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Introduction

In an earlier paper it was shown that the family of horospheres through
two points of a simply connected complete riemannian manifold of
nonpositive curvature is homeomorphic to a sphere (Im Hof [5]). This
result was obtained by investigating the families of confocal ellipsoids
and confocal hyperboloids with respect to two given points as foci.

Here we will investigate two families of hypersurfaces, called tubes and
slices, which can be viewed as ellipsoids and hyperboloids with respect to
two infinite points as foci. Our setting will be a simply connected
complete riemannian manifold of dimension n and sectional curvature
bounded from above by a negative constant. Fixing two infinite points,
represented by two Busemann functions, we define tubes and slices as the
level sets of the sum and the difference, respectively, of the chosen
Busemann functions.

Here are our main results.

THEOREM 2.4: Tubes are diffeomorphic to Sn-2 X R; slices are diffeomor-
phic to Rn-1.

COROLLARY 3.10: The set of infinite points of a slice is homeomorphic to
Sn 2.

The proofs are similar to the ones in [5], however some modifications
are necessary in order to deal with infinite foci. In the case of finite foci
we used polar coordinates around one focus, and so we were led to
consider angles at this focus. Here it is natural to use " polar coordinates"
around an infinite focus, but since at an infinite point there is no angle
measurement we have to replace angles by distances on horospheres. In
our arguments we will make ample use of comparison theorems for
Jacobi fields and for triangles with infinite vertices. These theorems allow
us to transform exact calculations in the hyperbolic plane of constant
curvature into estimates valid for given situations in the manifold under
consideration. The necessary preliminaries are summarized in the first
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chapter. The second chapter contains a general study of tubes and slices,
and in the third chapter we will investigate the behavior of a slice at
infinity. At the end we add some remarks concerning the case of one
finite and one infinite focus.

The present paper answers a question which has its origin in the work
of M. Brin and H. Karcher on the ergodicity of the frame flow on
negatively curved manifolds of even dimensions. Corollary 3.10 was
independently proved by P. Eberlein. The paper was conceived at the
Sonderforschungsbereich "Theoretische Mathematik" in Bonn and
worked out at the IHES in Bures-sur-Yvette with support from the

Stiftung Volkswagenwerk. We gratefully thank all these institutions for
their hospitality and support.

1. Preliminaries

Infinite points and horospheres (cf. Eberlein-O’Neill [2], § 1-§ 3)

Throughout this paper M denotes an n-dimensional simply connected
complete riemannian manifold of sectional curvature K satisfying K 
-1. An infinite point of M is by definition a class of asymptotic geodesic
rays. We will write y( oo) = z to indicate that the geodesic ray y belongs to
the asymptoticity class z. The set of infinite points of M is denoted by
M(oo), and M stands for the union M U M(oo). Our assumptions on M
imply that any two points of M can be joined by a geodesic unique up to
parametrization. The set M carries a topology with respect to which it is
homeomorphic to the closed ball D", while M(oo) is homeomorphic to
the boundary sphere Sn-1.

Let d( p, q) denote the distance of two points p, q ~ M. The function
a: M  M  M ~ R defined by a(p, m, q) = d(m, q) - d(m, p) has a
continuous extension to M X M X M, which is given by the expression
a ( p, z, q) = f(q) - f(p), where f is a Busemann function at the infinite
point z (Eberlein [1], Proposition 2.6).
Horospheres with center z E M(~) are by definition level sets of Buse-
mann functions at z. Since Busemann functions are C2 (see Proposition
1.2 below), horospheres are C2 submanifolds, and so we can speak of the
induced metric on a given horosphere.

Stable Jacobi fields

A Jacobi field Y along a geodesic y is called stable if ~Y(t)~ is bounded
for t  0. From Heintze-Im Hof [4] we quote the following results.

PROPOSITION 1.1 ([4], Thm. 2.4): Let Y be a stable Jacobi field along a
geodesic y and assume Y is perpendicular to . Then ~Y(t)~  ~Y(0)~e-t for
t  0.
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PROPOSITION 1.2 (Eberlein, unpublished; [4], Prop. 3.1): Let f be a
Busemann function at z. Then f is C2, (grad f)(p) = - 03B3(0), and pU grad f
= -Y’(0), where y denotes the unit speed geodesic with 03B3(0) = p and
y(oo) = z, and Y denotes the stable Jacobi field along y with Y(O) v.

Infinite triangles

In this section we will compare triangles in M with triangles in the
hyperbolic plane H2 of constant sectional curvature -1. A simply infinite
triangle 0 is determined by two vertices p, q E M and one vertex
z E M(~). Its parameters are d(p, q), a(p, z, q ), and the angles a and 03B2
at p and q, respectively. If a(p, z, q) = 0, then à is called isosceles.

Let 0394 0 be a simply infinite triangle in H 2 determined by its vertices po,
qo E H2 and zo E H2(~), and consider its respective parameters
d(p0, q0), a(po, Zo, q0), 03B10, and 03B20. The relations among these parame-
ters are governed by hyperbolic trigonometry. We recall the basic for-
mula. Under the assumption ao = -ul2, the remaining parameters of Ao
satisfy the relations

For triangles in M we have the following comparison theorems.

PROPOSITION 1.3: Let à and Ao be simply infinite triangles in M and H2,
respectively.

(i) If d(p, q) = d(po, R’o) and a = ao, then a( p, z, q)  a(po, Zo, qo)
and 03B2  03B20.

(ii) If d(p, q) = d(po, qo) and a(p, z, q) = a(p0, Zo, qo), then 03B1  ao
and 03B2  03B20.

PROOF: See Heintze-Im Hof [4], Propositions 4.4 and 4.5. (Observe that
Proposition 4.4 of [4] contains a misprint. The inequalities for 03B2 should
be reversed.)

A doubly infinite triangle à is determined by one vertex p E M and two
vertices x, y E M(~). Its parameters are the angle a at p and its detour,
which we define as follows. We choose Busemann functions f at x and g
at y, normalized such that f + g = 0 on the geodesic joining x and y. Then
we define detour(0394) = f ( p ) + g(p). For any two sequences {xl} c M
and {yl} c M converging to x and y, respectively, we have
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Another useful parameter of à is its height, which is defined to be the
length of the perpendicular from the finite vertex to the opposite side.

Let 03940 denote a doubly infinite triangle in H2 with vertices po E H2
and xg, yo E H 2( oc). Then we have the relations

For triangles in M we have the following comparison theorems.

PROPOSITION 1.4: Let 0 and 03940 be doubly infinite triangles in M and H2,
respectively.

( i ) If height(0394) = height(03940), then detour(0394)  detour(03940) and 03B1 
ao.

(ii) If detour(0394) = detour(03940), then height(0394)  height(L1o) and 03B1 
ao.

PROOF: (i) is an immediate consequence of Proposition 1.3 (i) applied to
the two rectangular simply infinite triangles obtained from à by drop-
ping the perpendicular from p to the opposite side.

The first estimate in (ii) follows from (i) and the fact that detour(03940)
is monotone increasing as a function of height(03940). In order to get the
estimate for a we approximate A by finite isosceles triangles 0394(t). Let y
and ju denote the unit speed geodesic rays with y(0) = p(0) = p, y(oo) = x,
and 03BC(~) = y, respectively. Then we define 0394(t) to be the triangle with
vertices p, 03B3(t), and 03BC(t). We compare A and 0394 (t) to triangles 03940 and
03940(t) as follows. By 03940 we denote a doubly infinite triangle in H2 with
detour (03940) = detour(à). Let ao be the angle of 03940 at the finite vertex. By
03940(t) we denote an isosceles triangle in H2 whose sides have the same
length as those of 0394(t). Let a, be the angle of 03940(t) opposite to the basis.

From the angle comparison theorem for finite triangles, applied to
0394(t) and 03940(t), we obtain a  at . We claim that limt-+ 00 at = ao. Con-
sider the number d(t) = 2t - d(03B3(t), 03BC(t)). It plays the rôle of a detour
in both triangles, 0394(t) and 03940(t). By the approximation of à by 0394(t) we
have limt~~ d(t) = detour(à). The assumption detour(0394) = detour(03940)
then implies limt~~ d(t) = detour(03940), therefore the triangles 03940(t)
approximate 03940, thus limt~~ a, = ao . We conclude that a  03B10.

COROLLARY 1.5: Let 0 be a doubly infinite triangle in M, then

The ball topology and the half space topology

There are different ways of extending the manifold topology of M to a
topology on M. Using the exponential map at a point p E M and polar
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coordinates in the tangent space TpM, we get a diffeomorphism

(Here SpM denotes the unit sphere in Tp M.) The map Xp extends to a
bijective map

and by requiring this map to be a homeomorphism we induce a topology
on MB{p}, which extends to M in the obvious way. Equipped with this
topology M becomes homeomorphic to the closed ball. Although the
construction depends on the choice of p E M, the resulting topology
turns out to be independent of p (Eberlein-O’Neill [2], § 2). We will call
this topology the ball topology, in contrast to the half space topology
which we define next.

We fix a point z E M(~) and try to construct an analogous map 03BBZ.
Since there is no unit tangent sphere at z, we have to use one of the
horospheres centered at z as a substitute. Choose a Busemann function f
at z and consider the horosphere F = f-1(0). Let 03C0: M ~ F denote the

projection along geodesic rays belonging to z. Then the map 03BBZ: F X
( - ~, + ~) ~ M is defined by 03BBZ(03C0(m),f(m))=m. This map is a

homeomorphism (Eberlein-O’Neill [2], Proposition 3.4), and it has an
obvious extension to a bijective map 03BBZ: F  (- ~, + ~] ~ MB{z}.
Requiring this map to be a homeomorphism we induce a topology on
MB{z}, which extends to a topology on M by using horoballs centered
at z (i.e., sets of the form {m ~ M; f ( m )  c}) as basic neighborhoods of
z. This topology is called the half space topology of M. It depends on the
choice of z E M(~), and in fact, this point plays a special rôle in M(~).
With respect to the half space topology, M(oo) decomposes into the
connected components M(~)B{z}, homeomorphic to Rn-1, and the
singleton {z}. This reflects the basic difference between the unit disc
model and the upper half plane model for H2.

Later we will use a uniform structure on M which induces the half

space topology. We choose a Busemann function f at z and fix the

horosphere F = f-1(0). On F we have the riemannian metric induced by
the metric of M. Let dF denote the corresponding distance function on F.
We extend dF to a quasi-distance on MB{z} by defining dF(p, q) =
dF(03C0(P), 03C0(q)), where 03C0 denotes the extended projection 03C0: MB{z} ~ F.
Now two points p, q E MB{z} are said to be close if dF(p, q) is small
and the numbers f(p), f(q) are close in [- ~, - ~], and a point
p ~ MB{z} is close to z if f(p) is close to - oo . The use of this uniform
structure for the half space topology makes our estimates more trans-
parent. However, we are interested in results expressible in terms of the
ball topology. The two are related by the following proposition.
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PROPOSITION 1.6: On MB{z} the half space topology coincides with the
ball topology.

PROOF: At finite points the two topologies coincide with the ordinary
topology of M. The equivalence at infinite points different from z is

settled by Lemma 1.8 below.

DEFINITION 1.7: Let x be a point of M(~)B{z}. A truncated p-cone
neighborhood of x is a set of the form

Here p E M and p (m, x ) denotes the angle at p subtended by m and x.
A truncated z-cone neighborhood of x is a set of the form

LEMMA 1.8: Each TZ(~, r ) contains a suitable Tp(03B4, s), and vice versa.

PROOF: Observe that we are free to choose any point p ~ M to represent
the ball topology. A convenient choice for p is the point where the
geodesic line through x and z intersects F. Now let TZ(~, r) be given. Let
y be a geodesic ray starting at p and including an angle 8 with the axis of
7§(e, r). Let a be the projection of y on F. Then length(03B1)  (1 +
cos 03B4)-1 sin 03B4 (Heintze-Im Hof [4], Corollary 4.8), hence for 8 sufficiently
small we have Tp(03B4, 0) ~ Tz(~, 0). After suitable truncation we get

Tp(03B4, s) ~ Tz(~, r).
Conversely, let Tp(~, r) be given. The construction of a suitable

TZ(03B4, s) contained in Tp(~, r) is completely analogous to the proof of
Lemma 2.8 in Eberlein-O’Neill [2], except for one modification. State-
ment (1) of [2] has to be replaced by the statement:

For s sufficiently large, f(m)  s implies m(p, z)  ~/3. But this
follows from Proposition 1.3 (i) and trigonometry in H 2.

2. Tubes and slices

From now on we fix two distinct points x, y E M( oo) and a unit speed
geodesic Q with 03C3 ( - oo ) = y and 03C3(+ oo ) = x. Up to the choice of 03C3(0) this
geodesic is uniquely determined. The points x and y give rise to the
following functions.

DEFINITION 2.1: Let f : M - R and g: M - R denote Busemann func-
tions at x and y, respectively, normalized such that f( 0(0)) = g(or(0» = 0.
Then we define e = 1 2(f + g) and h = 1 2 (g - f).
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The functions e and h are defined and C2 throughout M. They give
rise to two families of hypersurfaces.

DEFINITION 2.2: For t  0 we define the tube Et as level set e-1(t); for
s E R we define the slice H, as level set h-1(s). The families {Et; t  0}
and {HS; s ~ R} can be regarded as the families of confocal ellipsoids
and hyperboloids with respect to the two given infinite points x, y as foci.

The basic properties of e and h are summarized in the following
proposition.

PROPOSITION 2.3: 

( i ) The function e assumes its minimal value 0 on the set 03C3(R); outside
03C3(R) it has no critical points.

( ii ) The function h has no critical points in M.

PROOF: (i) If m =,u(s) for s ~ R, then e(m) = 0. If m OE 03C3(R), then m and
a span a doubly infinite triangle à of positive height. From Proposition
1.4 (i) and an argument in H2 it follows that à has positive detour as
well. Since detour (0394) = 2e(m), this implies e(m) &#x3E; 0.

Now assume that m is a critical point for e, i.e., (grad e)(m) = 0. Since
the geodesic joining x and y is unique up to parametrization, this implies
m ~ 03C3(R).

(ii) Clearly grad h never vanishes.

From Proposition 2.3 we immediately conclude that the sets Et ( t &#x3E; 0)
and HS are (n - l)-dimensional submanifolds of M. In the following
theorem we determine their differential types.

THEOREM 2.4: For t &#x3E; 0 the submanifolds Et are diffeomorphic to sn-2 X R;
for s e R the submanifolds Hs are diffeomorphic to Rn-1.

PROOF: Assume t &#x3E; 0. We claim that the restriction es of e to Hs is a
Morse function on Hs with one critical point, and that the restriction h t
of h to Et has no critical points. Since grad e and grad h are always
perpendicular to each other, we have grad es = grad e on HS and grad h t
= grad h on Et . Therefore es has exactly one critical point, viz. the point
03C3(s), which is the minimal point for es, and h has no critical point at all.
We have to show that 03C3(s) is nondegenerate. For v E T03C3(s) Hs we have

where ps denotes covariant differentiation on Hs, and 03BB ~ R depends on
v. By Proposition 1.2 we have
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where X and Y are Jacobi fields along Q satisfying X(s) = Y(s) = v, and
such that X is stable in the direction of a(+ oo ) and Y is stable in the
direction of J( - oo ). In particular, ~v grad e is normal to Q, hence À = 0.
Now ~sv grad es = 0 implies X’( s ) = Y(s), thus X = Y, and X is stable in
both directions. Therefore X = 0, and hence v = 0.

Applying the Morse Lemma to the critical point 03C3(s) of es, we find
that for small t &#x3E; 0 the set e-1s(t) is diffeomorphic to S" - 2. Since es has
no further critical points, the same conclusion holds for all t &#x3E; 0. Observ-

ing the equality e-1s(t) = h-1t(s) = HS ~ Et, we finally conclude that HS
and Et are diffeomorphic to Rn-1 and sn - 2 X R, respectively.

3. Behavior at infinity

In this chapter we will investigate the behavior of a slice at infinity. We
begin by extending the function h to M.

LEMMA 3.1: The function h: M ~ R has a continuous extension to a

function h: M ~ R, where M carries the ball topology and R denotes
R U {± ~}.

PROOF: In a first step we extend h to a continuous function h: MB f x, y}
- R. Let F and G denote the horospheres f -’ 1(0) and g - 1(0), and let 03C0

and T denote the projections of MB{x, y} onto F and G, respectively.
Then for any point m E M with f(m) &#x3E; 0 and g( m ) &#x3E; 0 we have

For z E M(~)B {x, y} we now define

We have to show that {h(ml)} converges to h(z) for any sequence
{ml} c M converging to z. Since f(ml) and g( m, ) tend to + oo, we have
f(m,) &#x3E; 0, g(m,) &#x3E; 0 for i large. Therefore 2h(m,) = a(03C0(ml), ml, T(ml)).
By the continuity of 77-, r and a, this in fact tends to a(03C0(z), z, 03C4(z))=
2h(z).
Now we extend h to M by defining h ( x ) = + oc and h ( y ) oc. We

claim that this extension is continuous at x and y. Let s be any real
number and let G denote the horosphere g-1 (s + 03B4) for some 8 &#x3E; 0. Since
h is continuous on G, there is a neighborhood U of 03C3(s + 8) in G, on
which h is greater than s, and since h is monotone increasing on all

geodesics emanating from y, it exceeds s on the whole truncated y-cone
neighborhood determined by U. This shows the continuity of h at x.
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Now we consider the vector field Z = grad eliigrad e112, which is

defined on MB03C3(R). For each point m outside 03C3(R) we denote by Ilm the
maximal integral curve of Z with the parametrization determined by
03BCm(e(m)) = m.

LEMMA 3.2:

( i ) Whenever 03BCm(t) is defined, we have e(03BCm(t)) = t and h(03BCm(t)) =

h(m).
(ii ) The domain of Il m is the interval (0, oc).

(iii ) The image of Ilm is contained in Hh(m)’

The proofs are as in Im Hof [5]. Observe that in (ii) we need the
compactness of the sublevel sets Hs ~ { e  c} for s ~ R and c &#x3E; 0.

Now we fix the tube El, and for t &#x3E; 0 we define ~t: E1 ~ M by
~t(m) = 03BCm(t). Obviously the image ~t(E1) is contained in Et . The
following lemma again is proved as in [5].

LEMMA 3.3: For t &#x3E; 0 the maps (p,: Ej - Et are diffeomorphisms satisfying
h o (p, = h.

We will study the limit of the family {~t} for t tending to 00. For this
purpose we have to admit M’ = MB{x, y} as range for the maps ~t.
Observe that on M’ the half space topology based at x or y coincides with
the ball topology.

PROPOSITION 3.4: The family of maps Tt: E1 ~ M’ converges locally
uniformly on El as t tends to 00 .

PROOF: For any c &#x3E; 0 we introduce the compact sets M(c) = {m ~ M;
|h(m)|  c} and E, (c) = El ~ M(c). Our claim will be proved by show-
ing that for all c &#x3E; 0 the restricted maps (p,: E1(c) ~ M(c) converge
uniformly on El ( c) as t tends to 00 . In order to check this convergence
we will estimate expressions of the form f(03BCm(t)) and dF(03BCm(t), it
where F is a suitable horosphere centered at x.
1. Step : Since Ilm(t) E Et, we have

for all m ~ E1(c). Therefore f(03BCm(t)) tends to oc with t, uniformly in
El(c).
2. Step: We fix a point m E El(c). For shortness we will write it = ILm’
Let F denote the horosphere J-’(- c) and 7r the projection of MB{x}
onto F. Consider the curve 03B1 = 03C0 ° IL: (0, oo ) - F. Then dF(03BC(t), IL( t’))
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= dF(03B1(t), 03B1(t’)), hence

3. Step : We will estimate lIali by using comparison theory. Fix t &#x3E; 0 and
consider the differential 03C0 *: T03BC(t)M~ T03B1(t)F. This map decomposes into
the linear projection p : T03BC(t)M~ T03BC(t)Ft and the map 03C0*|T03BC(t)Ft: T03BC(t)Ft
~ T03B1(t)F. Here F denotes the horosphere through 03BC(t) with center x.
Now look at the doubly infinite triangle spanned by o and 03BC(t), and

denote by 2(A) the angle at 03BC(t). By Proposition 1.2 this is also the angle
subtended by grad f and grad g at 03BC(t). Therefore ~(grad e)(03BC(t))~ =
cos 03C9, hence ~(t)~ = (cos 03C9)-1, and so ~03C1((t))~ = ~(t)~ sin 03C9 = tan w.

Corollary 1.5 implies sin 03C9  e - t, thus

The effect of 03C0* |T03BC(t)Ft is expressed in terms of Jacobi fields. Let Y be
the stable Jacobi field along the geodesic from 03BC(t) to x with initial value
Y(O) = p(ft(t». By Lemma 3.2 (i), f(03BC(t)) = e(03BC(t)) - h(03BC(t)) = t - h(m),
hence à(t) = Y( t - h(m) + c), and Proposition 1.1 implies

Using (3) and observing that |h(m)|  c we obtain

4. Step : Integrating (4) and observing (2) we get dF(03BC(t), 03BC(t’))  1 - (1
- e-2t)1/2 for t’ &#x3E; t &#x3E; 0, hence

for t’ &#x3E; t, t sufficiently large, and m ~ E1(c). (Recall 03BC = 03BCm and F =

f-1(- c).) From (1) and (5) we conclude that limt~~ JLm(t) exists in
M(c), uniformly for m ~ E1(c).

DEFINITION 3.5: We define 03BCm(~) = limt~~ 03BCm(t) and ~(m) =
limt~~ ~t(m) = 03BCm(~) for m E El’

Obviously ~(m) ~ M(~). Our next aim is to show that ~ is a

homeomorphism of El onto M’(~) = M(~)B {x, y}. We start with two
lemmata which are used to prove that ~ is injective.

LEMMA 3.6: Fix m E El and let y be the geodesic joining x to JL m (~). Then
d(03BCm(t), 03B3)  1 for t &#x3E; 0.
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PROOF: Assume h ( m ) = s and fix t &#x3E; 0. Let F be the horosphere through
03BCm(t) centered at x, and consider the curve a = ’TT 0 03BCm |[t, ~], where qr
denotes the projection of MB{x} onto F. Then a( (0) is a point of y, and
hence d(03BCm(t), 03B3)  length( a ).

As in the proof of Proposition 3.4 we estimate Ilâll by comparison
theory, and by integration we obtain

LEMMA 3.7: Fix two points ml, m 2 E El with h(m1) = h(m2) and consider
Mi = itn r for i = 1, 2. Then d(MI (t), 03BC2(t))  2 t - k for t  1 and a suitable
constant k depending on d(m1, m2)’

PROOF: Let c(t) denote the distance d(03BC1(t), 03BC2(t)). For a fixed t &#x3E; 0, let
03B2: [0, c(t)] - M be the geodesic segment with 03B2(0) = 03BC1(t) and 03B2(c(t)) =
M2(t), and write v = - (0) and V2 = (c(t)) for shortness. We have (cf.
Gromoll et al. [3], p. 251)

We begin by estimating the terms ~(grad e)(03BCl(t)), vl~ for i = 1, 2. By
definition

The scalar products on the right hand side are cosines of certain angles,
they will be estimated using comparison theory. Consider the triangle A
formed by 03BC1(t), 03BC2(t), and x and denote by w, the angle at 03BCl(t).
Observe that à is isosceles since f (03BC1(t)) = f(03BC2(t)). Now Proposition 1.3
(ii) and hyperbolic trigonometry imply cos 03C9l  tanh(c(t)/2), hence

Similarly we get

by considering the triangle formed by ILl (t), 03BC2(t), and y.
Finally we obtain

Recalling that (grad e)(03BCl(t)) = ~(grad e)(03BCl(t))~2l(t) with 1 grad e~  1,
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and observing that tanh(c(t)/2) is positive, we get from (1) and (2)

We set a(t) = sinh(c(t)/2). Then a(1) = sinh(d(m1, m 2 )/2) and a’(t) 
a(t). By integration this implies

for t  1. Using 2a(t)  ec(t)/2 and 2a(1)  d(m,, m2) we get

and hence our assertion.

After these preparations we are able to prove our main result.

THEOREM 3.8: The map ~: E1 ~ M’(~) is a homeomorphism satisfying
h - 99 = h.

PROOF: Since h is continuous the property h° (p, = h carries over to ~.
Local uniform convergence of the sequence {~t} ensures that W is

continuous. The injectivity of (p follows from the preceding two lemmata
exactly as in Im Hof [5]. Now we will prove that ~ is surjective. We
choose a point z E M’( oo ) and a sequence {rl} c M converging to z. For
a suitable c &#x3E; 0 we have z E M(c) and (r, 1 c M(c). Let 03BCl: (0, oo ) ~ M
be the maximal integral curve of Z satisfying 03BCl(tl) = ri for tl = e(rl), and
consider the sequence of points m, = 03BCl(1) E El ( c). Since El ( c) is com-

pact we may assume that {ml} converges to a point m E El (c). We claim
~(w) = z. Obviously ~(m) ~ M’(~), so it is sufficient to estimate horo-
spherical distances on F = f-1(-c). From the triangle inequality we get

We fix E &#x3E; 0 and assert that each of the distances on the right hand side is
smaller than E as soon as i is sufficiently large. For the first distance we
use the convergence of f ml} to m and the continuity of T, for the second
we use the convergence of {tl} to oc and the uniform convergence of

{~tl} to T on the set El ( c), and for the third we use the convergence of
{ri} to z.

Observing that E1(c) is compact and M’(~) Hausdorff, we conclude
that qq restricted to E1(c) is a homeomorphism onto its image. Together
with the fact that the global map ~: E1 ~ M’(oo) is bijective, this implies
(p: El - M’(~) is a homeomorphism.
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Our final aim is to determine the set of infinite points of a single slice
H,. A priori there are different ways to define such a set. We choose the
definition Hs(oo) = ( z OE M(~); h(z) = s }. Alternatively, we might form
the closure cl HS in M with respect to the ball topology and intersect it
with M(oc). However, we have

LEMMA 3.9:

PROOF: If z ~ HS(~), then z = limt~~03BCm(t) for m = ~-1(z), hence

03BCm(t) ~ Hs. This implies z ~ cl HS. If zEclHsnM(oo), then by the
continuity of h on M we have h ( z ) = s, hence z ~ HS(~).

As a consequence of Theorem 3.8 we now get

COROLLARY 3.10: Hs(~) is homeomorphic to sn-2.

PROOF: The homeomorphism ~: Ej - M’(~) of Theorem 3.8 satisfies
ho ~ = h, so it restricts to a homeomorphism between E1 ~ HS and
HS(~). In the proof of Theorem 2.4 we have observed that El ~ HS is
diffeomorphic to S"-2. This concludes the proof.

Coda

Having studied the families of ellipsoids and hyperboloids with respect to
two finite or two infinite foci, we are left with the case of one finite and
one infinite focus. Again there are two families of hypersurfaces, the level
sets of the sum and those of the difference of a distance and a Busemann
function.

In euclidean space, where horospheres coincide with hyperplanes, we
obtain in this way two families of paraboloids situated symmetrically
with respect to the finite focus. In manifolds of strictly negative curvature
both types of hypersurfaces are still submanifolds diffeomorphic to

euclidean spaces, but they behave differently at infinity. Those hyper-
surfaces which correspond to ellipsoids have a single point at infinity, the
infinite focus, the ones corresponding to hyperboloids have a sphere at
infinity, as in the cases described earlier.

The proofs of these facts are left to the reader.
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