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Introduction

We have presented in [R-2] an approach to studying the space of cusp
forms of classical groups of type Sp or O(Q). This approach uses the
lifting theory of representations between dual pairs arising from oscilla-
tor representations. We have given a natural decomposition of the space
of cusp forms on L cu@p(Sp,(A» into orthogonal pieces X; where if

Xi (0), then X, "lifts" to a space of cusp forms on O(Qi)(A), (Qi, a
quadratic form of dimension 203BB with split part 203BB - 2 i ). We have shown
in [R-2] several cases where the Howe duality conjecture is valid for the
lifting from the space X, to L2cusp(O(Q1)(A)); indeed this says that the
lifting on the set of automorphic representations occurring in X, is an

injective mapping and that multiplicities are preserved under the lifting. It
is reasonable to expect that the methods of [R-2] can be extended so that
this conjecture (or maybe a minor variant of it) is valid for each X,.
However, what is not considered in [R-2] is to give a precise description
of the representations occurring in X, or the representations occurring in
the image of X, . We note that the first such instance where such a precise
description is given at the global level is for the pair GL2(A) and DA, D a
quaternion algebra over K, relative to the lifting between L2 ( DK B DA )
and L2cusp(GL2(A)) given in [ J-L ]. Indeed the lifting map is shown to be
injective, and the image is characterized as the set of cuspidal representa-
tions of GL2(A) whose components at the ramified primes of D are

This research was supported, in part, by NSF Grant MCS 78-02414.



140

square integrable representations. The next set of cases considered were
the Saito-Shintani base change, the symmetric square map from GL2 to
GL3, and the Shimura lifting from GL2 to its two-fold cover. In each of
these instances a comparison of traces formula is proved; from this the
existence of a global (and then a local) lifting is deduced with specific
information given on the injectivity of the map. Moreover there is very
fine information characterizing the representations occurring in the image
of the lifting map.
We are interested in considering the same questions for a general dual

reductive pair. In principle, it is straightforward to prove the existence
and injectivity of the lifting as shown by the various cases of the Howe
conjecture in [R-2]. However, to give an adequate characterization of the
image of a lift, it seems mandatory to use some type of trace formula.
Indeed the basic question that initiated this study was to determine what
isometry properties the lifting map possessed when it was given in
concrete terms by a kernel function ; the fundamental question is to have a
method of relating the Hilbert inner product of two "lifted" modular
forms ~~,03C8, to the initial Hilbert inner product of the 03C81. To this end we
have discovered an inner product formula of the following form:

where 2( p, cp’) is an LI function of SPn(A) (depending on T and T’) and
0394 is a certain involution on L2cusp (Spn(A)). The import of such a formula
is that to test the nonvanishing of ~~,03C8,, it suffices to test the nonvanish-

ing of (Ç, * 2( p, ~)|03C80394l~. What is remarkable is that this term can be
effectively computed! Indeed we note that 2( p, p) will be a matrix

coefficient of a particular global Weil representation; then with mild
restrictions ~03C8l * 2( cp, ~)|03C80394l~ will be an Euler product in which each
local integral will be of the form

where (99, * Gv|~v~v is the matrix coefficient of a local Weil representa-
tion and ~(03C8l)v * Gv|(03C8l)v~v is the matrix coefficient of a local compo-
nent of BfI. In particular we note that the Euler product will, in fact,
decompose into two pieces: i.e., a product L1. L2 , where L is the special
value of a Langlands L function associated to the representation ni
(which carries 03C8l) and L2 is a finite product of local integrals as above
(over those primes where the local component (03A0l)v is not a spherical
representation). It is then easy to see that LI =1= 0 and that the nonvanish-
ing of L2 depends on whether (03A0l)v will "occur" in the associated local
Weil representation. Thus, in principle, we have reduced the question of
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determining the image of a lift to determining locally which representa-
tions occur in the Weil representation. We note that we do not expect this
always to be the case (see [P]); however for Spn large compared to
O(Q)(A), it should be true, as we show in this paper for the family of
cases Sp X O(Q) where dim Q  8.
We note that as a special consequence of the above work, we are able

to construct global automorphic representations Q of O(Q)(A) appearing
in L2cusp (O(Q)(A)) such that 03C3~ = the component at some Archimedean

prime "oo" will be a representation of O(Q)(R) with nonvanishing Lie
algebra cohomology (see [ B- W and [ M-R for this general problem).
On the other hand, we know from the inner product formula shown

above that a type of formal comparison of traces of Hecke operators is
possible. That is, we recall from [R-1] that there exists a surjective
homomorphism 03C9Qv of the local Hecke algebra H(O(Qv)//v) to

H(Sp1(Kv)//SP1(03B8v)) which is compatible with the local Weil represen-
tation 03C0Qv, i.e., 03C0Qv(03C9Qv(f)= 03C0Qv(f) for all f ~H(O(Qv)//v). Then for
the following classical case, we have a comparison of trace formula.
Namely, let S4t(Z) be the space of cusp forms of weight 4t for the group
SL2(Z). Let Q be a unimodular quadratic form (8|m, m = dim Q ) and let
FQ = the finite dimensional space of functions on the double coset space
O(Q)(Q)BO(Q)(A)/UQ, where UQ = stabilizer in O(Q)(A) of the stan-
dard lattice Z"’. Then we know that the lifting map defines a linear
injection of S4t(Z) to FQ, which is compatible with the local maps WQ,,
(for all finite v in Q). Moreover we have the formula 

for all fv E.Ye(O(Qu)//Ku) (here p denotes the respective representations
of local Hecke algebras on the given spaces of cusp forms), and XQ = the
image of the lifting.

Also we note another possible use of the above work. Namely if we
assume that 03C8l is an eigenfunction of 2( cp, T’) (which is the case when 4,
lies in an irreducible component of L2cusp (Spn(A))), then the inner product
gives, in principle, a way to determine the algebraic nature of the ratio

Indeed in Remark 2.4, we see that, for the pair (Spl, O(Q)) with certain
restrictions on Q, this ratio (aside from a universal constant not depend-
ing on the 03C8l) can be expressed as a ratio of special values of L functions
associated to the representation space 03A0 of 03C8l. We can view such a
formula as a possible generalization of the exact formulae of Walds-
purger and Kohnen-Zagier ([ W and [K-ZD relating the ratios of Peters-
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son inner products of half-integral weight modular forms to integral
weight modular forms (via the Shimura lifting).
We organize the paper in the following fashion.
In § 0 we present preliminary definitions and notation. We also recall

certain results in [R-S].
In § 1 we consider the lifting f from L2cusp (Shk(A)) and L 2

to the space of smooth automorphic forms S(O(Q)(K)BO(Q)(A)) (for a
fixed form Q). Then it is possible to compute the Petersson inner product
of ~~,03C8 and if k + k’  m/4 ( m = dim Q) on O(Q)(A). In Proposi-
tion 1.1 (1), we show that the lifts ~~,03C8 and ~~’,03C8’ are perpendicular if
k =1= k’. Thus the main case of interest is when k = k’, and we prove in

Proposition 1.1 (II) the inner product formula alluded to above. The key
point in proving this formula is the use of Siegel’s formula and the
determination of the set of double cosets of the form Spk X Spk, B
SPk+k’/Pk+k’. We note that we have used a similar such decomposition
in [R-2] as one of the main technical tools in proving the local Howe
duality conjecture. The construction of Y(~, qq’) as a matrix coefficient of
an appropriate Weil representation, which is factorizable as a product of
matrix coefficients of the associated local Weil representations, is

given in the proof of Proposition 1.1 and Remark 1.2. Then we look at
the local factors of Y(~,~) which are of spherical type and determine in
Remark 1.3 the corresponding local factor of the inner product
(BfI * Y(~, 2 Moreover in § 4 we give the details of this computa-
tion when k = 1. Then as an application of this factorization property of
(BfI * Y(~, 2 we determine in Corollary 1 to Proposition 1.1 the
representations occurring in I1(Q) ( Q anisotropic over K with m &#x3E; 6).
Here we use also certain results from [R-S], i.e., the possible discrete
series representations of SL2(R) that occur in the Weil representation for
the pair (O(Q), Sp = ,SL2 ). In Theorem 1.6 we show, by dualizing the
above Corollary, that the lifting map is injective between RI (Q) and
I1(-Q) (see § 0 for precise definitions); moreover using the results of
[R-2], we show that the global Howe duality conjecture is valid for this
range of cases. Finally in Remark 1.7 we show how to construct global
cuspidal automorphic representations of O(Q)(A) such that a local com-
ponent at {~} has nonvanishing Lie algebra cohomology of a certain
prescribed level.

In § 2 we give another application of Proposition 1.1. Namely we
prove the "Comparison of Trace" Theorem (Theorem 2.1) discussed
above. We also indicate in Remark 2.3 the arithmetic nature of the ratio

~~~,03C81|~~’,03C82~/~03C81|03C803942~ in terms of special values of classical-type zeta
functions and L-functions of Langlands type.

Sections 3 and 4 are devoted to proving convergence of certain

integrals in § 1 and the determination of local factors discussed above.
We would like to thank John Millson, whose incisive questions ini-

tiated part of this study.
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§ 0. Notation and preliminaries

(I) Let k be a local field of characteristic 0. We fix a nontrivial additive
character T on k. Let ~,~k be the usual Hilbert symbol on k. Let dx be a
Haar measure on k which is self dual relative to T. We let ||k be an
absolute value of k.

If k is a nonarchimedean field, we let (9k = ring of integers of k,
03C0k = the maximal ideal in Cok, and q = the cardinality of (9kl77k’

(II) Let K be a number field (i.e., finite degree extension of 0, the
rational numbers). Let A K be the corresponding adelic group. Then
embed K as a discrete subring in AK. Let Ku be the completion of K
relative to a prime v in K. Let T be a nontrivial character on A K which
equals 1 on K ; then there exist compatible characters r, on K, (for all
primes v in K) such that 03C4(X)=03A0v03C4v(Xv). Let dX be the measure

(Tamagawa measure) on AK such that the group AK/K is self dual
relative to T and A KIK has mass 1. When the context is clear, we drop K
in AKand use just A for AK.

(III) Let Q be a nondegenerate quadratic form on K m. Let Qv be the
corresponding local versions on K m. If Qv is a totally split form which is
the direct sum of r hyperbolic planes, then we let Qu = Hr. Let O(Q) be
the orthogonal group of Q. Then we can form the corresponding adelic
group O(Q)(A) and the corresponding local orthogonal groups O(Qv) of
Qv at Kv. Let O(Q)(K) = the K rational points in O(Q) and embed
O(Q)(K) into O(Q)(A) in the standard way. Choose a Tamagawa
measure on the quotient O(Q)(K)BO(Q)(A) as given in [A].

Similarly let A be a nondegenerate alternating form on K2n. Let Sp,,
be the corresponding symplectic group and Spn(A), Spn(Kv) the associ-
ated adelic and local objects. Let Spn(K) = the K rational points in Spn
and embed Spn ( K ) into Spn(A) again in the standard fashion and choose
a Tamagawa measure on the quotient Spn(K)BSpn(A) as given in [A].

(IV) If Û, is a global group, then we denote the space of cusp forms
on KBA by Lcusp (G, ). We note (by our convention) that if GK B GA is
compact, then L2cusp(A) = (all functions f ~ constants}. We know that
L2cusp(A) is discretely decomposable as a GA module, and each unitaryirreducible representation occurring in L2cusp(A) has a finite multiplicity.
We denote

where dg is some Tamagawa measure on the quotient (K)B(A).
(V) We consider the following Weil representation. Namely, we fix a

nondegenerate form Q on K m and a nondegenerate alternating form A
on K2n. Then we consider the alternating form Q 0 A on Mm2n(K). To
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this form we associate a Weil representation of the two-fold cover pm·n
of Spmn given in [R-2]. Then we restrict the representation to a subgroup
Spn X O(Q) = inverse image of Spn X O(Q) in SPmn. If m is even, then we
know that we get an honest representation of Spn X O(Q). This we call
the Weil representation 7rQ of Spn X O(Q) on the space S[Mmn(k)]. In
fact, we recall formulae for generators of Spn X O(Q) in 03C0Q in § 1 of [R-2]
where Q = Qu, a local form of Q.

(VI) Using the local data in (V), we can define a global Weil
representation i7Q of SPn(A) O(Q)(A) on the space S[Mmn(A)] (for
details, see [R-2]). That is, to every ~ E S[Mmn(A)], we can construct a
function (( G, g) ~ Spn A) X O(Q)(A)):

Then 03B8~ is an automorphic function on Spn(A)  O(Q)(A). That is,

03B8~(03B31G, 03B32g) = 03B8~(G, g ) for all 03B31 ~ Spn(K), 03B32 ~ O(Q)(K). Moreover, 03B8~
is a slowly increasing function on Spn(K) X O(Q)(K)BSPn(A) X O(Q)(A)
in the sense of [A].

(VII) We construct here representatives for the maximal parabolic
subgroups of SPn.

SPn has parabolics given by Pn-1, i = 0,..., n - 1, where

with

and

and

Unl is the semidirect product Un,1l X Un,2l,
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where

and

(VIII) We recall here Theorem 1.2.1 of [R-2]: L2cusp(O(Q(A)) is an

orthogonal direct sum of

where R1(Q)= {f ~ L2cusp|~03B8~(G, g)|f(g)~ = 0 for all G E Sp1(A) and all
~ ~ S[Mm1(A)]}~ in L2cusp and inductively Rl(Q) = { f ~
L2cusp|~03B8~(G,g)|f(g)~ ~ 0 for all G ~ Sp~(A) and all ~ ~ S[Mm~(A)]
with ~ i}~ in {f ~ L2cusp|~03B8~(G, g)|f(g)~ = 0 for all G E Sp~(A) and all
~~S[Mm~(A)] with ~i}. Similarly L2cusp(Spn(A)) has an orthogonal
decomposition

where the spaces Ii are defined in a similar manner as the R above. (Here
Q is a nondegenerate anisotropic form over K and is possibly zero.)

(IX) We use the parametrization of the representations of SL2(R) as
given in [L]. Then Hô and Hj are the mock discrete series and D£ is
the family of discrete series with m  2. 

(X) We let e ( ... ) be the exponential function e raised to the ( ... )
power.

(XI) We let

(XII) We let
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where

identity matrix.

§ 1. An inner product formula

One of the main goals mentioned in [R-2] is to have an effective

comparison of Hecke operators on the spaces L2cusp( ) and R, (also Lcu,p
( ) and Sl( )). However prior to having such a statement, we must
determine a relation between the inner product of the lift of cusp forms
on O(Q)(A) to the inner product of the initial cusp forms themselves on
SPr(A).

Indeed we fix cusp forms Çj and 03C82 on the groups SPk(A) and Spk’(A)
respectively. Then we consider the associated lifts

and

Then in order to compute the inner product of these two functions, we
assume that at least one is a cusp form, and hence we have

((G’)03940 defined below) where YQ is the functional on S[Mm,k+k’(A)] =
S[Mm,k(A)] ~ S[Mm,k’(A)] given by (provided we have convergence of
such an integral)
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with 0/ E S[Mm,k+k’(A)], G e SPk+k’(A). In the above formula (1-1), we
consider SPI X Spk, as a subgroup of SPk+k’ via the obvious diagonal
embedding map.

PROOF OF (1-1): We first write down the integral for the inner product in
(1-1), and we have

But then we know that 03C0Q(G’,g)(~’)(X) = 03C0Q((G’)03940, g)(~’)(X) for all
~’ ~ S[Mmk’(A)], XE Mmk’(A) and

Thus combining the terms in the above series via this latter rule and
changing the order of integration we get (1-1). We note that it is possible
to switch the order of integration when YQ(03C8) is an absolutely conver-
gent integral (i.e., this happens when Q is anisotropic or when dim( Q ) &#x3E;

rank( Q ) + ( k + k’) + 1 if Q is isotropic); then YQ(03C8) is a slowly increas-
ing function on its restriction to Spk X Spk’(A) and is integrated against
the product of cusp forms 03C81 · 03C82.
On the other hand, we can infer something about the functional

03C8~YQ(03C8)(G), G ~ Spk+k’(A)· Namely we can apply Siegel’s formula to
YQ (when dim Q &#x3E; 2( k + k’) + 2), and we have

But we know that Spk(K) Spk’(K) operating on the coset space

Pr(K)BSpr(K) ( r = k + k’) has a finite number of orbits. Thus if Q, is a
set of representatives of such orbits and (Spk X SPk’)(03A9l) is the stabilizer
of Pr(K)·03A9l in Spk X Spk,( K ), then we see easily that (see § 3 for the
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proof of convergence in (1-2))

Thus we have completed the first reduction using Siegel’s formula to
express ~~k~,03C81|~k’~’,03C82~ as a finite sum of adelic integrals over Spk X SPk,(A).

Then we know that if k  k’, then Spk X SPk’(03A9l) is isomorphic to the
group ( i = 0,..., k’) (see (XII of §0)

where

and

(for this, see similar computations given in [R-2]). We recall that G03941 =
((Gt)-1)03940. We let G0394 = (Gt)-1.

Thus the second reduction step is to evaluate the adelic integrals in
(1-2). We have that

where i(A) = GLk-l(K)  Ukl(A) and l(A) = GLk’-1(K)  Uk’l(A)
and do is a suitably normalized measure on the quotient A,  l X R, B
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Spk  Spk’(A). Hère Ukl  Uk’l(A) fixes QI’ i.e. 03C0Q(03A9l·(x, y))(03C8)(0) =
03C0Q(03A9l)(03C8)(0) for all 03C8 ~ S[Mm,k+k’(A)] (Le. using factorizability of ’1TQ
into local 03C0Qv and the validity of the statement for local Weil representa-
tions 03C0Qv).

Thus we have that if k &#x3E; k’ or i &#x3E; 0 (if k = k’), then (since 03C81 1 and 03C82
are cusp forms) ~k~,03C81|~k’~’,03C82~ = 0. Thus if i = 0 and k = k’, the only adelic
integral that we must consider is

But it is possible to telescope the integration above so that (1-3) equals

(Here again we use the factorizability properties of the Weil representa-
tion to get 03C0Q(03A90(g, g03941))(03C8)(0) = 03C0Q(03A90)(03C8)(0) for all 4, c- S[Mmr(A)].)

But then we note that the map SPr(A) ~ 03940(A)BSPr(A)  SPr(A)
given by g ~ (g,1) 03940(A) is a homomorphism of topological spaces
carrying the Haar measure on SPr(A) onto the measure d03C3 (given above)
on 03940(A)BSpr(A) X Sp,(A). Thus we can rewrite (1-3) as

where

Thus we define for any pair (~, qq’) in S[Mmk(A)] X S[Mmk(A)] a
function on Spk(A),

Then we have the following Proposition determining

PROPOSITION 1.1 : Assume that m &#x3E; 2( k + k’) + 2. Assume
a cusp form. Then
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then

where

PROOF: We recall the construction of the Tamagawa measure on SPn(A).
Locally we fix for each prime v in K a Haar measure da, on SPn(Ku) such
that if v is finite, then

Then the Tamagawa measure on SPn(A) is the unique measure du on

SPn(A) such that d03C3 induces on each product

( S = all primes in K except a finite number), the product measure 03A0vd03C3v.
Thus to test whether 2( cp, cp’) is an LI function on SPn(A), it suffices to
consider ~ = 11(p,, T’ = 03A0~’v and to show that for the filtered set

where G E SPn(A S),

On the other hand, we know that

while the latter term is (up to a nonzero scalar) of the form

But then we can express the above integral as an absolutely convergent
product



151

But on the other hand, we know that for almost all primes v in K, Qu is
isotropic (here m &#x3E; 4) and the Weil representation 1TQI’ of SPk(Ku) on
S[Mmk(Kv)] has the characteristic function Xu of the lattice Mmk(Ov) in
Mmk(Ku) as an SPk(Ov) fixed vector. Thus for almost all primes v in K
(let R be this set),

Hence we have

But then following the general arguments of [H-M] we have that

for

with is majorized by

Thus since m &#x3E; 4k + 2, we have that in ( * )

is majorized independent of the set S. (Here we use the polar decomposi-
tion of SPk(Ku) relative to SPk(Ov) and the diagonals.)

Thus we have by monotonic convergence that
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converges to

Thus 03C8 is an L’ function on Spk(A).

Q.E.D.

REMARK 1.2: In the course of the proof of Proposition 1.1, we have
shown that 2( cp, cp’) is, up to a nonzero scalar multiple (independent of cp
and qq’),

(~, ~ Hilbert product on L2( ... ) and see (XI) of §0) which is a matrix
coefficient of the Weil representation of SPk(A) X O(Q)(A) on

S[Mmk(A)]. Moreover, assuming that ~ = 0 ~v and (~’ = ~ ~’v, we show
that

Then it is possible to draw certain interesting consequences from
Proposition 1.1 and Remark 1.2.

Indeed we see directly that the subspace of L2cusp(Spn(A)) where each
irreducible component maps to a nonzero subspace in L2cusp(O(Q)(A))
via the lifting map can be characterized as the closure of

{Y(~, ~’)(L2cusp(SPn(A)))} (~, T’ vary in S[Mmn(A)]) in L2cusp(Spn(A)).
Thus it becomes a matter of determining the range of the operators
Y(~, cp’) acting on L2cusp(Spn(A)). But using Remark 1.2 and the proof of
Proposition 1.1, we see that if 03C81 and Ç) lie in the same irreducible

component 03A0, then

if 99 = 0 and cp’ = ~v~’v are factorizable functions. Thus the essen-
tial local question is to determine which local unitary representations of
SPn(Ku) have the property that the space A(03B4) of matrix coefficients of S
can be nonsingularly paired with the space A(03C0Qv), the space of matrix
coefficients of the local Weil representation rQ@ of SPn ( Ku) on

S[Mmn(Kv)], via the bilinear form 
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given by

However we know that if A(03C0Qv) ~ L1(Spn(Kv), d03C9v), then a necessary
and sufficient condition for the above form to be zero (or, simply
put, A (’1TQI’) c A n n ih il a to r( 8 ) = { f ~ L’177&#x26;(f ) = 0}) is that

HomSpn(Kv)(03C0Qv, à) = {0} (where à = the contragredient representation of
8). We shall use this criterion below to determine the nonvanishing
properties of the inner product

REMARK 1.3: We can compute

explicitly in the case when 41, is an SPk( mu) invariant vector (spherical-type
local component) of an irreducible representation 03A0v ( v finite) and
~v = Tv’ = characteristic function of the lattice Mmk(Ov) in Mmk(Kv).
Indeed, if

where D is the diagonal matrix

then the above integral equals the infinite sum

(0394Q = discriminant of Q ), where 03C903A0v is the spherical function associated
to the representation nu (i.e. 03C903A0v(g) = ~(03C81)*gv|(03C81)v~03A0v, r(D) =
q-(m1+...m03BB)·m/2, and vol( D ) is the volume of the double coset SPk(Ov)D
SPk(Ov) relative to du, and Y. runs through the set of distinct SPk(Ov)
double cosets in SPk(Ku)’ Then it is possible to compute the infinite sum
as a rational function (see § 4), and we get for k = 1 that the sum equals
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where,j is the complex number which determines the representation nu,
i.e. nu is equivalent to the unitary representation contained in the

induced representation of Sp1(Kv) induced from the parabolic subgroup

In particular, noting that nu must be unitary, we have that the Euler
product

(where the product runs over all finite primes v in K where Sp1(Kv) has a
nonzero fixed vector in nu) is a nonzero function (i.e. j, satisfies

|Re(sv)|  1).
Thus with the above computation, we can obtain the following conse-

quence of Proposition 1.1.
For the remainder of this section, we assume that K is a totally real field

over Q.

COROLLARY 1 TO PROPOSITION 1.1: 

Let Q be anisotropic form over K with m &#x3E; 6. Then

where XQ = {all cuspidal SP1(A) representations J-1 satisfying (i) if v is a
prime where Qv is anisotropic, then the local factor nu of noceurs
discretely in the Weil representation 03C0-Qv; (ii) if v is a real prime where
Q, is isotropic of signature (au, 1) ((1, av) resp.) and if nu admits a
highest weight vector, then nu is either (-) mock discrete series (( + ) mock
discrete series, resp.) or appears discretely in the Weil representation
03C0-Qv(03C0Qv, resp.).

REMARK 1.4: We note that since m &#x3E; 6, then all the primes where Qv is
anisotropic are Archimedean real primes. Thus we can characterize the set

XQ in a simpler fashion as follows: XQ = (all cuspidal SPI (A) representa-
tions II satisfying

(i) if v is a prime where Quis anisotropic, then 03A0v is a discrete series
of the form Dr with r  m/2 (Dr+, resp., with r  m/2) if Qv is
positive definite (negative definite).

(ii) if v is a real prime where Qv has signature (au, 1) or (1, av) and if
nu admits a highest weight vector, then nu is a discrete series of
the form D,- with i  2 or a mock discrete series Hj (Dl+ resp.
with i  2 or a mock discrete series H+0)}.
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PROOF: We must show two statements. First, if 03A0 occurs in XQ, then for
some Ç c 03A0, ~~,03C8 ~ 0 (for a suitable choice of ~ in S[Mm1(A)]). Secondly,
if n does not occur in XQ, we must show ~~,03C8 = 0 for all 41 in II and ~ in
S[Mm1(A)].

From Remark 1.3 (noting that (p and qq’ are factorizable), we have for
any cuspidal representation Il occurring in L2cusp(Sp1(A)) that (BfI’ 03C8’2 are
elements of 03A0)

where R’ = set of all primes in K which are finite and where (03C81)v and
2 are Sp1(Ov) invariant vectors in nu and CPu = ~’v = characteristic
function of the lattice Mm1(Ov). We note that R", the remaining set of
primes in Ku, is a finite set. In any case, we note that the nonvanishing of
~03C81 * 2( cp, 2 depends only on the set R" and the corresponding
local integrals appearing in its product.

Then we let v E R" and suppose v is finite. By using the tensor
product properties of the Weil representation, it is possible to write

~03C0Qv(gv)~v|03C0Qv(w1)~’v~ as a product

where Qu splits as an orthogonal direct sum (Q1)v ~ (Q2)v with ( Q1 ) v
a split form and (Q2)u an anisotropic form (of dimension 0, 2, or 4)
and ~v = ~1v ~ ~2v, ~’v = ~1’v ~ ~2’v. But this means that the local integral is
given by integrating ~03C0(Q1)v(gv)~1v|03C0(Q1)v(w1)~1’v~ against the product
~03C0(Q2)v(g1)~2v|03C0(Q2)v(w1)~2’v~~(03C81)v*gv|(03C803942)v~. Choosing ~2v and ~2’v ap-
propriately, it is simply a matter (to show the non-vanishing of this local
integral) of showing that ~03C0(Q1)v(gv)~1v|03C0(Q1)v(w1)~1’v~ is a sufficiently
generic function, i.e., arbitrary of compact support. However we recall
from [R-2] that the family of functions
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(gu E Sp2(Ku) and 03C1v, 03C1’v arbitrary functions in S[Mm1(Kv)]), span

(Here m’v =dimension of the space on which ( Q1 ) U lives). Then by
suitable choice of Pu and 03C1’v and by restriction to Sp, X (11, we obtain a
function gv ~ 03C0(Q1)v(03A90(gv,1))(03C1v ~ 03C1’v)(0) whose integral against the

product function above is nonzero!
Thus, so far, we have shown that if n is any cuspidal irreducible

representation, then 03A0 will appear in S1(Q) if and only if
Hom Sp1(Kv)(03C0Qv, v) ~ {0} for all Archimedean primes in Kv. Thus to
finish the proof, we need only to determine the representations a, of
SPI (Ku) which satisfy HomSp1(Kv)(03C0Qv, 03C3v) ~ 0. Indeed, if Qu is aniso-

tropic, then we know exactly which (Ju appear in 03C0Qv (see [R-S]). If Qu is
isotropic and v is real, then we known from the computation given in § 4
(see also [ R-S, § 5 and § 6]) that HomSp1(R)(03C0Qv, Hs) ~ 0 for any prin-
cipal series representation Hs with IRe( a)1  1 (see comments below).
Thus it suffices to check all representations of discrete series type (both
usual discrete series and mock discrete series) for SPI (IR). Here we use the
results of [ R-S ]; indeed if b &#x3E; 1 (where signature(Q) = (a, b )), then all
discrete series representations of Sp1(R) occur in 03C0Qv. If b 

= 1, then only
discrete series of the type D+l occur in 03C0Qv. We note here that in § 4, with
b = 1, we will show that HomSp1(R)(03C0Qv, H+0) ~ 0 (where H+0 = ( + ) mock
discrete series) and from [R-S, §6], we have HomSp1(R)(03C0Qv, H-0)= {0}
(where Hj ( - ) mock discrete series). 

Q.E.D.

REMARK 1.5: We note that the main obstacle to extending the above
Corollary to the general Spn case consists of two technical points: (1) to
establish a formula analogous to the one for Z(03C9s, 03BB) (defined and
derived in § 4 for SPI) in order to prove the nonvanishing of the main
part of the Euler product for ~03C81 * Y(~, ~’)|03C803942~ given above and (2) to
characterize at the real Archimedean primes which unitary representa-
tions of SPn(R) occur in the Weil representation rQ on S[Mmn(R)].

By dualizing the lifting problem above, we can now give a complete
characterization of the lift from O(Q)(A) to Sp1(A).

THEOREM 1.6: Let Q be an anisotropic form with m &#x3E; 6. Then the lifting
map from R1(Q) into L2cusp(Sp1(A)) has as an image the space Il ( -Q).
Moreover if Q is defined over Q, then the lifting map from R1(Q) to

I1(-Q) satisfies the global Howe duality conjecture and is multiplicity
preserving in the sense of [R-2].
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PROOF: The proof of the second statement follows from the first state-
ment coupled with the results of [R-2, § 2].
On the other hand, we recall if 03C8 is a cusp form on Sp1(A) and f is a

cusp form on O(Q)(A) with

and

then for fixed T in S[Mm1(A)], the linear maps 03C8 ~ tep,t/; and f ~ Y~,f are
" twisted" adjoint to each other, that is

Then we recall that 03C0-Q(G) = 03C0Q(G03940) for all G e Spn(A). In particular
this implies that 03B2 ~ 1(-Q)~ if and only if 03B203940(=defn03B2(G03940) for

G ~ Spn(A)) ~ Il (Q)1.. Hence it follows by a standard argument that if
f E R1(Q), then L,,,f El I1( - Q). (Here we use the inner product formula
given above.) Similarly we have that if f3 E I1(-Q), then tep,/3 E R1(Q);
this implies that I1( - Q ) equals the image of R1(Q) under lifting.

Q.E.D.

REMARK 1.7: We consider an automorphic cuspidal representation 03A0 in

L2cusp(Sp1(A)), where 0 D;;’/2 (that is, at every real prime we specify
the representation D-m/2). Such representations certainly exist in

L2cusp(Sp1(A)). Then we consider a cuspidal representation Q in

L 2 sp(O(Q)(A» which maps onto II via the lifting map. We know from
[R-2, § 2] that the local components a, of Q must satisfy

(all components of 03C3 are self-contragredient). Thus it follows that if Qu is
anisotropic, then a, = trivial representation of O(Qv) and if Q, is iso-
tropic, then a, is the unique representation of O(Qv) which has the
property that

where H* = relative Lie algebra cohomology and M, = maximal compact
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subgroup of O(Q). Thus we have constructed an automorphic cuspidal
representation Q of O(Q)(A) such that for a real prime v in K where Qv is
isotropic, av has a nonvanishing cohomology at level bu’

REMARK 1.8: The import of Corollary 1 to Proposition 1.1 and Theorem
1.6 is a complete characterization of the image of the lifting 03B21 from
O(Q)(A) to Sp1(A); moreover, in the case that Q is anisotropic over Q,
we have that the lifting satisfies the global Howe duality conjecture and
is multiplicity preserving. Moreover, we see that if Q, and Q2 are any two
anisotropic forms of equal dimension greater than 6 over K and have the
same signature at every real Archimedean prime of K, then I1(Q1) =
I1(Q2); that is, I1(Q) depends only on the signature of Q at the Archi-
medean real primes of K.

§ 2. A "comparison of trace" formula

It is possible to draw a conclusion about classical cusp forms from the
above work. Namely, we let Q be a unimodular quadratic form over Z on
R8·t. In particular, this means that if we consider the genus of Q, we get a
finite class of lattices L, on Z8·t such that the finite set of double cosets

UZ8 = the stabilizer of Z8·t in O(Q)(A),

is in one-one correspondence with the lattices Ll = gl (Z8·t ), gl a coset

representative above. Then we know that the associated family of 0-series

the norm of L, given in E , § 8]}

belongs to the space of holomorphic modular forms M,, (SL2 (Z» ==

with

Let XQ = the subspace of M4t(SL2(Z)) spanned by the (JLt above.
We know that SL2(A)= Sp1(A) satisfies the strong approximation

Theorem over Q, the rationals. This implies that we can identify the
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space S4t(SL2(Z)), the space of cusp forms in M4t’ with

the component of v in 03A0fin is fixed under

via thé map ~(g~)j(g~, -1)k = f~(g~(-1)), wherefcp E S4t(SL2(Z))
and ~ E L2cusp(Sp1(A)). (Here j is the usual canonical automorphy factor,
and g E SP1(A) has the decomposition gQ. goo . gU, gQ E Sp1(Q), goo E
SP1(R), and gU ~ K.

Then we know that UZ8 t = O(Q)(R)L where = 03A0v~Lv with Lu =
the stabilizer in O(Qv) of the lattice Ov ~ Z8·t. Then we have that

F(O(Q)(Q)BO(Q)(A)/UZ8.t)= {f:O(Q)(A) ~ C|f is invariant on the
left and right by O(Q)(Q) and UZ8 t, resp.) is a finite dimensional space
and, in fact, using the usual Tamagawa measure on O(Q)(Q)BO(Q)(A),
we have Fe L2(O(Q)(Q)BO(Q)(A)), and if F = { f ~ F|~f|1~ = 0}, then
F ~ L2usp(O(Q)(A)). Hence F can be identified to

In particular, if Q appears in L2cusp, then Q has a nonzero UZ8 t invariant if
and only if 03C3~ = 10(Q)R and 6fin = ~v~03C3v with aÛ =1= 0 for all v. More-
over

is, at most, a one dimensional space. Hence F is in bijective correspon-
dence with the set of cuspidal representations a in L2cusp(O(Q)(A)) which
satisfy

Then we choose the function cp E S[Mm1(A)] such that ~~(X) = e-03C0[X]
and ~p(X) = characteristic function of Mm1(Op). Then using such a ~ and
choosing the characteristic function PI of the double coset O(Q)(Q)glUZ8 t,
we have that f.!ae (03C4) is a nonzero multiple of (JL [R-3]. On the other
hand, if we consider F ~ R1(Q), then we know that the lifting map 03B21 is

injective on this space. In particular, we let { 03C8l} be the basis of functions
in L2cusp(Sp1(A)) which lie in a unique rI of Sp1(A) (which correspond to
S4t(SL2(Z)) above and which are eigenfunctions of thé A operation on
Sp1(A) (denote by R0394, the operation f(X) ~ f(X0394)). A simple compu-
tation shows that R0394 acts trivially on S4t(Z). By the above arguments, it
is easy to see that tep,t/;, ~ 0. Hence ~~,03C8l will lie in a unique irreducible
component of L2cusp(O(Q)(A)). On the other hand, using Proposition 1.1
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Then if i =1= j, we have -L ~~,03C8l. Thus, in any case, we have that each
tep,t/;t lies in a distinct irreducible of R1(Q) and that tep,t/;t span F. Thus we
have deduced the well known fact that XQ = M4t(SL2(Z)) (see [ E ]).

But using Proposition 1.1 and the results of [R-1], it is now possible to
make a comparison of traces Theorem about Hecke operators on S4t and
F ~ R1(Q). We recall the relevant results of [R-1]. If v is a finite prime,
we let Pi =£(O(Qu)jjLu)= the algebra of Lu biinvariant, compactly-
supported functions on O(Qu) and H2 = H(Sp1(Kv)//Sp1(Ov)) = the 
algebra of Sp1(Ov) biinvariant, compactly-supported functions on

Sp1(Kv). Then there exists a surjective homomorphism wQ,,: H1 ~ H2
such that the ideal 

is generated by {f ~ H - 03A0 I ~ 03C9(f)|f ~ H1}. In simple terms this
means that for each f ~ H1, 03C0Qv(f)(~) = 03C0Qv(03C9Qv(A)Qv(f))(~) for all ~ ~

S[Mm1(Qv)]. Then we have the following Theorem.

THEOREM 2.1 : Let f E H1. Let 03C1* denote the corresponding representation
of O(Q) or Sp on the corresponding space of cusp forms. Then

where " denotes the operation ~(x) = ~(x-1) on ./e2.

REMARK 2.2: Thus we have essentially a simple example of an abstract
comparison of traces formula between the groups Sp, and O(Q) for
Hecke operators acting on the appropriate spaces of cusp forms. (See
[La] for the general philosophy of comparison of traces relative to the
base change operation.)

PROOF oF THEOREM 2.1: Here we embed the Hecke operators f ~ H1 into
C~c(O(Q)(A)) in the standard fashion. Namely if we let f = fv, the

characteristic function of a double coset Lv03BEvLv, then we let the corre-
sponding element in C~c(O(Q)(A)) be

where ~w = characteristic function of the maximal compact subgroup Lw
in O(Qw).

Similarly we embed (A)Qv(f) ~ H2 into C~c(SP1 (A)) in a similar fashion,
but with one slight difference. That is, let g, be the characteristic function
of a double coset Sp1(Ov)03BCvSp1(Ov). Then we let the corresponding
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element in C~c(Sp1(A)) be

where ~*w = characteristic function of the maximal compact subgroup
SPI (mu) and f*~ is a C °° function of compact support such that 03C0Dj-(f*~) = 0
(for all j), 03C0D+j(f*~)= 0 (for j ~ 2t), and 03C0D+2t (f*~) = identity operator on
the lowest weight space for SO(2) and trivial on the remaining weight
spaces (such a functions is well known to exist by a result of Duflo and
Langlands).

From the comments above, we have that

But we have that
the other hand,

On

for all 03C8. With these facts we have

(We note here that 03C8l is an eigenfunction of Y(~ ~).)

Q.E.D.

REMARK 2.3: We note that the operator Y(~, ~) operating on the

eigenvector 4,, will have an eigenvalue (aside from a positive constant
independent of 03C8i) of the form

where 211ml = 1/(d(m)), d(m) = the f ormal degree of the discrete series
representation D;;’/2 and L(s, ni, rl) is the Langlands L function given
by
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(see § 4 for the definition of Lp(...)). Here fIl is the irreducible cuspidal
representation of Sp1(A) which contains the vector BfI’

§ 3. Convergence of integrals in (1-2)

We show here the absolute convergence of the integrals appearing in
(1-2). Indeed, we first note that Spr(A) = f(A)’ K where P is any

parabolic of the following form: P has a Levi factor of the type

Sp, X Ge Then the integrals in (1-2) are of 2 types:

We note that this integral can be expressed as a product

However, by taking absolute values it suffices to show that

This is equivalent to showing h ~ 03C0Q(03A90(h, 1))(~ ~ ~’)(0) is a L1 func-
tion on Spk(A) (which we show in Proposition 1.1).

Thus assuming 4,, and Bf2 and 99 0 ip-’ are K finite functions, it suffices to
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prove that

Here, P ( P’ respectively) is the parabolic subgroup having Sp, X G~k-l
(Sp, X Gtk’-I resp.) as its Levi factor. But then we have that the integral
above can be decomposed as follows:

where GI = G?k-,, G2 = Gtk’-r’ U, and U2 are unipotent radicals in P
and P’. Then by using the same idea as in (1) above, we have that the
inner integral is majorized by

Hence, it suffices to show that

and that the function h ~ 03C0Q(03A9r(h, 1»«p ~ ~’)(0) is a LI function on
Spr(A).

For the first type of integral, we consider integrating |03C81(n(x)g1g2)|2
over the set 03A31 X Dtl X ,St2 in (Ul X G, X Spr)(A) where El is any compact
subset of Ul, Dl a fundamental domain in G1(K)BG1B(A) of the form
039B. {diag(xr+1,...,xk)| xi  t1xi+1} (039B a compact set) and St2 a funda-
mental domain in SPr(K)BSPr(A) of the form 039B’ . {diag(x1, ... , xr)| xi 
t2Xi+l’ xr  t2} (A’ a compact set). We note that for the construction of
fundamental domains it suffices to let tl = t2 = t. Then it suffices to show
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that

where the range of integration is

We then show that such an integral can be decomposed in integration
over certain sets. We note that the fundamental domain in the integration
above can be decomposed into a union of the following sets:

where w ranges over the cosets in Weyl group (Spk ) mod(Weyl
group(G e’ ) X Weyl group(Spk-r)). Then we use the rapid decrease prop-
erties of 4,, (a cusp form) on the various translates of the Siegel domain
for Spk to deduce the finiteness of the above integrals.
On the other hand, we have by a similar computation to that given in

Proposition 1.1 that

Then using the same argument as in Proposition 1.1, we see that the
above function is LIon Sp,.(A).

§ 4. Computation of local factors

(1) We first assume that v is finite in K. Then we compute the series:

where the Haar measure on SPI (Ku) is so normalized that vol(K) = 1.
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Then we know that

for n &#x3E; 1 and that

Thus Z(w,, À) becomes the series

Then using geometric series expansion we have that Z(ws, 03BB) equals

But then rationalizing with common denominators, we have that Z(03C9s, 03BB)
equals

REMARK 4.1: We note that Z(,w,, À) is related to the local Langlands
L-function for the representation 03C0s. We know that the L-group of Sp, is
SO(3, C) and that the L-factor associated to 7r, and the standard 3-di-
mensional representation rl of SO(3, C ) is given by (see [B])

Then we have that
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where 03B6p is the local zeta factor function 03B6p(t)=1/(1-q-t). Thus
Z(ws, 03BB) is the special value (at w = À - 1) of the Langlands L-function
and local GL, zeta factors.

(2) Let v be a real infinite prime. We then consider a matrix coefficient
of the Weil representation 03C0Qv of the form

where ~1 and CP2 belong to S[Mm1(R)] and the SO(2) type of ~1 and CP2 is
of type m, i.e.,

Then we note that f(k(03B8)gk(03B8’)) = e0 m(O-O’)/(g) for all g E SL2(R).
Then we have that

trace., s

(recall that f is a L’-function on SP1(R)) for IRe(s) | 1. We choose an
orthogonal splitting of Q = Q+, ~ Q- so that Q+ (Q- resp.) is positive
(negative) definite ( a = dim Q+, b = dim Q-). Then, we choose W,(X) =
P+(X)P-(X) e-03C0[X] where P + is a harmonic polynomial in the + part
of Q of degree rl and P _ is a harmonic polynomial in the - part of Q of
degree r2 (if b = 1 then P _ is the r2-th Hermite polynomial). Then we
have that

Then we separate Rm = Ra ~ Rb and use polar coordinates on Ra and
Rb to get that f above equals

or
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Then in both cases we integrate the resulting functions in the x variable
over ( - oo, + 00) and get that modulo the nonzero constants not involving
r

Then we observe that this latter integral will not vanish provided suitable
choice of ri and r2 is made. Indeed, if we choose ri and r2 so that
ri 
- 

r2 + ( a - b )/2 = 0 or 1 then clearly the above integral is nonvanish-
ing. We note here if rl - r2 + ( a - b)/2 = 0 ( = 1 resp.) then SO(2) type
of f is 0 ( = 1 resp.). Then when we compute the above expression against
rsdr we get an integral of the form

This integral by a simple substitution r2 = v becomes a beta integral of
the form B(1 2(r1 + r2 ) + (m/4) + (s/2) - 1 2, 1 2(r1 + r2) + (m/4) - (s/2)
- 1). But now if we assume that 1(rl + r2) + m/4 is an integer (equiva-
lent to b{even odd} if f rl - r2 + ( a - b )/2 = {0 1} resp.) then B(1 2(r1 + r2) +
( m/4) + (s/2) - 1 2, 1 2(r1 + r2) + (m/4) - (s/2) - 1 2) is equal to

Similarly if 1 2(r1 + r2) + m/4 is half integral (equivalent to b{odd even} iff

r1 - r2 + (a - b)/2 = {0 1} resp.) we have that B(1 2(r1+ r2) + (m/4) +



168

Now we consider the case b = 1 separately. For this we may assume
that r2 = 0. Then the above computations yield after integrating in the x
variable over ( - oo, + oo )

Then following the same reasoning as in the case above ( b &#x3E; 1) we
deduce that after integrating against rsdr we get expressions for the form
(4-1) with ri + (a - 1)/2 odd and of the form (4-2) with ri + (a - 1)/2
even (in these expressions we note that r2 = 0 and m = a + 1). We note
here that we have modified the SO(2) type to be more general (i.e., either
odd or even integral). The key observation as in the case above is that an
integral of the form

(for it a nonnegative integer) is nonvanishing. Indeed, we can write this
integral as

Then the inner integral is up to a multiple of 1

Then we know that
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