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1. Introduction

A function F defined on a complete Riemannian manifold M without
boundary is said to be convex iff on each unit speed geodesic F is a one
variable convex function. In [7], [8], such functions are studied in
detail. For example, if F has no minimum, then M is diffeomorphic to
N x R, where N is homeomorphic to a level of F, and if F has a com-
pact level, then all levels are compact and the diameter function of levels
of F is monotone nondecreasing as a function for values of F. Moreover,
M with a locally nonconstant convex function F has at most two ends,
and M has one end if F has a noncompact level. These facts will be used

in §3.
In the present paper we study functions on M which are affine funct-

ions on unit speed geodesics, and we apply them to prove splitting
theorems of Riemannian manifolds.

Let M be a complete Riemannian manifold without boundary. A
function F on M is by definition affine if on each unit speed geodesic y : (
- ~, ~) ~ M, Fo03B3(st1 + ( 1 - s)t2) = sFo03B3(t1) + (1 - s)Fo03B3(t2) for

every s ~ (0, 1) and for every t1, t2 ~ (-~, ~). A function F on a

Riemannian product manifold M : = N x R is clearly affine on M if

F(x, t) = t for each (x, t) E N x R.
The main theorem of our investigation is:

MAIN THEoREm: A complete Riemannian manifold M without boundary
admits a non-trivial affine function if and only if M is isometric to a

Riemannian product N x R.
In fact:

THEOREM 1: Let M be a complete Riemannian manifold without bound-

0010-437X/82090237-11$00.20/0



238

ary. If M admits a non-trivial affine function F, then F-1(a), for every
a E R, is a totally geodesic submanifold of M without boundary, and fur-
thermore there exists an isometric map I of F-1(a) x R onto M such that
there is a constant b such that FoI(x, t) = bt + a for every x ~ F-1(a)
and for every t E R.

Examples and applications of this theorem are as follows.
Let V be the totality of all affine functions on M. Then V is evidently

a vector space containing all constant functions on M and hence dim V
is at least one. If M is the n-dimensional Euclidean space, then V is an

(n + 1 )-dimensional vector space. Conversely, from the fact that grad F
of an affine function F is parallel on M and by iterating Theorem 1, we
have

THEOREM 2: Let M be an n-dimensional complete noncompact
Riemannian manifold without boundary. Then 1 ~ dim V S n + 1. If
dim V = k + 1, then M is isometric to the Riemannian product N x R k
where N admits no non-trivial affine function. I n particular M is the

Euclidean space if and only if dim V = n + 1.

Next we discuss when an affine function on M exists.
A unit speed geodesic y : [0, oo) - M (( - oo, oo) - M) is by definition

a ray (a straight line) if d(03B3(t), 03B3(t2)) = |t1 - t2l for all ti, t2 E [0, 00)
(t1, t2 E ( - 00, ~)).

THEOREM 3: Let M be a complete noncompact Riemannian manifold of
nonnegative sectional curvature and without boundary. If there exist two
rays YI’ Y2: [0, oo) ~ M and a positive constant a such that for every
t E [0, oo), 2t - d(03B31(t),03B32(t))  a, then the Busemann functions f03B3i(.):
= limt~~{t - d(., 03B3i(t))}, i = 1, 2, of Yi are non-trivial affine functions. In
particular M is isometrically a Riemannian product N x R.

Using the Toponogov comparison theorem (see [3]), we know that
the existence of YI and 72 in the assumption is equivalent to the

existence of a straight line. Thus we obtain a restatement of the

Toponogov splitting theorem (see [4], [5], [10]).
But if M is of nonpositive sectional curvature, the existence of a

straight line does not imply the existence of a non-trivial affine function
on M (see Example 1 in §3). However the following holds in this case.

THEOREM 4: Let M be a complete noncompact Riemannian manifold of
nonpositive sectional curvature and without boundary. Suppose there
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exists an isometry Ô of M such that it translates a straight line 03B3: (
- oo, ~) ~ M, i.e., there exists a constant a =1= 0 such that ô 0 y(t) = y(t
+ a) for every t E ( - oo, oo), which connects different ends of M (see §3)
and it leaves all free homotopy classes of closed curves in M invariant.
Then the Busemann functions f03B3± (.): = lim {d(., y ± (t)) - t} are non-trivial
affine functions and hence M is isometrically a Riemannian product
N x R, where 03B3± : [0, ~) - M is defined b y y + (t) = y(t) and 03B3-(t) = y( - t)
for every t E [0, ~).

In §2 we prove Theorem 3. The proof is very simple and the idea is
useful to that of Theorem 4. In §3 we deal with Theorem 4 and we shall
see there another statement (Proposition 1) which explains satisfactorily
the meaning of split. In §4 we give the proof of Theorem 1.

The author would like to express his hearty thanks to Professor K.
Shiohama for his advice and encouragement, and careful reading of the
original manuscript.

Note: Busemann and Phadke (see [2]) have independently proved the
analogous result to Theorem 2 in more general spaces (G-spaces).

2. Proof of Theorem 3

Let M be a complete noncompact Riemannian manifold of nonne-
gative sectional curvature and without boundary. It is well known (see
[5], [11]) that the Busemann function f03B1(.) = limt~~{t - d(., 03B1(t))} of

every ray a in M is convex on M. Hence fyl + fY2 is convex on M where
fYl and fY2 are functions in the assumption of Theorem 3. Moreover f03B31
+ fY2 is bounded above by a on M, since fYl(p) + fY2(p) = lim{t
- d(p, 03B31(t))} + lim{t - d(p, 03B32(t))} = lim{2t - (d(p, 03B31(t)) + d(p, 03B32(t)))}
~ lim{2t - d(03B31(t),03B32(t))} ~ a for all p E M. Thus f03B31 + f’/2 is constant on
M, say, c, and therefore fyi, i = 1, 2, is afhne. In fact, for every unit speed
geodesic y : ( - oo, ~) ~ M

for every SE (0, 1) and for every tl, t2 E ( - oo, (0).
Hence f03B3i is affine and also fy2 is. This completes the proof of Theorem

3.
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3. Splitting theorems in the case of nonpositive curvature

Notions and notations in this section are due to P. Eberlein and B.

O’Neill [6].
A Hadamard manifold H is a complete, simply connected

Riemannian manifold of dimension n ~ 2 having nonpositive sectional
curvature. Geodesics a and 03B2 in H are asymptotic provided there exists a
positive c such that d(a(t), 03B2(t)) ~ c for all t ~ 0. The asymptotic relation
is an equivalence relation on the set of all geodesics in H. Let H(~) be
the set of all asymptotic classes of geodesics of H and let H
= H u H(oo). H with the cone topology (see [6]) is homeomorphic to
the closed unit n-ball. If a : ( - oo, ~) ~ H is a geodesic, let 03B1(~) be the
asymptote class of a and let a( - ~) be the asymptote class of the reverse
curve t H a( - t). If 9 is an isometry of H and x is a point in H(oo) we set
qJ(x) = (~o03B1)(~), where a is any geodesic representing x. Thus we

obtain a well-defined map 9: H ~ H which is bijective and carries H(~)
into itself.

A complete manifold M of dimension n ~ 2 and of nonpositive sect-
ional curvature is precisely the quotient manifold H/D where D is a
properly discontinuous group of isometries of H. A continuous curve
a : [0, oo) - M is by definition divergent if for any compact set K in M
there exists t = tK such that for s ~ t, a(s) E M - K. Divergent curves a
and 03B2 in M will be called cofinal, if given any compact set K in M some
final segments a([s, oo)) and 03B2([t, oo)) of a and 03B2 lie in the same con-

nected component of M - K. This is clearly an equivalence relation on
the set of all divergent curves in M, and the resulting equivalence classes
are the ends of M. A (unit speed) geodesic y in M is almost minimizing if
there is a positive c such that d(y(O), y(t)) ~ t - c for all t ~ 0. Further,
x ~ H(~) is almost D-minimizing if for any geodesic y representing x ~ n(y)
is almost minimizing, where 03C0 is the covering projection of H onto M
= H/D. P. Eberlein and B. O’Neill have proved in [6] that if there exists
an x ~ H(~) such that it is almost D-minimizing and a common fixed
point of D, then a Busemann function of any y E x is invariant under D.
Hence the Busemann function f on M of 03C0(03B3) is induced from fy and
convex since every Busemann function on H is convex, and hence M is

homeomorphic to a product manifold N x R where N is a level of f.
Now we consider the case that there are two points in H(~) which

are common fixed points of D and almost D-minimizing.

PROPOSITION 1: Let M be a complete noncompact Riemannian manifold
without boundary and of nonpositive sectional curvature and let M
= H/D. If there exist distinct points x and y in H(oo) such that (1) they
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are common fixed points of D, (2) they are almost D-minimizing and (3)
n(x) and n(y) are in different ends of M, then M is isometric to a

Riemannian product N x R.

PROOF: (3) in the assumption implies in combination with (2) the
existence of a straight line 03B3:(-~,~) ~ M such that it connects n(x)
and n(y), more precisely, 03B3~03C0(x) and the reverse curve t ~ 03B3(-t) ~ 03C0(y).
In fact, since geodesics a E 03C0(x) and 03B2 E n(y) in M are almost minimizing,
and hence divergent, a sequence of distance minimizing geodesic seg-
ments from a(t) to 03B2(t) for t ~ 0 contains a subsequence which converges
to the desired straight line.

Let y ± be two rays such that y +(t) = y(t) and 03B3-(t) = y( - t) for t ~ 0.
The Busemann functions f03B3±(.) = lim, {d(., Y:t(t)) - tl are locally non-
constant convex functions without minimum by the preceding remark
to Proposition 1. Moreover, from the facts at the beginning of §1, M is
topologically a cylinder N+ x R (or N- x R), where N+ (or N-) is a
level of f03B3+ (or fy-), and all levels are compact.

There exists a compact set K of M such that f-103B3±(0) c K and p E M
- K implies that f03B3+(p)  0 or f03B3-(p)  0. In fact, otherwise there exists
an unbounded sequence {pi} of points in M such that f03B3±(pi) ~ 0 and
hence there exists an io such that f03B3+(pi0) &#x3E; f03B3+(p1) ~ 0 and

f03B3-(pi0) &#x3E; f03B3-(p1) ~ 0. Let 03B30 : ( - oo, oo) - M be a geodesic such that

yo(O) = PI and 03B30(d(p1, pi,,,» = pio. Then f03B3± 0 yo(t), t ~ d(p1, Pio)’ are

positive and monotone increasing from convexity of f03B3±. Clearly yo is

divergent. We assert that yo is not contained in the ends of M contain-
ing y + and y -, contradicting the fact that M has at most two ends.

Suppose yo and y + (03B3-) are contained in the same end of M. If K’ is a
compact set containing f-103B3+(0) and f-103B3-(0), then by the definition of ends
there is an s = tK’ such that yo([s, oo» and y +([s, oo)) (y -([s, ~))) are in
the same component of M - K’. If t’ &#x3E; s and if 6 is a curve in the

component of M - K’ joining yo(t’) and 03B3+(t’) (03B3-(t’)), then continuity of
f,,, implies that G must meet K’, a contradiction, since fY+ ° yo |[s, 00) &#x3E; 0

(Jy - o03B30|[s, oo) &#x3E; 0) and fy + o03B3+1[s, oo)  0 (fy - oy- |[s, (0)  0).
Next we assert that there is a positive c such that for any p E M

d(p, y(R»  c. In fact, if f03B3+(p)  0 (or fy-(p)  0), then by the fact stated
at the beginning of § 1, d(p, 03B3(R)) s the diameter of f-103B3+(f03B3+(p)) (or
f-103B3-(f03B3-(p))) ~ the diameter of f-103B3+ (0) (or f-103B3-(0)) ~ the diameter of K.

If we prove that f03B3+ + fy _ is bounded above on M, then from convex-
ity of f03B3+ + f03B3-, it is constant and hence f03B3+ and fy- are affine. For any
point P E M let tl be such that d(p, y(R» = d(p, y(t 1». Then
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This completes the proof of Proposition 1.

Now we can proceed to the proof of Theorem 4. It turns out that the
aassumption of Theorem 4 satisfies what we suppose in Proposition 1,
and the proof of Theorem 4 is achieved by Proposition 1.

PROOF OF THEOREM 4: Let ÿ be any lift of y to H. First we will con-
struct an isometry Ï over ô such that o~ 9 o e for any 9 E D and
~o(t) = (t + a) for all t ~ (-~, ~).
For points q and r in H let T(q, r) be a geodesic from q to r in H. For

every point p in H, define ep by a point in H which is the endpoint of
the lift of ô o n(T(p, (0))) to H starting at (a). We know from (28.7), [1]
p. 177, that Ï is well-defined and an isometry of H over ô. From the
construction of e, o(t) = (t + a) for all t ~ (- oo, oo).
Now we prove that o ç = 9 0 Ï for any ç E D. Since all free homo-

topy classes of closed curves in M are invariant under ô, ô 0 03C0(T(p, gp»
corresponds to 9 for every point p in H. And 03B4o03C0(T(p,~p)) =
03C0o e(T(p, ~p)) = 03C0(T(p,o ~p)) Thus o (p = ~ 0 b.

Let x and y be points in H(~) which contain y and the reverse geo-
desic y- : t H y( - t) respectively. Since d((na), ~ ° (na)) = d(en ° (0),
~ono(0)) = d(en o(0), bn 0 (p o (0)) = d(y(O), ~ o (0)) for all integer n, x
(or y) contains ~o (or ~o03B3-) and therefore x and y are common fixed
points of D. Since y is a straight line, x and y are almost D-minimizing
and hence the assumptions of Proposition 1 is satisfied. The proof is
complete.

It is necessary for (5 to leave all free homotopy classes of closed curves
in M invariant. In fact, there is an example of a surface S in the

Euclidean 4-space E4 which is not isometric to a flat cylinder and on
which a non-trivial isometry ô exists and translates a straight line on S
along itself but ô does not leave all free homotopy classes of closed
curves invariant.

EXAMPLE 1 : S is constructed by a union of countably many congruent
flat tori in E4 with two plane disks removed and countably many con-
gruent cylinders S x [0, 1] which are joined along their boundary
circles.

The construction is to put congruent flat tori, to which cylinders are
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attached, into a deliberate order in such a way that each torus contains
2 parallel plane squares along some line from which disks are removed,
and the plane squares on the tori and the boundary circles of cylinders
are all parallel along the line in E4.

Let (al, a2) be an arc-length parametrized Co-curve of [0, À] in E2
with (03B11(0),03B12(0)) = OE2(Â» = (0, -1) such that (1) it contains two

segments, {(x1, 1); -1 ~ x 1 ~ 1} and {(x1, -1); -1 ~ x1 ~ 1}, (2) it is

contained in - the strip {(x1,x2); -1 ~ x2 ~ 1} and (3) it is symmetric
with respect to the origin of E2, And let X denote its image in E2. Then
we can consider canonically Y’ : = X x X as the figure in E4.

Y’ has clearly 4 disjoint flat squared faces and we denote two of them,
{(x1, 1, x3, 1); -1 ~ x1, x3 S Il and {(x1, -1, x3, 1); -1 S x1, x3 S 1},
by AI and A2 respectively. We remove the disk D1 (or D2 ) from Ai (or
A2) with center (0, 1, 0, 1) (or (0, -1, 0, 1)) and radius 1/2. And we denote
the resulting figure by Y. It should be noted that yo : [1/2, À/2 - 1/2] ~ Y,
Yo(t) = (03B11(t), 03B12(t), 0, 1) is a distance minimizing geodesic segment from
~D2 to ~D1. Because in the universal covering space H of Y’ any lift of
yo to H is a distance minimizing geodesic segment from the lift of ~D2 to
the lift of ôD 1.
Y is joined with a certain cylinder SI x [0, y] along their boundary

