@article{CM_1984__52_2_221_0, author = {Steinsiek, Manfred}, title = {Homogeneous-rational manifolds and unique factorization}, journal = {Compositio Mathematica}, pages = {221--229}, publisher = {Martinus Nijhoff Publishers}, volume = {52}, number = {2}, year = {1984}, mrnumber = {750358}, zbl = {0559.14035}, language = {en}, url = {http://www.numdam.org/item/CM_1984__52_2_221_0/} }
Steinsiek, Manfred. Homogeneous-rational manifolds and unique factorization. Compositio Mathematica, Tome 52 (1984) no. 2, pp. 221-229. http://www.numdam.org/item/CM_1984__52_2_221_0/
[1] Anneli con unica decomponibilità in fattori primi ed un problema di intersezione complete. Monatshefte Math. Physik 61 (1957) 97-142. | MR | Zbl
and :[2] Kählerian coset spaces of semi-simple Lie groups. Proc. Nat. Acad. Sci. USA 40 (1954) 1147-1151. | MR | Zbl
:[3] Über kompakte homogene Kählersche Mannigfaltigkeiten. Math. Ann. 145 (1962) 429-439. | MR | Zbl
and :[4] Représentations linéaires et espaces homogènes Kählériens des groupes de Lie compacts. Sém. Bourbaki 1954, no. 100 (Exposé par J.-P. Serre). | Numdam | Zbl
and :[5] Homogeneous vector bundles. Ann. Math. (2) 66 (1957) 203-248. | MR | Zbl
:[6] The group of ideal classes of a completed ring. Math. USSR Sb. 6 (1968) 493-500. | Zbl
:[7] The divisor class group of a Krull domain. Erg. der Math. 74, Springer (1973). | MR | Zbl
:[8] On algebraic homogeneous spaces. Amer. J. Math. 76 (1954) 811-818. | MR | Zbl
:[9] Principles of algebraic geometry. New York: Wiley (1978). | MR | Zbl
and :[10] Algebraic geometry. GTM 52, Springer (1977). | MR | Zbl
:[11] Grassmannians and their Schubert varieties are arithmetically Cohen-Macaulay. J. Algebra 25 (1973) 40-57. | MR | Zbl
:[12] Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Advances in Math. 13 (1974) 115-175. | MR | Zbl
and :[13] On the arithmetic normality of the Grassmann variety. Proc. Nat. Acad. Sci. USA 40 (1954) 309-313. | MR | Zbl
:[14] Commutative rings. Boston: Allyn and Bacon (1970). | MR | Zbl
:[15] Groupes semi-simples: Structure de B et de G/B. Sém. Chevalley 1956-1958: Classification des groupes de Lie algébriques. Exposé 13. | Numdam
:[16] Unique factorization in complete local rings. AMS Proc. Symp. Pure Math. 29 (1975) 531-546. | MR | Zbl
:[17] A note on factorial rings. Arch. Math. 15 (1964) 418-420. | MR | Zbl
:[18] Über holomorphe Abbildungen projektiv-algebraischer Mannigfaltigkeiten auf komplexe Räume. Math. Ann. 142 (1961) 453-486. | MR | Zbl
and :[19] Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten. Topology 2 (1963) 137-157. | MR | Zbl
and :[20] Lectures on unique factorization domains. Tata Inst. Fund. Res., No. 30, Bombay (1964). | MR | Zbl
:[21] Sulla varietà che rappresenta gli spazî subordinati di data dimensione, immersi in uno spazio lineare. Ann. di Mat. (3) 24 (1915) 89-120. | JFM
:[22] Mannigfaltigkeiten. Schriftenr. Math. Inst. Univ. Münster, 2. Serie, Bd. 23 (1982). | MR | Zbl
: Über homogen-rationale[23] Transformation groups on homogeneous-rational manifolds. Math. Ann. 260 (1982) 423-435. | MR | Zbl
:[24] Sur certaines classes d'espaces homogènes de groupes de Lie. Mém. Acad. Roy. Belg. 29 (1955) 1-268. | MR | Zbl
:[25] Espaces homogènes complexes compacts. Comment. Math. Helv. 37 (1962/63) 111-120. | MR | Zbl
: