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§1. Introduction

Let G be a reductive Lie group satisfying Harish-Chandra’s basic
assumptions. Let A be the split component of a parabolic subgroup of G
and T a Cartan subgroup of G with A g T. Write T = Tj TR where TI is
compact and TR is split. Then for h E T’, the set of regular elements of T,
and f c- C’(G), Arthur defines in [1c] a weighted integral of f over the
orbit of h by

where vA is a certain weight function corresponding to A defined on
CG(A)BG and dx is a G-invariant measure on the quotient. When A
= {1}, r{1}f(h) is the ordinary orbital integral.
Arthur proves that the distributions rA(h) : f ~ r1(h), f E CC:(G), are

tempered, that is, extend continuously to fErc(G), the Schwartz space of
G, and have many properties analogous to those of ordinary orbital
integrals. Such weighted orbital integrals occur in the Selberg trace for-
mula for the case of non-compact quotient, and thus it is important to
compute their Fourier transforms as tempered distributions [see
1 a, d, 5].

In the case that f is a matrix coefficient for a discrete series represen-
tation of class Q) and with character 03B803C9, Arthur proves that
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where p is the dimension of A and E(T, A) is 1 if A = TR and is 0

otherwise. This gives the Fourier inversion formula for r’(h) restricted to
the space °(G) of cusp forms on G. It also shows that the weighted
orbital integrals, like ordinary orbital integrals, have important con-
nections with the harmonic analysis on G.

In the case that A = {1}, (1.2) is a well-known theorem of Harish-

Chandra. In order to motivate the results of this paper, it is useful to

review other results of Harish-Chandra on orbital integrals. Thus let P
= MA1N be a cuspidal parabolic subgroup of G. For m an equivalence
class of discrete series representations of M and v E ff, the real dual of
the Lie algebra of A1, let 03B803C9,03BD be the corresponding unitary character
induced from P. Let W(w) = {s ~ NG(A1)/CG(A1), s03C9 = 03C9}. For

03B1 ~ C~c(F), let f = ~03B1 be a wave packet corresponding to 03C9. Then

Harish-Chandra proves that if h E T’ where T is a Cartan subgroup of G
with dim TR ~ dim A1, then

Here 03B5(T, A1) is 1 if dim TR = dim A, and is 0 otherwise [2c].
Let GA1(G) denote the subspace of G(G) spanned by wave packets
coming from some parabolic P with split component A1. Then we see
from (1.3) that for f ~ GA1(G) and h ~ T’, if dim A,  dim TR, rf(h) = 0,
while if dim TR = dim A1, rf(h) is possibly non-zero but still is given by a
simple formula. When dim A, &#x3E; dim TR, the formula for rf(h) becomes
much more complicated (see [3b]).

Returning to the case of weighted orbital integrals, if A = TR, then the
distribution rA(h), h E T’, is non-trivial on the space of cusp forms. Thus
in this case we expect that for f ~ GA1(G), dim AI &#x3E; 0, the Fourier inver-
sion formula for r1(h) will be complicated. However, if A  TR, so that
rAf(h) = 0 for all f ~ (G), it is reasonable to expect that rA (h), f ~ A1(G),
may be given by a relatively simple formula for A 1 of sufficiently small
dimension. This is indeed the case.

Thus let P = MA1N be a cuspidal parabolic subgroup of G with
dim A1 ~ dim TR - dim A. Let úJ be an equivalence class of discrete
series representations of M. For a E C~c(F), let f = ~03B1 be a wave packet
corresponding to 03C9. We will define a "weighted character" cA03C9,v on T’ so
that

where E(T, A, A1) is 1 if dim TR = dim A + dim A1 and is 0 otherwise.
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Note that (1.4) shows that restricted to A1(G), dim A1 ~ dim T,
- dim A, rA(h) is invariant as a distribution. However, rA(h) is not an
invariant distribution on (G). Thus when f ~ A1(G), dim A, &#x3E; dim TR
- dim A, we can expect the problem of computing r1(h) to become
much more difficult.

In section §2 we review the basic definitions and results of Arthur on
weighted orbital integrals and of Harish-Chandra on wave packets
which will be needed to prove (1.4). In section §3 we define the

"weighted characters" 03B8A03C9,03BD which appear in (1.4) and show that they
retain many of the basic properties of the ordinary characters 03B803C9,03BD. In
section §4 we study distribution-valued functions on T’ of the type that
occur in (1.4), and in §5 we give the proof of (1.4).

§2. Background material

Let G be a reductive Lie group with Lie algebra g. Let K be a max-
imal compact subgroup of G and 0 the corresponding Cartan invol-
ution. Let B be a real symmetric bilinear form on g. We will assume that
(G, K, 0, B) satisfy the general assumptions of Harish-Chandra in [2b]
and that Haar measures are normalized as in [2b].
Subgroups of G will be denoted by capital letters and the associated

subalgebras by the corresponding lower case German letters. The com-
plexification of any Lie subalgebra b of g will be denoted bc. All Cartan
subgroups T of G will be assumed to be 0-stable. We will write T’ for
the set of regular elements of T and decompose T = TITR where TI
= T n K and TR is a vector subgroup of T with Lie algebra tR contained
in the -1 eigenspace for 0. We will write NG(T) for the normalizer of T
in G, To for the center of T, and W(G, T) for NG(T)/T0. 03A6 = 03A6(gC, tc) will
denote the set of roots of gc with respect to tc, OR and 0, the subsets of
03A6 taking real and pure imaginary values on t respectively. Oc denotes
the complement in e of 03A6R ~ 03A6I. For each 03B3 ~ 03A6C there is 03B303C3 ~ 03A6C such
that for all H E t, 03B303C3(H) = y(H). The real dual of t will be denoted by t*,
the complex dual by tg. We will identify elements of tc and t* via the
bilinear form B. W = W(gc, tc) denotes the Weyl group corresponding
to 0. For any p E 0, sp E W denotes the reflection corresponding to 03B2 and
03BE03B2 the character of T corresponding to 03B2.
For the convenience of the reader we will review some definitions and

lemmas of Arthur. The reader is referred to [1c] for details. Let A be a
special vector subgroup of G, that is a split component of a parabolic
subgroup of G as defined in [1c, §1] and &#x26; an A-orthogonal set. Corre-
sponding to rJ.Y, Arthur defines a weight function v(x : OY), x ~ G, which is
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left-invariant by CG(A), the centralizer in G of A. Let e denote the uni-
versal envelopping algebra of gc, and for any X ~ , let co(X) denote the
constant term of X. Let eA be the set of elements in  invariant under
the adjoint action of A. For X ~ A we will write Dx for the right-
invariant differential operator associated to X.

Let T be a Cartan subgroup of G with A 9 T. Then for all h E T’,
f ~ C~c(G), and X ~ A, Arthur defines

where dx is a G-invariant measure on the quotient.
Let 3 denote the centralizer of t, in g and Z(t) the centralizer of 3 in

K. Let 03A6+I be a set of positive roots for (3, t). Let:

LEMMA 2.3 (Arthur): Let (E Z(t). For each H ~ t’(03B6) the distribution

R(03B6, H : Y: X) is tempered. For every f E W(G), the function Rf(03B6, H : Y : X)
is infinitely differentiable for H E t’(03B6).

Let e denote the center of G, S(tc) the symmetric algebra on tc, I(tc)
the set of Weyl group invariants in S(tc), and y = Yg/t the Harish-

Chandra isomorphism from Y onto I(tc). Arthur defines ideals

eA(O) ~ GA(1) ç ... of W. so that ~A(r

+ r’), r, r’ ~ 0, DXv(x : y) = 0 if X ~ GA(p + 1), p = dim A, and co(X) = 0
if X ~ GA(1).

LEMMA 2.4 (Arthur): For any z ~ J there are elements {Xi : 1 sis ri in
GA(1) and differential operators {~i : 1 sis ri on t’(03B6) so that for every
(EZ(t), HEt’«(), X ~ GA, and f ~ (G),
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Fix (E Z(t) and fi E 03A6R(03B6) = {03B2 E 03A6R : 03BE03B2(03B6) = 1}. Let t003B2 = {H Et : fl(H)
= 01, ao = a n tg, and Ap = exp(ap). Let H’03B2 ~ t be dual to 2P/(P, 03B2&#x3E; and
let Xp and 5§ E g be root vectors for P satisfying [Xp,1p] = Hp, 1p =
- 0Xj. Then tp = tg + R(X’03B2 - Y’03B2) is a Cartan subalgebra of g and we
denote the corresponding Cartan subgroup by To. Let  = exp(
-nil4 ad(Xp + 1p» be the associated Cayley transform. Let no(A)
denote the cosine of the angle in tR between P and a. If H E t’(03B6), set

03C403B2(H) = n03B2(A)~H’03B2~log|e03B2(H)/2 - e-03B2(H)/2|, and define

where qy p is an A03B2-orthogonal set depending on y. Let tZ(’) = {H E t003B2
: 03BE03B1(03B6 exp H) ~ 1 for any oc c- 0, cx =1= ± 03B2}. For Ho E t003B2(03B6), write S(Ho)±
= lim S(Ho + tH’03B2).

t-01

LEMMA 2.6 (Arthur): Let u E S(tc), f ~ (G). Then for H0 ~ t003B2(03B6),
S03B2f(03B6, H0; ~u : y : X)+ - S03B2f(03B6, H0; ~u : y : X)- = n03B2(A)limRT03B2,A03B2f(03B6, H0 +
+ 0(Xj - Y’03B2); aA(spu - u): qy p: X) where the limits all exist uniformly for
Ho in compacta of t003B2(03B6).

where the limits all exist uniformly for Ho in compacta of t003B2(03B6).

Lemma 2.7 gives boundary conditions for R f across any hyperplane
determined by a singular imaginary root. It follows easily from the
proof of 2.6 (Theorem 6.1 of [lc]) and facts about ordinary orbital in-
tegrals that if 03B2 is a compact root of (g, t) and Ho E t satisfies e03B2(H0) = l, 
03BE03B1(03B6 exp H0) ~ 1 for any a E 03A6, oc * ± 03B2, then Rf(03B6, H : OJ/: X) extends to a
smooth function around H = Ho.
For H E t’(03B6), let m(H) = min{|1 - exp H)-1| : a ~ 03A6 and al, :0 01.

Let L(03B6 exp H) = 1 long m(H)|.

LEMMA 2.8: Given any U E S(tc) there is a continuous seminorm v on
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PROOF: In the case that u = 1, this result is a special case of Corollary
7.4 of [1 c]. For general U E S(tc) it can be obtained by using the argu-
ment of Arthur in Lemma 8.1 of [1c]. D

We now turn to results of Harish-Chandra on wave packets which
can be found in [2c, §20]. Let P = MA1N be a cuspidal parabolic sub-
group of G. Let B2(M) denote the set of equivalence classes of irreducible
unitary square-integrable representations of M. Let 03C9(M) denote the
closed subspace of (M) spanned by KM-finite matrix coefficients of (J)
where KM = K n M. For any 03BD ~ dF = ai , let 03C003C9,03BD be the tempered uni-
tary representation of G induced from cv (8) eiv Q 1 on P. Let 03B803C9,03BD and 0.
denote the characters of 03C003C9,03BD and co considered as functions on G’ and
M’ respectively. For f E W(G), write

where E(P : 03C8 : v) is the Eisenstein integral defined in [2b] and 03BC(03C9 : v) dv
is the Plancherel measure corresponding to 03C003C9,03BD, v c- 57. Then ~03B1 E W(G) is
called a wave packet for 03C9 ~ 03B52(M), and 03B1 ~ ~03B1 is a continuous mapping
from C~c(F) into (G). Extend ai to a Cartan subalgebra h = hI + a 1 of
g with hI ~ m. Let 03BB E ibi correspond to the infinitesimal character of 03C9.
For q E I(1)c), let p(q) be the polynomial function on F given by p(q : v)
= q(03BB + iv), 03BD ~ F. Then if q E I(hC) and z = 03B3-1g/h(q) ~ J, then

Finally, for OJ and t/J fixed as above, there is a constant c so that for all
03B1 ~ C~c(F), 03BD ~ F,
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§3. Weighted characters

Let A, B be subspaces of a Euclidean vector space with dim A

= dim B = m. Let {v1,...,vm} and {w1,..., wm} be orthonormal bases of
B and A respectively. Define c(B, A) = 1 det X| where X is the m x m
matrix with entries xij = vi, wj&#x3E;. Then c(B, A) = c(A, B) is independent
of the choices of orthonormal bases and is equal to the volume of a unit
cube in B projected onto A.
For any vector v ~ 0, let n,(A) be the cosine of the angle between v

and A and Av, B, be the subspaces of A, B respectively which are or-
thogonal to v.

LEMMA

PROOF: Pick an orthonormal basis for B so that vi = vilivil. Let vA be
the projection of v onto A. If vA = 0, then n,(A) = 0 and v1, w) = 0 for
all w E A so that c(A, B) = 0. Assume v A =1= 0. Choose an orthonormal
basis for A with w 1 = vAlllvAII. Then v1, w1&#x3E; = n,(A) and v1, wj&#x3E; = 0
for j ~ 2. Thus c(A, B) = nv(A)|detX*| where X* = (vi, &#x3E;), 2 ~ i,
j ~ m is the matrix corresponding to Av and B,. 0

We will now use the constants c(B, A) to define the weighted charac-
ters which appears in (1.4).

Let P = MAIN be a cuspidal parabolic subgroup of G. Write L
= MA1. Let úJEB2(M) and v ~ F = ai . For T a Cartan subgroup of G,
let H1,...,Hk be a complete set of representatives for distinct L-

conjugacy classes of Cartan subgroups of L for which Hi = xi Txi 1,
xi ~ G, 1 ~ i ~ k. For h E T’, write hi = xihxi ’ E HI. Then

where 0394G+, 0394L+ are the functions A , defined on T and Hi, 1 ~ i ~ k, in §2
when T and Hi are considered as Cartan subgroups of G and L re-
spectively. Note that if no conjugate of T lies in L, then 03B803C9,03BD = 0 on T’.
Now let A be a special vector subgroup of G with A g TR and dim TR

= dim A + dim A1. For h E T’ define x1,...,xk and h1,...,hk as above.
For 1 ~ i ~ k and weW(G,Hi), ad xi-1w-1A1 ~ TR and is independent
of the representative of the coset W(L, Hi)w chosen. Define Bw to be the
orthogonal complement in TR of ad xi-1w-1A1. (We consider TR as a
Euclidean vector space via the exponential map isomorphism with tR.)
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Then BW is a subspace of TR with dim Bw = dim A. Define

Note that 03B8A03C9,03BD is not an invariant function on G’. It is easy to check

from the definition that in fact, if h E T’ and y E G, then

For (E Z(t) and H E t«), define

Assume for simplicity that T ~ L. (Because of (3.4) this leads to no
loss of generality.) Let tM = t n m and write 03C9(03B6, H) =
= 0394I(H)0394L+(03B6 exp H)03B803C9(03B6 exp H) for H ~ t’M(03B6). Let 03BB ~ t*M,C correspond to
the infinitesimal character of co. That is, À is a regular element of t*M,C so
that 03C9(03B6, H; ~q) = q(03BB)03C9(03B6, H) for all q ~ I(tM,C) and H ~ t’M(03B6). Fix

CE Z(t) and let 03A9(03B6) = {H Et : P(H) =1 0 for all fi E 0,«)I.

LEMMA 3.5: For any connected component F of 03A9(03B6) there are constants
cs(F), s E W = W(gc, tc), so that for all H E F,

and

Here c,(F) = 0 unless sA1 g TR, and in this case B, is the orthogonal
complement in TR of sA1. Further, if 03B2 ~ 03A6R(03B6) and F, spF are adjacent
chambers of 03A9(03B6), then cs(F) = cs(s03B2F) unless 03B2|sa1 = 0.

PROOF: Fix H E F and let h = 03B6 exp H. Define x 1, ... , Xk as in (3.2). Let
Wi be a set of representatives for the cosets W(L, Hi)B W(G, Hi), 1 sis k.
Then using (3.2) and (3.3),
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and

where (j = xi03B6x-1i, Hi = ad xi(H), 1 sis k, and e(w) = 0394I(H)-10394I(wHi)
= ± 1 depends on the choices of positive systems of imaginary roots
which have been made, but not on H. Fix 1 sis k, and write h for the
Lie algebra of Hi. Write WM = Mmc, tM, c). Then there is y E Mc so that
Ad y(tc) = bc. Using the theory of characters on M, for every w E W and

(JE WM there are uniquely determined constants c03C3(i, w) depending only
on the component of t’(i, w) = {H Et : 03B2(H) ~ 0 for all 03B2 E 03A6R(03B6) such that
03B2|Ad x-1iw-1a1 ~ 0} containing F so that

where s(i, w) ~ W represents the action of Ad x-1iw-1 Ad y on tc and so
satisfies s(i, w)A1 = Ad x-1iw-1A1 ~ TR. Note that for all U E WM,
s(i, w)03C3A1 = s(i, w)A1, so that Bw=Bs(i,w)a for all 03C3 ~ WM. Further, one
can check that any s E W can be written in at most one way as s

= s(i, w)03C3, 1 sis k, w E W, 6 E WM. Thus we can write 03C9,03BD and A03C9,03BD as
claimed in the lemma where cs(F) = 0 if s is not of the form s = s(i, w)Q
for some 1 sis k, w E W, and 6 E WM, and if s = s(i, w)03C3, then c,(F)
= 03B5(w)c03C3(i, w). If P E 03A6R(03B6), F, s03B2F are adjacent chambers of Q«), and
03B2|s03B11 ~ 0, s = s(i, w)03C3, then F and s03B2F lie in the same component of t’(i, w)
so that cs(F) = cs(sfJF). D

An immediate consequence of (3.5) is

LEMMA 3.7: Given any U E S(tc), there exist constants c, r so that

|A03C9,03BD(03B6, H; ~u)| 1 ::g c(1 + ~HR~)r for all H = HI + HR ~ t’(03B6).

PROOF: By results of Harish-Chandra [2b], such an estimate is valid
for 03C9,03BD(03B6, H). This implies that cs(F) = 0 for any s E W for which Re(s(À
+ iv))(H) &#x3E; 0 for any H ~ F. Using (3.5), then, the estimate holds for

A03C9,03BD(03B6, H). 0

Now fix fi E 03A6R(03B6), and use the notation of (2.6). Let Do be a relatively
compact open subset of tZ«().
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LEMMA 3.8: For all u E S(tc), Ho E Qo ,

where the limits exist uniformly for Ho EDo.

PROOF: Let F and spF be components of D«() with Ho E F n soF and
Ho + tH’03B2 ~ F for t &#x3E; 0 and sufficiently small. Write cs - cs(F), cs-
= cs(spF), s E W Using (3.5),

where Wo is a set of coset representatives for {I, s03B2}BW. If Plol = 0 so
that 7§ z L, we can use (3.5) directly to obtain a similar expression for
A03B203C9,03BD on T’03B2. However, for the general case we must combine (3.5) and
(3.4) to see that there are constants ds, s E W, such that for all H in an

open subset of t, containing Ho, A03B203C9,03BD(03B6, H) = 03A3 dsc(Ès, Ap) exp(As(À
+ iv)(H)) where ds = 0 unless sA, z (T,), and in that case Ès is the or-
thogonal complement in (T03B2)R of sA l . (If no conjugate of T, is contained
in L, then of course ds = 0 for all s E W.) From work of Hirai [4] and the
observations of Arthur in [1c, Thm. 9.1] it is known that 03C9,03BD is cont-
inuous at Ho and that

Thus we see that for all se Wo,

By considering separately the cases that sou = u and sou = - u, MeS’(ic),
it will be enough to prove that for aIl SE Wo

(iii) (cs - c-sc(Bs, A) + (c+s03B2s- c-s03B2s)c(Bs03B2s, A) = 0 and that
(iv) (cs - cs )c(BS, A) - (c+s03B2s- c-s03B2sc(Bs03B2s, A) =

= 2n03B2(A)(ds - ds03B2s)c(s, A03B2).
Suppose first that sA1 ~ TR. Then also s03B2sA1 ~ TR as sp TR = TR,

so that cs - c±s03B2s = ds = dsps = 0. If sA1 ~ TR and 03B2|s03B11 ~ 0, then
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sA1 ~ (T’p)R’ and again the same is true of sos, so that çS - c-s,
c+s03B2s = c-s03B2s, and ds = dSfJs = 0. Finally, suppose that sA1 ~ TR and 03B2|s03B11
= 0. Then s03B2sA1 = sA 1 so that Bs = Bs03B2s. Also exp(H’) E Bs so that using
(3.1), c(Bs, A) = nfJ(A)c«Bs)fJ’ AO). But since 03B2|s03B11 = 0, (Bs)p = fis. Thus (iii)
and (iv) are satisfied in all cases. D

§4. Distribution-valued functions on t

In [1c], to prove (1.2) Arthur shows that for a fixed matrix coefficient
f of the discrete series représentation 7c and for fixed CE Z(t),

03C8(H) = (03B6, H)[rAf(03B6 exp H) - 03B5(T, A)(-1)03B203B2x, f&#x3E;03B8x(03B6, exp H)]

is a smooth function of H E t’(03B6) which is an eigenfunction of aq for all
q E I(tc), extends to a continuously differentiable function in a neighbor-
hood of any Ho E t003B2(03B6), fi E 03A6R(03B6), and is of moderate growth. Then using
techniques of Harish-Chandra he shows that any such function must be
zero.

In our situation, in order to obtain a differential equation for ôq,
q E I(tc), we must consider functions 03C8 not only of H E t’(03B6), but also of
the a E C~c(F) which are used to form the wave packets f = ~03B1. In this

section we will give sufficient conditions on such a function 03C8(H : 03B1) to
guarantee that qt = 0. Then in §5 we will prove (1.4) by showing that

satisfies these conditions.

For simplicity we assume that T ~ L. We also assume that T is not a
fundamental Cartan subgroup of L. Fix 03B6 ~ Z(t) and 03BB ~ t*M,C correspond-
ing to the infinitesimal character of some cv E E2(M). Let V be a subspace
of ff and U ~ V any open subset of Jt: For q ~ I(tC), let p(q) be the
polynomial on U given by p(q : v) = q(03BB + iv), v ~ U. For 03BD ~ S(tC) and
s ~ W, let ps(03BD) be the polynomial on U given by p(03BD : v) = v(s(À + iv)),
v ~ U. Let 03C1I = 1 203A303B2~03A6+103B2.

Define E( U) to be the complex vector space consisting of all functions
03C8 on f(0 x C~c(U) satisfying:
(4.1) for each cx E C~c(U), tjJ(H: 03B1) = e03C1I(H)f03B1(03B6 exp H) where lx is a smooth

function on T’;
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(4.2) for each q ~ I(tC). 03C8(H; ~q : 03B1) = 03C8(H : p(q)03B1) for all H E 1’«(),
03B1 ~ C~c(U);

(4.3) for each 03B2 ~ 03A6R(03B6), H0 ~ t003B2(03B6), 03C8(H : 03B1) extends to a smooth function
in a neighborhood of Ho for all 03B1 ~ C~c(U);

(4.4) for all 03B1 ~ C~c(U), 03C8(H : 03B1) extends to a C~ function on QI = tl
+ {H ~ tR : 03B2(H) ~ 0 for any 03B2 ~ 03A6 with 03B2|tR ~ 0};

(4.5) for each fixed H ~ t’(03B6), u ~ S(tC), 03B1 ~ 03C8(H; ~u : 03B1) defines a distribut-
ion on U. Further, for any u E S(tC) there is a continuous seminorm
Jl on C~c(U) and a constant r so that

|03C8(H; ~u : 03B1)| ~ 03BC(03B1)(1 + L(03B6 exp H))p(1 + ~HR~)r for ail
H = HI + HR ~ t’(03B6), 03B1 ~ C~c(U).

We are of course primarily interested in showing that E(F) = {0}.
However, in order to do this, it is necessary to use the various spaces

E( U) defined above : Note that when U ~ U’ are open subsets of V, then
for 03C8 ~ E(U’), the restriction of 03C8 to t’(0 x C~c(U) is an element of E( U).
For S a subalgebra of S(tC), s ~ W, and U ~ V ~ F as above, define
E( U : s : S) = {03C8 E E( U) : 03C8(H; ôv : 03B1) = 03C8(H : ps(03BD)03B1) for all v E S, H E t’(03B6),
a E C~c(U)}. When S = S(tc), we write E(U : s : S(tc)) = E(U : s).

LEMMA 4.6: Let U be an open subset of a subspace V of F. Let
03C8 E E(U : s) for some s E W and let Q be a convex open subset of t on which
03C8 extends to a smooth function and such that L(03B6 exp H) is bounded on
compact subsets of S2. Then there is a fixed distribution T on U so that
03C8(H : 03B1) = T(exp(ps(H))03B1) for all H ~ 03A9, 03B1 ~ C~c(U).

PROOF: Let P be a fixed point in Q and fix 03B1 ~ C~c(U). For any Ho ~ 03A9,
let H = Ho - P. Then since Q is convex, P + tH ~ 03A9, 0  t ~ 1, and
using Taylor’s theorem, for any q &#x3E; 0 there is a 0  03C4  1 with

Using (4.5) and the assumption that L«( exp H) is bounded on compact
subsets of Q, there is a constant C so that for all q ~ 0, |03C8(P
+ 03C4H : ps(H)q03B1)|/q! ~ C03BC(03B1ps(H)q/q!) where Jl is a continuous seminorm

on C~c(U). But as q goes to oo, 03B1ps(H)q/q! converges to zero and

03B103A3q-1r=0ps(H)r/r! converges to a exp ps(H) in C’(U) so that 03C8(H0 : 03B1)
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= 03C8(P : exp(p,(N))oc). Thus if we let T(03B1) = 03C8(P : exp(-ps(P))(03B1), we see that
03C8(H0 : 03B1) = T(exp(ps(H0))03B1). ~

As before, U is an open subset of a subspace V of F. Via duality, we
think of Valso as a subspace of tR.

LEMMA 4.7: Let s E W with sV ~ tR. Then E( U : s) = {0}.

PROOF: Since 03BB ~ t*M,C corresponds to the infinitesimal character of
some 03C9 ~ 03B52(M), we know that 03BB, 03B2&#x3E; ~ 0 for every 03B2 ~ 03A6M = {03B2 ~ 03A6 : 03B2|03B11
= 0}. Suppose that sÀlal = 0. Then using [3a] s03BB is also regular with
respect to 03A6M. We have assumed that T is not a fundamental Cartan
subgroup of L and that P is a cuspidal parabolic subgroup of G. Thus
03A6M contains real roots so that s03BB|tM,R ~ 0. Since tR = a 1 ~ tM,R, we see
in any case that s03BB|tR ~ 0. But considered as an element of t*C, 03BB ~ it*I + t*R
= {03BC ~ t*C : 03BC|tI takes pure imaginary values and JIltR takes real values}.
Since this real subspace of t*C is stable under W, s03BB takes real values on

tR.
Let t2 be the orthogonal complement of sV in tR. For all H ~ t2,

ps(H : v) = s(À + ivxH) = s03BB(H) is independent of v ~ V. Since s03BB|tR ~ 0
and sÀlsY = 0, we can choose H2 E t2 with s03BB(H2) ~ 0 and 03B2(H2) ~ 0 for
every 03B2 ~ 03A6R(03B6) for which 03B2|t2 ~ 0. Let t1 = {H ~ t : H, H2&#x3E; = 0}. Fix
Hi E t 1 so that for t ~ R, H1 + tH2 E t/«() for all but finitely many values

of t, and so that H1 + tH2 E U t003B2(03B6) whenever Hi + tH2 ~ t’(03B6).

Fix 03B2 ~ 03A6R(03B6) and t0 ~ R with Ho = Hi + t0H2 ~ t003B2(03B6). Let 03C8 ~ E(U : s).
By (4.6) there are distributions T± so that for t &#x3E; 0 and small enough
that H0 ± tH2 ~ t’(03B6); 03C8(H0 ± tH2 : 03B1) = T±(03B1 exp ps(H0 ± tH2)) =

= c±(03B1)exp(t0 ± t)(s03BB(H2)) where for all 03B1 ~ C~c(U), c±(03B1) =
= T±(03B1 exp ps(H1)). By the continuity of 03C8 at Ho, c+(03B1) = c-(03B1) for all
03B1 ~ C~c(U).

Since we can do this for any value of to with H1 + t0H2 ~ t’(03B6), we see
that for any 03B1 ~ C~c(U) there is a constant c(03B1) so that 03C8(H1 + tN2:(x)
= c(03B1)ts03BB(H2) for all t ~ R. But since s03BB(H2) is real-valued and non-zero,
this contradicts the growth condition on 03C8 unless c(03B1) = 0. For fixed H2
as above, the set of points H1 + tH2 with t ~ R and H1 ~ t1 satisfying the
above hypotheses is dense in t’(03B6). Thus 03C8(H : 03B1) = 0 for all H ~ t’(03B6),
03B1 ~ C~c(U). D

For V a subspace of 9’, let 03A6V = {03B2 ~ 03A6 : 03B2, v&#x3E; = 0 for all v E V}. Let
V’ = {v EV: 03B2, v) ~ 0 for all 03B2 E 03A6B03A6V}.

1 EMMA 4.8: Let s E W with sV ~ tR. Then for all v E V’, sv|tI ~ 0.
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PROOF: Fix s ~ W and assume that sv|tI = 0 for some v ~ V’. Then

v, sv ~ t*R = {03BC ~ t* : 03BC|tI = 0}. Let W1 = {s1 ~ W : s1tR = tR}. Then for

every 03B2 ~ 03A6R ~ 03A6I, s03B2 ~ W1. Also if 03B3 ~ 03A6c with 03B3, 03B303C3&#x3E; = 0, then s03B3s03C303B3 ~ W1.
As in [3a] it is easy to see that there is S1 E W1 so that v, s1sv are sep-
arated only by hyperplanes corresponding to roots 03B3 ~ 03A6c with

03B3, 03B303C3&#x3E; &#x3E; 0. Thus there are 03B31,...,03B3k ~ 03A6c so that 03B3i, 03B303C3i&#x3E; &#x3E; 0, 1 ~ i ~ k,
and v = s03B31...s03B3ks1s03BD. But since v ~ V’, this implies that s03B31...s03B3ks1sV = V
and sV = s-11s03B3k...s03B31V. For 1 ~ i ~ k, 03B3i,03B303C3i&#x3E; &#x3E; 0 implies that Yi - yi
= 03B2i ~ 03A6I so that 03B3i = 03B3R + 03B2i/2 for some 03B3R ~ t*R. Thus s03B3k...s03B31 V ~ V
+ 03A3ki= 1 R03B3i ~ tR + ¿i= 1 R03B2i. But for SI E W1, s-11(tR + 03A3ki=1 R03B2i) ~ tR
+ 03A303B2~03A6IR03B2. Thus sV ~ tR + 03A303B2~03A6IR03B2. Since sV ~ tR there is 03B2 ~ RI
with 03B2|sV ~ 0. Thus s-103B2 ~ 03A6B03A6V so that 03B2, sv&#x3E; ~ 0 since v ~ V’. This
contradicts the assumption that sv|tI = 0. 0

LEMMA 4.9: Suppose s E W with sV ~ tR. Then for any open subset U of
V’, E(U : s) = {0}.

PROOF: Define QI as in (4.4). Clearly L«( exp H) is bounded for H in
compact subsets of QI since for 03B2 ~ 03A6 with 03B2|03B1 ~ 0, 03BE03B2(03B6 exp H) ~ 1 for all
H ~ 03A9I. Let F be a connected component of QI. Then by (4.6), for

03C8 ~ E(U : s) there is a distribution T on U so that 03C8(H : 03B1)
- T(a exp ps(H)) for all H ~ F, 03B1 ~ C~c(U). By (4.1) 03C8(H : 03B1)
= e03C1I(H)f03B1(03B6 exp H) for some smooth function f« defined on T’. Let

H0 ~ L = {H ~ tI : exp(H/2) = 1}. Then for all H ~ F, H + H0 ~ F and
03C8(H : 03B1) = 03C8(H + H0 : 03B1) so that T(exp ps(H)(1 - exp ps(H0))03B1) = 0. Since
exp(-ps(H)) ~ C~(U), this implies that for all 03B1 ~ C~c(U) and H0 ~ L, T((1
- exp PS(Ho))a) = 0.

Because s03BB takes pure imaginary values on tl and siv, v E U, takes real
values on tI, exp(ps(Ho)) = 1 only if sv(Ho) = 0. Fix vo E U. Since vo E V’,
sv0|tI ~ 0 by (4.8). Since L spans tI, there is Ho E L with sv0(H0) ~ 0. Let
Uo = {v ~ U : sv(H0) ~ 0}. Then Uo is an open neighborhood of Vo in U
and (1 - exp ps(H0))-1 ~ C~(U0), so that for any 03B1 ~ C~c(U) with support
contained in Uo, T(03B1) = 0. Thus vo is not in the support of T and since
Vo E U was arbitrary, T = 0. 0

For a subspace V of F and SE Jt: let
W(sV) = {w ~ W:ws(À + iv) = s(À + iv) for all v ~ F} = {w ~ W : ws03BB = sÀ
and wsv = sv for all v ~ V} and S(sV) = {03BD ~ S(tC) : w03BD = 03BD for all

w ~ W(sV)}.

LEMMA 4.10: For U any open subset of v’ and for all s ~ W,

E(U : s : S(sV)) = {0}.
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PROOF: We will show that E(U : s : S(s03BD)) ~ E( U : s) which is zero by
(4.7) and (4.9).

Let t0 = {H ~ tC : s03BB(H) = 0 and sv(H) = 0 for all v ~ V}. Clearly for
v E S(to), if v has no constant term, then ps(v : v) = v(s(À + iv)) = 0 for all
v E U so that ps(v) = 0 as an element of C~(U). Let t1 = C(s03BB) ~ C(sV).
Then t1 is the orthogonal complement in te of to so that S(tc) =
S(to) Q S(t 1 ) and S(t1) ~ S(sV). Thus to show that E(U : s : S(sV)) ~ E(U : s)
it is enough to show that for all 03BD ~ S(t0), 03C8 ~ E(U : s : S(sV)),

03C8(H, ~03BD : oc) = 03C8(H : ps(03BD)03B1) for ail H E t’(03B6), ex E C~c(U). (*)

Let 7(to) = {v ~ S(t0) : w03BD = v for all w ~ W(sV)}. W(sV) is the pointwise
stabilizer in W of t1 so that W(sV) is generated by reflections in roots
which vanish on t1, that is roots lying in to. Thus using a standard
argument of Harish-Chandra [2a], there are u1,...,uk ~ S(t0), ui homog-
eneous of degree di, 1 ~ i ~ k, so that each v E S(to) can be written as
v = 03A3ki=1 ulqi for some q1,...,qk ~ I(t0).

Let d = max{d1,...,dk}. Suppose v E S(to) is homogeneous of degree
~ &#x3E; d. Then each qi is homogeneous of degree t - di &#x3E; 0 so that

ps(qi) = 0, 1 sis k, and ps(03BD) = 03A3ki=1 ps(ui)ps(qi) = O. Thus for

any 03C8 ~ E(U : s : S(sV)), 03B1 ~ C~c(U), and H ~ t’(03B6), 03C8(H; ~03BD : 03B1) =
= 03A3ki=1 03C8(H; ~ui : ps(qi)03B1) = 0 = 03C8(H : ps(v)03B1).
Now let vo E S(to) be homogeneous of degree k, 1 ~ k ~ d, and assume

inductively that for v E S(to) homogeneous of degree greater than k and
03C8 ~ E(U : s : S(sV)), property (*) holds. For 03C8 ~ E(U : s : S(sV)), define

03BD003C8 by 03BD003C8(H : 03B1) = 03C8(H; ~03BD0 : 03B1) for H ~ t’(03B6), 03B1 ~ C~c(U). Clearly
03BD003C8 ~ E(U : s : S(sV)). Further, if 03BD ~ S(t0) is homogeneous of degree
~ 1, then 03BD003C8(H; ~03BD : 03B1) = 03C8(H; ~(03BD03BD0) : 03B1) = 03C8(H : ps(03BD03BD0)03B1) = 0 =
03BD003C8(H : ps(03BD)03B1) by the induction hypothesis. If VES(to) is constant, 03BD ~ I(t0)
so that also in this case v and 03BD003C8 satisfy (*). Thus 03BD003C8 ~ E(U : s) so
that 03BD003C8 = 0; that is, 03C8(H; ~03BD0 : 03B1) = 0 = 03C8(H : ps(03BD0)03B1) for all H ~ t’(03B6),
03B1 ~ C~c(U). Thus for any 03BD0 ~ S(t0), vo homogeneous of degree ~ 1, and
03C8 ~ E(U : s : S(sV)), 03C8 and vo satisfy (*). Again, since (*) always holds for
terms of degree 0, we are done. ~

Let U be an open subset of F. For 03C8 ~ E(U) and U E S(tc), define
u03C8(H : 03B1) = 03C8(H; ~u : 03B1). For each f ~ C~(U), 03C8 ~ E(U), define f03C8(H : 03B1)
= 03C8(H : f03B1). Clearly the above give algebra actions of S(tc) and C~~(U)
on E( U) which commute. Thus Y( U) = C~(U) Q S(tc) acts on E( U). For
y = 03A3ki=1fi ~ ui ~ Y(U) and s ~ W, define sy = 03A3ki=1fi ~ sui and define
ps(y) to be the COO function on U given by ps(y : v) = 03A3ki=1fi(v)ps(ui : v),
v E U. Define Y0(U) = {y ~ Y(U) : ps(y) = 0 for all s ~ W}, y1(U)
= COO(U) ~ I(tC), and Yô(U) = Yo(U) n y1(U).
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LEMMA 4.11: 

PROOF: We know from [2a] that there are homogeneous elements
u1,...,uw ~ S(tC), w = [W], so that each Me5’(tc) can be written uniquely
as u = 03A3wi=1uiqi where qi ~ I(tC), 1 sis w. Write W = {s1,...,sW} and
PSi = pi, 1 ~ i ~ w. Fix v E U n !F’. Then {s(03BB + iv) : s E W} is a set of w
distinct points in t*C. Thus there are polynomials 03BD1,...,03BDw ~ S(tC) so that

pi(03BDj : v) = Vj(Si(À + iv)) = 03B4ij, 1 ~ i, j ~ w. For 1 ~ j ~ w, write 03BDj
= 03A3wk=1 qkjUk where qkj ~ I(tC), 1 ~ k ~ w. Then for 1 ~ i, j ~ w, 03B4ij
= pi(03BDj : v) = Ir= 1 p(qkj : 03BD)pi(uk : v). Thus if Av is the w x w matrix with
entries aij(v) = pi(uj : v), 1 s i, j s w, we see that Av is invertible so that
det Av ~ 0.
Now let y = 03A3ki=1fi ~ vi dénote an arbitrary élément of Yo(U). For

1 ~ i ~ k, write Vi = 03A3wj=1qijuj where qij ~ I(tC) and Uj are as above,
1 ~ j ~ w. Then we can write y = 03A3wj= 1 ujyj where yj
= 03A3ki=1fi Q qij ~ YI(U) for 1 sj s w. Since y E Y0(U), for all 1 sis w,
v E U, Pi(Y: v) = 03A3wj= 1 p(yj : v)pi(uj : v) = 0. Now since for each v EU ~ F’
the matrix Av is non-singular, this implies that for v ~ U ~ F’, p(yj : v)
= 0, 1 ~ j ~ w. But U ~ F’ is dense in U so that p(yj : v) = 0, 1 ~ j ~ w,
for all v ~ U. ~

LEMMA 4.12: For all y E Y0(U), 03C8 ~ E(U), y03C8 = 0.

PROOF: By (4.11) it is enough to show that y03C8 = 0 for all y E YI0(U).
Write y = 03A3ki=1fi ~ qi where qi ~ I(tC), 1 ~ i ~ k. Then for all H ~ t’(03B6).
03B1 ~ C~c(U), y03C8(H : 03B1) = 03A3ki=103C8(H; ~qi : fi03B1) = 03A3ki=103C8(H : p(qi)fi03B1) =

03C8(H : p(y)03B1) = 0. ~

Let V0 ~ F. Let 03A60 = {03B2 ~ 03A6 : 03B2, v0&#x3E; = 0}, V = {v ~ F : 03B2, 03BD&#x3E; = 0 for
all 03B2 ~ 03A60}. Then v0 ~ V’. For s ~ W, define W(sV) and S(sV) as in (4.10).
Note that for s ~ W, 03BD ~ S(sV), sV and ps(v) dépend only on the coset of s
in W/W(V).

LEMMA 4.13: There is a neighborhood U of Vo in !F so that E( U)
= 03A3s~W/W(V)E(U : s : S(sV)).

PROOF: Let so = 1, s1,...,sk be a set of représentatives for the cosets
W(V)B W For 0 ~ i ~ k, write Pi for psi. Let H0 ~ tC be dual to À + ivo.
Then for 1 ~ i ~ k, since vo ~ V’, pi(Ho: v0) ~ po(Ho : vo). Let U be a
neighborhood of vo in F for which pi(H0 : v) ~ Po(Ho : v) for all v E U,
1 ~ i ~ k. Then
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and wyi = yi for all w ~ W(V). For any w ~ W(V),

Thus

Now for any s, t E W,

Thus for

so that y03C8 = 03C8 for all 03C8 ~ E(U). But for s E W and 03BD ~ S(sV), (v
- ps(03BD))(sy1) ~ Y0(U) so that for all 03C8 ~ E(U), sy103C8 ~ E(U : s : S(sV)). Thus
gl = 03A3s~W/W(V)sy103C8 gives the required decomposition. ~

Note that (4.13) and (4.10) do not combine to imply that every 03BD0 ~ F
has a neighborhood U in F so that E(U) = {0}. This is because in the
statement of (4.10) the set U is an open subset of V’, not of F, and
unless vo E F’, V is a proper subspace of F.
Suppose vo c- 5". Then 03A60 = 0, V = F, and for all s E W, W(sV) = {1},

S(sV) = S(tc). In the proof of (4.13) we could have picked the neighbor-
hood U of vo in .97 small enough so that U ~ F’. Thus using (4.7) and
(4.9), E(U) = LsewE(U: s) = {0}. This shows that for any 03C8 ~ E(F’) and
03B1 ~ C~c(F’) with support contained in U, 03C8(H : 03B1) = 0 for all H c- t’«).
That is, vo is not in the support of the distribution 03C8(H) for all H E t’(03B6).
But v0 ~ F’ was arbitrary so that 03C8(H) = 0 for all H E t’(03B6). Thus E(F’)
= {0}.
That is, for all 03C8 ~ E(F) and H ~ t’(03B6), the support of the distribution

03C8(H) is contained in the singular set Fs = {v ~ F : v ~ F’} which is a
finite union of hyperplanes V03B2 = {v ~ F : 03B2, v&#x3E; = 0} for some 03B2 ~ 03A6,
03B2|03B11 ~ 0. For U an open subset of e, V a subspace of F, s E W, and S a
subalgebra of S(tc), write E( U : U n V: s : S) = {03C8 E E(U : s : S) : for all H E t’(03B6),
supp gl(H) z U n V}. We will also write E( U : U n V) for the analog-
ous subset of E(U). We have seen above that E(F) = E(F : Fs)
= 03A303B2~03A61 E(F : V03B2), 03A61 = (fl ~ 03A6 : Plal =1= 01.
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We now need to recall a classical theorem about distributions on R"

which are supported on a subspace. Let U be an open subset of R", V a

subspace with U n V:o 0. We identify V with Rk x {0} for some

0 ~ k ~ n. For 9 E C~c(U), let ~ ~ C’(U n V) denote the restriction of (p
to U m K For any distribution T on U n V there is a distribution T on

U given by T(~) = T(~), ~ ~ C~c(U). Clearly if D is any differential

operator on U and T is any distribution on U n V then (DT)(ç)
= l(D*(p) gives a distribution on U supported on U n K Let Q
= {(q1,...,qn-k):qi ~ N, 1 ~ i ~ n-k}. For q ~ Q a multi-index, let D"
denote the corresponding differential operator on U with respect to the
R"-k variables transverse to V = Rk x {0}.

THEOREM 4.14 [6]: Let T be a distribution on U, supported on U n V.
Then for every q E Q there is a unique distribution Tq on U n V so that T
= 03A3qDqTq. Further, the sum is locally finite.

Now suppose U is an open subset of F, V is a subspace of ff which
has non-trivial intersection with U, and 03C8 ~ E(U : U ~ V). Then using
(4.14), for each H E t’(03B6) and q E Q there is a unique distribution 03C8q(H) on
U n V so that gl(H) = Lq Dq 03C8q(H). For each H E t’(03B6), the sum is locally
finite. But in fact, using the full strength of (4.5), if S2 is a relatively
compact open subset of U, there is an N ~ 0 so that for every H E t’(03B6)
and a E C~c(03A9),

Further, since for any 03B2 ~ C~c(U ~ V) and q ~ Q we can find 03B1 ~ C~c(U)
with Dqex = 03B2, Dq’03B1 = 0, q’ ~ q, it is easy to see that each t/J q must satisfy
conditions (4.1), (4.3), (4.4), and (4.5) as a function on t’(03B6) x C~c(U n V).

LEMMA 4.16: Suppose U is an open subset of F and V is a subspace of
F so that U ~ V ~ r. Then E(U : U ~ V : s : S(sV)) = {0} for all s ~ W.

PROOF: Suppose 03C8 ~ E(U : U ~ V : s : S(sV)). Assume 03C8 ~ 0. We will

show this produces a contradiction. Fix vo E U ~ V such that Vo is in the
support of 03C8(H) for some H E t’(Q. Let Q be a relatively compact neigh-
borhood of vo in U. For H ~ t’(03B6) and 03B1 ~ C~c(03A9) decompose 03C8(H : 03B1) as in
(4.15) where N is chosen as small as possible. Then there is a q ~ Q so
that Iql = N and 03C8q(H) is non-trivial on C~c(03A9 ~ V) for some H ~ t’(03B6).
Let s E W and v E S(s V). For 03B2 E C~c(03A9 n V) choose ex E C~c(03A9) so that Dqex
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Then since 03C8 E E( U : s : S(s V)), for any v E S(s V),

Thus the restriction of 03C8q to t’(03B6) x C~c(03A9 ~ V) is an element of

E(Q n V: s : S(s V». Thus 03C8q(H : fi) = 0 for all fi E C’(Q n V), H E t’(03B6) by
(4.10). This contradicts the assumption that t/1q is non-trivial on

C’(Q n V). D

For V a subspace of F, define 03A6V and V’ as before and let 57’ v
= {v ~ F : 03B2, v) ~ 0 for 03B2 ~ 03A6B03A6V}. Then F’V is an open subset of F
and F’V n V = V’. When V = F, v F’ and when V = {0}, F’V = F.

THEOREM 4.17 : E(F) = {0}.
We will show that E(F) = {0} by using downward induction on

dim V to prove that E(F’V) = {0} for all Y. We have already established
this for V = F. The statement for V = f 01 will give the theorem.

Let V be a subspace of F with dim V  dim J. We can assume in-

ductively that for subspaces VI with dim VI &#x3E; dim V, E(F’V1) = {0}. Thus
E(F’V) = E(F’V : V’). For vo E V’ there is a neighborhood U of vo in F’V so
that E( U : U n V) = 03A3s~W/W(V)E(U : U n V: s : S(s V» by (4.13). But since
U ~ V ~ V’, b y (4.16), E( U : U n V: s: S(s V» = {0} for all s ~ W. Thus

E(U : U ~ V) = E(U) = {0}. Thus for any 03C8 ~ E(F’V), HEt/«(),
vo e supp 03C8(H). Since this is true for all vo E V’ and supp 03C8(H) ~ V’, 03C8 = 0.

§5. Proof of the main theorem

Let P = MAIN be a cuspidal parabolic subgroup of G. For úJEB2(M)
and v E F = a!, let 03B803C9,03BD be the character of the corresponding induced
representation and let

be a wave packet where is a KM-finite matrix coefficient for cv on M
and 03B1 ~ C~c(F). Let W(03C9) = {s ENG(A1)/MA1: scv = col.

Let A be a special vector subgroup of G of dimension p and y be an
A-orthogonal set. Let X ~ GA and let co(X) be its constant term. Let T
= TI TR be a 0-stable Cartan subgroup of G which contains A and sat-
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isfies dim TR ~ dim A + dim AI. Let e(T, A, A 1 ) be 1 if dim TR = dim A
+ dim A1 and be zero otherwise. When 8(I A, A,) = 1 let 03B8A03C9,03BD be the
weighted character defined in (3.3). Let f = ~03B1, ex E C~c(F).

THEOREM 5.1: For any h ~ T’,

PROOF: For the first part of the proof we will repeat the argument
used by Arthur in Theorem 9.1 of [1c].

Suppose p = 0. Then GA = G and for all X ~ G, rf(h:O.!J:X)
= c0(X)TRBGf(x-1hx)dx and the result follows by results of Harish-
Chandra in §24 of [2c] summarized here as (1.3).

Let p &#x3E; 0 and assume inductively that the theorem is true for any 1
and Â with dim Â  p. Fix X ~ GA(r), r ~ 0. If r &#x3E; p then Dxv(x : OY) = 0
and co(X) = 0. Thus we can assume inductively that the theorem is true
for X ~ GA(r’), r’ &#x3E; r.

Fix write

We must show that 03C8 ~ E(F) so that 03C8(H : 03B1) = 0.
We may as well assume that T ~ L. Since p = dim A &#x3E; 0, T is not

fundamental. We know that for each 03B1 ~ C~c(F), r~03B1(h : y : X) and 03B8A03C9,03BD(h)
are smooth functions of h E T’. Further, for h = ’exp H E T’,
h ~ e-03C1I(H)(03B6, H) = 03A003B2~03A6+I(1 - 03B6-03B2(h))0394+(h) is a smooth function on

T’. Thus 03C8 is a function on t’(03B6) x C~c(F) satisfying (4.1).
Let ]z ~ J and let q = 03B3(z) ~ I(tC). Then by (3.6), A03C9,v(03B6, H; ~q) = q(À

+ iv)A03C9, v(03B6, H) where 03BB ~ t*M,C corresponds to 03C9 ~ 03B52(M). Also 03B803C9,03BD, zf&#x3E;
= q(À + iv)03B803C9,03BD,f&#x3E;. Further, because of the induction hypothesis on r
and (2.4), Rf(03B6, H; ~q : y : X) = Rzf(03B6, H : y : X) since for all Xi ~ GA(1),
XXi ~ GA(r + 1) so that by the induction hypothesis Rf(03B6, H : y : XXi)
= 0. Now since f = ~03B1, zf = ~p(q)03B1 by (2.10). Combining the above ob-
servations we see that 03C8 satisfies (4.2).

Fix 03B2 ~ 03A6R(03B6). Then
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If n03B2(A) = 0, then 03C403B2(H) = 0. If n03B2(A) ~ 0, then dim A03B2  p so by
the induction hypothesis the theorem holds for Rj,AP. But dim TR ~
dim A + dim A i &#x3E; dim Ap + dim A1 so that 03B5(T : A03B2 : A1) = 0. Thus in
any case S03B2f(03B6, H : y : X) = Rf(03B6, H : y : X), so that using (2.6), for any
H0 ~ t003B2(03B6), u E S(tc), Rf(03B6, H0; ~u : y : X)+ - Rf(03B6, H0; ~u : y : X)- =
- n03B2(A) limo-+o RT03B2,A03B2f(03B6, Ho + 03B8(X’03B2 - 1p); ~((u - s03B2u)) : y03B2 : X) where the
limits exist uniformly for Ho in compacta of t003B2(03B6). Again, either n03B2(A) = 0
or else the theorem can be applied to RT03B2,A03B2f. Combining this with (3.8)
we see that for any H0 ~ t003B2(03B6), u ~ S(tC), 03C8(H0; ~u : 03B1)+ = 03C8(H0; ~u : 03B1)-
where the limits exist uniformly on compacta of t003B2(03B6). Thus we see that 03C8
satisfies (4.3).
Using (2.8) and the fact that ex - ~03B1 is a continuous mapping of

C~c(F) into J(G) we see that R~03B1 satisfies the growth condition (4.5).
Using (2.11) and (3.5), for any UES(tc)’ F03B803C9,f, ~03B1&#x3E;A03C9,v(03B6, H; ~u)dv is a
finite sum of terms of the form

where t E W(co), s ~ {w ~ W: wA, - TR}, F is the connected component of
Q«) containing H, and ps(u) is the polynomial on F given by Ps(u: v)
= u(s(03BB + iv)). Since sA1 ~ TR, sv(H) is real for all H E t. Further, by (3.7),
cs(F) = 0 unless Re sÀ(H)  0 for all H c- 5. Thus there are a constant C

and a continuous seminorm y on C~c(F) so that

H E t’(03B6). Thus 03C8 satisfies (4.5).
To finish the theorem we must know that for every 03B1 ~ C~c(F),

H ~ 03C8(H : oc) extends to a Coo function on QI = tl + {H E tR : 03B2(H) ~ 0 for
any 03B2 ~ 03A6 with 03B2|tR ~ 0}. Note that for H ~ 03A9I and fi E 03A6, if çp(’ exp H)
= 1, then 03B2 ~ 03A6I and 03B2(H) E 2niZ. Because of (3.5), it is enough to show
that Rf, f = ~03B1, extends smoothly to 03A9I. To prove this we need another
induction.

Suppose that T is a Cartan subgroup of G with dim TR maximal. Then
every imaginary root of (g, t) is compact so that, using the remarks fol-
lowing (2.7), 03C8 extends to a Coo function about any semi-regular point in
QI. Since 03C8 and all its derivatives are bounded in a neighborhood of any
singular point of 03A9I, it follows from the usual argument that 03C8 extends
to a Coo function on QI. Thus in this case 03C8 ~ E(F) = {0} and the
theorem is proved.
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Assume now that T is a Cartan subgroup of G with dim t, = k not
maximal, and assume that the theorem is true for Cartan subgroups T
of G with dim tR &#x3E; k. For all such Î with A ~ R, RT,Af = 0 since
dim fR &#x3E; dim TR ~ dim A + dim A 1.

Let fi be any singular imaginary root of (g, t). Then using (2.7), the
jump of any derivative of RT,Af across the hyperplane 03B2(H) = 0 is a mult-
iple of RT,Af for a Cartan subgroup Î of G with dim ÎR = dim TR + 1.
Thus by the induction hypothesis the jump is zero. The formula for the
jump of Rf(03B6, H : X : y) across a hyperplane of the form 03B2(H) = 2nin can
also be obtained by (2.7) by using a possibly different C, so again we see
that R f extends smoothly to a neighborhood of any semi-regular point
of QI, and hence to 03A9I. Thus 03C8 satisfies (4.4) and is zero.
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