@article{CM_1983__48_1_55_0, author = {Kubert, Daniel S. and Lichtenbaum, Stephen}, title = {Jacobi-sum {Hecke} characters and {Gauss-sum} identities}, journal = {Compositio Mathematica}, pages = {55--87}, publisher = {Martinus Nijhoff Publishers}, volume = {48}, number = {1}, year = {1983}, mrnumber = {700580}, zbl = {0513.12010}, language = {en}, url = {http://www.numdam.org/item/CM_1983__48_1_55_0/} }
TY - JOUR AU - Kubert, Daniel S. AU - Lichtenbaum, Stephen TI - Jacobi-sum Hecke characters and Gauss-sum identities JO - Compositio Mathematica PY - 1983 SP - 55 EP - 87 VL - 48 IS - 1 PB - Martinus Nijhoff Publishers UR - http://www.numdam.org/item/CM_1983__48_1_55_0/ LA - en ID - CM_1983__48_1_55_0 ER -
Kubert, Daniel S.; Lichtenbaum, Stephen. Jacobi-sum Hecke characters and Gauss-sum identities. Compositio Mathematica, Tome 48 (1983) no. 1, pp. 55-87. http://www.numdam.org/item/CM_1983__48_1_55_0/
[1] Jacobi sums as "Grössencharaktere". Trans. Amer. Math. Soc. 75 (1952) 487-495. | MR | Zbl
:[2] Sommes de Jacobi et caractères de Hecke. Nachrich. der Akad. Göttingen (1974) 1-14. | MR | Zbl
:[3] Valeurs de fonctions L et périodes d'intégrales. Proceedings of Symposia in Pure Mathematics 33 (1979) 313-346. | MR | Zbl
:[4] Cycles de Hodge sur les varietes abeliennes, preprint.
:[5] Jacobi sums and Hecke characters, to appear. | MR | Zbl
:[6] Die Nullstellen der Kongruenz-zeta funktionen in gewissen zyklischen Fallen. J. reine angew Math. 172 (1935) 151-182. | EuDML | JFM | Zbl
and :[7] Jacobi-sum Hecke characters of imaginary quadratic fields, preprint.
:[8] Complex analysis. McGraw-Hill, 1953. | MR
:[9] Algebraic number theory. Addison-Wesley, 1970. | MR | Zbl
:[10]
: unpublished manuscript.[11] Gauss sums and the p-adic Γ-function. Ann. of Math. 109 (1979) 569-581. | Zbl
and :[12] An introduction to the theory of numbers, 4th ed. Oxford University Press, 1960. | MR | Zbl
and :[13] Some remarks on Hecke characters. International Symposium on Algebraic Number Theory, Kyoto, 1976. S. Iyanaga, ed. | Zbl
:[14] Identities for products of Gauss sums over finite fields. To appear in L'Enseignement Math. | MR | Zbl
: