@article{CM_1983__48_3_363_0, author = {Kwasik, S{\l}awomir}, title = {On equivariant finiteness}, journal = {Compositio Mathematica}, pages = {363--372}, publisher = {Martinus Nijhoff Publishers}, volume = {48}, number = {3}, year = {1983}, zbl = {0519.57036}, language = {en}, url = {http://www.numdam.org/item/CM_1983__48_3_363_0/} }
Kwasik, Sławomir. On equivariant finiteness. Compositio Mathematica, Tome 48 (1983) no. 3, pp. 363-372. http://www.numdam.org/item/CM_1983__48_3_363_0/
[1] An equivariant Wall obstruction theory. Trans. Amer. Math. Soc. 256 (1978) 305-324. | MR | Zbl
:[2] Algebraic K-theory, W.A. Benjamin, New York, 1969. | MR | Zbl
:[3] Invariance of torsion and the Borsuk Conjecture. Can. J. Math. 6 (1980) 1333-1341. | MR | Zbl
:[4] A course in simple homotopy theory. Graduate texts in Math. 10, Springer, 1973. | MR | Zbl
:[5] A simple-homotopy approach to the finiteness obstruction. In Proceedings : Shape Theory and Geometric Topology, Dubrovnik, 1981.Lect. Notes in Math. 870 (1981) 73-81. | MR | Zbl
:[6] Äquivariante Whiteheadtorsion, Manuscripta Mathematica 26 (1978) 63-82. | MR | Zbl
:[7] Whitehead torsion and group actions. Annales Acad. Sci. Fennicae A. J. 588 (1974). | Zbl
:[8] On the equivariant homotopy type of G-ANR's. Proc. Amer. Math. Soc. 267 (1981) 193-194. | Zbl
:[9] G-smoothing theory. Proceedings of Symposia in Pure Mathematics, vol. XXXII, Part I, AMS (1978) 211-266. | MR | Zbl
and :[10] Introduction to Piecewise-Linear Topology, Springer-Verlag, 1972. | MR | Zbl
and :[11] Finiteness conditions for CW complexes. Ann. Math. 81 (1965) 55-69. | MR | Zbl
:[12] Equivariant homotopy theory and Milnor's theorem. Trans. Amer. Math. Soc. 258 (1980) 351-368. | MR | Zbl
: