@article{CM_1983__48_1_119_0, author = {Chinburg, T.}, title = {Derivatives of $L$-functions at $s = 0$ (after {Stark,} {Tate,} {Bienenfeld} and {Lichtenbaum)}}, journal = {Compositio Mathematica}, pages = {119--127}, publisher = {Martinus Nijhoff Publishers}, volume = {48}, number = {1}, year = {1983}, mrnumber = {700583}, zbl = {0505.12022}, language = {en}, url = {http://www.numdam.org/item/CM_1983__48_1_119_0/} }
TY - JOUR AU - Chinburg, T. TI - Derivatives of $L$-functions at $s = 0$ (after Stark, Tate, Bienenfeld and Lichtenbaum) JO - Compositio Mathematica PY - 1983 SP - 119 EP - 127 VL - 48 IS - 1 PB - Martinus Nijhoff Publishers UR - http://www.numdam.org/item/CM_1983__48_1_119_0/ LA - en ID - CM_1983__48_1_119_0 ER -
Chinburg, T. Derivatives of $L$-functions at $s = 0$ (after Stark, Tate, Bienenfeld and Lichtenbaum). Compositio Mathematica, Tome 48 (1983) no. 1, pp. 119-127. http://www.numdam.org/item/CM_1983__48_1_119_0/
[1] Grothendieck Topologies. Harvard University, 1962. | Zbl
:[2] Seminar notes on the etale cohomology of number fields. In: Proceedings of the Woods Hole Summer Institute in Algebraic Geometry, 1964.
and :[3] Ph.D. Dissertation. Cornell University, 1980.
:[4] On a consequence of some conjectures on L-series, preprint (1981).
:[5] Values of zeta and L-functions at zero. Asterisque 24-25 (1975) 133-138. | Numdam | MR | Zbl
:[6] Maximal Orders. Academic Press, U.S.A., 1975. | MR | Zbl
:[7] Linear Representations of Finite Groups. Springer-Verlag, U.S.A., 1977. | MR | Zbl
:[8] L-functions at s = 1. I, II, III, IV, Advances in Math. 7 (1971) 301-343; 17 (1975) 60-92; 22 (1976) 64-84; 35 (1980) 197-235. | Zbl
:[9] Derivatives of L-series at s = 0. To appear. | MR
:[10] Class Fields and Modular Forms of Weight One. In: Modular Functions of One Variable V, Lecture Notes in Mathematics #601, Springer-Verlag, Berlin, Heidelberg, New York, 1977. | MR | Zbl
:[11] Les conjectures de Stark sur les fonctions L d'Artin en s = 0; notes d'un cours à Orsay redigées par D. Bernadi et N. Schappacher. To appear. | MR | Zbl
:[12] Basic Number Theory, 2nd ed. Springer-Verlag, U.S.A., 1974. | MR
: