A. Then since A is a ring, a 2tr E A and
a2t2r ~ A . Thus a2 ~ C, but C is a prime ideal, so we have a ~ C.

Conversely assume that a E A and at2r ~ A. Then a2t2r ~ A and a2t4r ~ A.
Let v = tr-1tr + t3r, (v ~ A). Then t3r = v - tr-1tr and t4r= vtr - tr-1t2r.
Since a2t4r ~ A, we have a2vtr - tr-1(a2t2r) ~ A. Since a2t2r ~ A, we get
a2vtr E A. We also have a2vt2r ~ A. Therefore a2v ~ C, i.e., a2tr(tr-1 - t;)
E C. C is a prime ideal of B and tr ~ C, tr-1 - t2r ~ C, thus we get a E C.
We now prove the result which we used in Theorem (3.2).

THEOREM (4.3): As in Theorem (4.1), let A = k[t1,..., tr-1, t1tr +
t2t2r,...,tr-1tr + t3r], B = k[t1,...,tr]. Then

depthA(B/A)  1.
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PROOF: Recall that we have assumed that r is even, r  6, and m = (3r -
2)/2. Let V=tr-1tr + t3r, w1 = t1tr + t2t2r,...,wm-r = tr-3tr + tr-2t2r. Let
A0= k[t1,..., tr-1, v]. W e will find a "nice" generating set for A as an
A0-module, and we then will use them to prove the theorem. Let Ko and
K be fields of quotients of Ao and B respectively. K is an algebraic
extension of Ko of degree three. Thus every element of K satisfies a
monic polynomial of degree three in K0[x]. However B is integral over
A0, so for each i = 1,...,m - r, WI would satisfy a monic polynomial in
A0[x]. By the uniqueness of the minimal polynomial of w, in K0[x], the
minimal monic polynomial of w, in A0[x] is the same as the minimal
polynomial of WI in K0[x]. In fact by direct calculation one can find the
minimal polynomial of Wi in A0[x]. For example consider WI = tltr + t2t2r.
By expanding (t1tr + t2t2r)3, (t1tr + t2t2r)2 and multiplying out of (tr-1tr
+ t3r)(t1tr + t2t2r) we find that WI satisfies the following polynomial in
A1[x]

The elements w2, ... , wm-r satisfy similar polynomials of degree three in
A0[x]. This proves that the elements

generate A as an Ao-module. We will produce another set of generators
for A. To demonstrate the techniques we first consider the "key" case
r = 6, m = 8. Let

We claim that 1, wl, w2, zl, z2, Z12 generate A as an Ao-module. Observe
that
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These relations imply that 1, wl, w2, z1, Z2’ ZI2, ZIW2’ Z2WI, Z2Wl2 generate
A as an Ao-module. We show that the last three elements are extra. Re-
placing t6 by v - t5t6 and t6 by vt6 - t5t6 in the product zlw2 =

[(tiv - t1t2t5)t6 + t21t26](t3t6 + t4t26), We get z1w2 = (t21t3v + tit4v2
-t1t2t4t5v)+ (-t21t3t5 - t i t 4 t sV + t1t2t4t25 + t21t4v)t6 + (t3t2v - t1t2t3t5
- t21t4t5)t26.
Now replacing t2ti by Wl - t1t6 and t21t26 by Zl - (t2v - t1t5)t2t6 we get

Finally since (t1t4 - t2t3)t6 = t4WI - t2w2, we have

A similar computation shows that

Thus zlw2 and z2wi are extra. We also have

Therefore by above calculations z2wi is also extra. The set

{1, w1, w2, zl, z2, z12} is the favorable generating set for A as an Ao-mod-
ule. Observe that the coefficient of t6 in each of the elements wl, w2, zl,
z2, z12 does not involve ts. This is the main point which makes the proof
of the theorem work. Incidently in this particular but important case of
r = 6, it seems that the set {1, w1, w2, zl, z2, z12} is a minimal generating
set for A as an Ao-module. To check this for example one needs to show
that dimk(A/(mA0· A))  6, where MA0 is the maximal ideal of A0.
However we will not use this.

For general r, consider wl, ... , wm-r as before and let

We first claim that
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1  i  j  m - r, 0  i1,...,im-r1, i1 + ... +im-r 3, generate A as

an A.-module. The relations

show that in the list (4.3.1), w21,..., w2m-r can be replaced by zl, ... , zm _ r’
The relations

imply that in the list (4.3.1) wIwJ can be replaced by z,j. The relations

would imply that in the list (4.3.1) all the elements

for some l, are extra. To show this we may assume that il = 2 and
i3,...,is = 1 or 2 for some s, and is+1 = ... im-r = 0. Then w21· wi22.
.... y,,ss = 2t1t2vwi22...wlss - t2tr-1w1wl22...wlss + z1wl22...wise Replacing
z1w2 or ZlW22 (according to whether il = 1 or 2), from relations above in
z1wl22...wlss s and repeating this process for z1wl33,...,z1wlss S we find that
w21wl22 ... wiss is generated by elements of the form wJ11. wj22...wjss and z1
where j1...,js = 0, 1, 2 but the number of jl’s with jl = 2 is less than the
number of il’s with il = 2 in the monomial wl11... ws we had started with.
Thus by induction on the number of is’s with is = 2 we find that wi11... wss
is generated by wj11... wjss’s with jl = 0, 1, il + ... + js  3 and z1..., zs.
Therefore the elements wl11...wlm-rm-r; with i1 + ... +im-r  3, il = 2 for

some l, are extra. The second thing we do, we replace the elements
wl11...wlm-rm-r, 0  i1,...,im-r  1, i + ... + im-r  3 by another element of
the form gtr where g E A0. This will also be proved by induction on the
number of wljj’s with ij = 1, (this number is  3 by assumption). For the
first step observe that by

we have
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and we also have

Since t4t2r = w2 - t3tr and t6t2r = W3 - t5t4’ we see that w1w2w3 can be
replaced by gtr with g E Ao. For inductive step it is enough to show that
if gltr E A with gl E A o, then gltrwI can be replaced by g2tr with g2 E A0.
We have

We can impose the condition that gl does not have constant term or a
term which is only a power of v as part of our induction hypothesis.
Consider each monomial in gl, if it has a factor of t2J for some j, replace
t2Jt2r by wj - t2J-1tr, if it has a factor of t2J-1 1 for some j, replace
t2j-1t1t2r by z1j - (t2v - t1tr-1)t2Jtr. Thus g1t1w1 can be replaced by g2 tr
where g2 E A o and g2 satisfies the imposed condition on gl’
We have now produced a generating set for A as an Ao-module which

was desired. Namely 1, w1,..., Wm-r, z1,..., zm-r, Zi)’ 1  1  j  m - r
and some elements of the form gtr with g E Ao.
We now prove that depthA(B/A)  1. Observe that since B is gener-

ated by 1, tr, t2r as an Ao-module, by a result due to J.P. Serre [23, Ch. IV,
Proposition 22], B is a free Ao-module of rank three. We show that tr-1 is
a non-zerodivisor of BI A. Let f E B - A and ftr-l E A. For convenience
let us denote all the non-constant elements we just obtained as a

generating set for A as an A0-module, by w, , i = 1,..., n. Then ftr-1 = 03B10
+ alwl + ... + a"wn with 03B10,..., 03B1n E Ao. We may assume that ao, ... , an
~ k [t1,..., tr-2, v], because if 03B1i = 03B2i + tr-103B3i with 03B2l ~ k[t1,...,tr-2,v]
and 03B3i ~ A0. then [ f - ( Yo + Ylwl + ... + 03B3nwn)]tr-1 = Po + PIWI +
... + 03B2nwn ~ A, and if we show that f - ( Yo + ... + 03B3nwn) ~ A, then f E A.
Thus assume that 03B10, 03B11,..., 03B1n ~ k[t1,..., tr-2, v]. Since the coefficient
of tr in each w; only involves t1,..., tr-2’ the coefficient of tr in the sum
ao + alwl + ... + anwn only involves t1,..., tr-2, v. Now let f = go + gtr +
htr with go, g, h E A o. We may assume that go = 0, because ( f - g0)tr-1
E A and if f - go E A, then f E A . Thus we have

Since 1, tr, t2r is a free basis for B as an Ao-module, we have ao = 0 and
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ait2 + a2t4 + a3t6 + ... - htr-1. Since the L.H.S. only involves

t1,..., tr-2, v, and B is a free A o-module, no element of A0 is a zerodivisor
of B/Ao, thus we have h = 0. Therefore gtr-l 1 E AnnA(tr). But by
Corollary (4.2) AnnA(tr) = C, the conductor of A in B. By Theorem (4.1)
C is a prime ideal of B and tr-l ~ C, thus g E C. Therefore f = gtr É A, as
desired. The proof of Theorem (4.3) is now complete.

COROLLARY (4.4): Let X be a nonsingular projective variety of dimension r,
r  6. Let 03C0: X ~ Pmk be a strongly generic projection. Let X’ = 03C0( X) be
analytically irreducible at y = 03C0(x), where x ~ S(2)1(03C0), ( x, y closed points).
Let Wbe the conductor of X’,y. Consider Was an ideal of k[[t1,..., tr]]. If r
is even and m = (3r - 2)/2, then B= (M1), and if r is odd and m = (3r -
3)/2, then B= (M2), where (M1) and (M2) are determinantal ideals of the
following matrices in k[[tl, ..., tr]]

PROOF: Using the notation of Theorem (4.1) we have W= C· k[[t1,..., tr]].
Now the corollary follows from (3.0.1) and Theorem (4.1) for both cases
of r even and r odd.
REMARKS: In Theorem (4.1) we showed that C is a prime ideal of
k[t1,,...,tr]. Thus by known results [27, vol. II, page 320, Theorem 32], W
is a radical ideal of k[[t1,...,tr]]. This also follows from Theorem (3.2),
because the conductor of a seminormal ring is radial in the normalization
of the ring.

Also note that to prove that some determinantal ideal of a matrix with
entries in B = k [ tl, ... , tr ] is a prime ideal of B in general is a difficult
task. In Theorem (4.1) we proved that ( M ) is a prime ideal of B. A direct
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computation shows that if we discard some of the last r/2 rows (not all
of them), the determinantal ideal of the remaining matrix will no longer
be a prime ideal of B. There are beautiful results concerning the de-
terminantal ideals by many authors as J.A. Eagon, D.G. Northcott and
M. Hochster. (See the references of [10].)

Appendix

The following unpublished result due to Joel Roberts, was originally
given to serve as examples of prime ideals in power series rings which
require a large number of generator (cf. [14, remark 4]). In this thesis we
have used this result several times. To make it a convenient reference we
will rewrite this result.

Construction. Let k be a field, r  2 an integer. Let Ao -
k[t1,...,tr-1, u1,...,ur-1,v] and B = k[t1,..., t,r be polynomial rings,
and let A = k [[t1,...,tr-1, u1,...,ur-1, v]] and B = k[[t1,..., tr]] be for-
mal power series rings. Let ~0: A0 ~ Bo and ~: A - B be determined by:

Let Po = Ker(~0) and P = Ker(~). Since Bo and B are integral over
~0(A0) and cp(A) respectively, it follows that Po and P are prime ideals
of height r - 1.

Geometric discussion. Let k be algebraically closed and let V =

Spec(A0/P0). Then ~0 defines a finite birational morphism 03C0: Ark ~ V,
so that Ark is the normalization of V. Then V c A 2,;-1, and the singular
locus of Vits the line where all coordinates except v are zero. At all points
except the origin, V looks analytically like two r-dimensional subspaces
of A2r- meeting transversally. It follows that the Zariski tangent space
of V at any singular point has dimension 2r - 1. From this and the fact
that 03C0-1 (origin in A2r-1k) = (origin in Ark), we find:

P does not contain any element of order 1. (3)
Of course these results continue to hold if we drop the assumption k = k.
A subset of a minimal generating set. It is clear that Po contains the

following elements:
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Using (3) and the fact that these elements are linearly independent
modulo m3 (where m = maximal ideal of A), we see that they form a
subset of a minimal generating set of P. In this way we have thown that a
minimal generating set of P must have at least ( r - 1)2 elements.
We claim that (4.1) and (4.2) generate P.
Proof of the claim. By (2), it suffices to show that the elements in

question generate Po. Let I be the ideal generated by these elements. We
observe that ~0(A0) is generated by monomials; therefore Ker(~0) is

spanned as k--vector space by the elements M - N, where M and N are
monomials such that (~0(M) = ~0(N). Therefore it will suffice to show
that M - N E I.

Let f 1 gl vu - f2g2vb E Ker(cpo), where f l, f2 are monomials in

u1,..., ur-1, and gl , g2 are monomials in t1,...,tr-1. We must show that

f1g1va - f2g2vb ~ I. We reduce to the case where degree (f1)  1 and
degree (f2)  1 by using the fact that UiUj - tltJv ~ I for all i, j. In this
case we may also assume that degree( f 1 ) = degree(f2) and a = b, because
(~0(f1g1va) and ~0(f2g2vb) must have the same degree in tr. If f1 = f2 = 1,
or if f1 = f2 = u1, we must have g, = 92. Finally if f = u, and f2 = uJ, with
i ~ j, we observe that tl |g2, tJ|g1. We then use the fact that tiuj - tjul ~ I
to conclude that f1g1va - f2g2vb ~ I.
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