circles, and this is done in the affine (XI, X2, x3, 1)-subspace as follows.
Let c = (03B21, 03B22, 0, 1) be an arc-length parametrized C~-convex curve of
[0, y] in the (x1, x2, 0, l)-space with c(p) = (1/2, 2, 0, 1) such that (1) c
does not intersect the x2-axis, (2) c starts at b:=(1/2, 1, 0, 1)=(03B11((03BB
- 1)/2, 03B12((03BB - 1)/2), 0, 1), (3) c contains the segment such that c([0,1/4])
= {(x1, 1, 0, 1); 1/4 ~ xi ~ 1/2} and (4) c is symmetric with respect to the
line {(x1, 3/2, 0, 1); - oo  x 1  ~} in the (x1, x2, 0, 1)-space. Revolving c
about the x2-axis in the (XI, X2, x3, 1)-space produces a surface C with
boundary ôDi and DD’ 1 which is congruent to ôD 1 and hence to ôD2 .
Attaching C to Y along ~D1 we obtain’a ’surface with boundary ~D’1 c C
and ~D2 c Y, and they are on the parallel planes normal to the x2-axis
in the (x1, x2, x3, 1)-space. We denote this surface by W
For each i = 0, ± 1, ± 2, ..., let qJi be a translation along the x2-axis in

E4 such that ~i(x1, x2, x3, x4) = (xl, x2 + 3i,X3,X4)’ Then S: = uqJiW is
the desired surface, namely, S is of nonpositive curvature and has an
isometry ô which satisfies the assumption of Theorem 4 except for inva-
riancy of all free homotopy classes of closed curves under 03B4.

The desired ô is obtained by putting ô = 91. Clearly ô does not leave
all free homotopy classes of closed curves in S invariant. Now we find a
straight line y which is translated by 03B4. Let yo be the distance minimiz-

ing geodesic segment in W which is already realized, i.e., the endpoints
are (03B11(1/2),03B12(1/2), 0, 1) = (1/2, -1, 0, 1)~~D2 and (03B11((03BB - 1)/2), 03B12((03BB
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- 1)/2), 0, 1) = (1/2, 1, 0, 1) ~ ~D1, Then ôD 1 and ~D2 are plane circles, so
yo is perpendicular to both DD, and ~D2, and therefore the extension of
yo into C in W is nothing but a profile curve, and the endpoint
(1/2, 2, 0,1) is identified with ~1(1/2,-1,0,1)=(1/2,2,0,1)~~1~D2.
Hence by iterating this step Yo is smoothly extended in S and the result-
ing geodesic is identified with ugiyo = : y. Because yo is distance mini-

mizing from ôD2 to iJD1 and hence so is giyo from qJiaD2 to lpioD1, for
every i, and because so is a profile curve of 9,C, for each i, y is a straight
line. And ô obviously translates y along itself.

4. Proof of Theorem 1

In this section we give the proof of Theorem 1.

Clearly for each geodesic y : ( - oo, oo) - M there are constants m and
n E R such that Fo03B3(t) = mt + n for all t ~ (- oo, ~) and hence F has no
minimum on M. It follows from this formula that all levels of F are

connected totally convex set (for definition see [5]) and hence totally
geodesic embedded hypersurfaces without boundary (see [3], [5]).
Because if a geodesic y passes through two points in a level of F, then m
= 0.

We are going to show that the exponential map of the normal bundle
of each level onto M yields the desired isometric map. For a subset A of
M and for a point q in M, we call a point JE A a foot of q on A if d(q, f)
= d(q, A). We shall often use this notion. We take the following steps to
complete the proof.

ASSERTION 1: For given a E R and for each q e F-1(a), let f be a foot of
q on F -1(a). Then a (distance minimizing geodesic) segment T(q, f) from
q to f satisfies the following properties;

(1) For every CE [a, F(q)] (or [F(q), a] if F(q)  a), T(q, f) intersects
F-1(c) at exactly one point, say, fc,

(2) fc is a foot of q on F-1(c) and f is a foot of fc on F-1(a).

PROOF: (1) is evident since F is a non-trivial affine function along
T(q, f). Concerning the second part of (2), see (20.6), [1] p. 120.
Suppose there is a point f’c in F-1(c) such that d(q, fc) &#x3E; d(q,f:). If

F(q) &#x3E; c (if F(q)  c), then (F(q) - c)/d(q, fc)  (F(q) - c)/d(q, f’c) ((c
- F(q))/d(q, fc)  (c - F(q»ld(q,f:». Let f ’ be a point in F-1(a) at which
the extension of T(q, f’c) meets F-1(a). Then the length of T(q, f ) is

greater than the length of the extension of T(q, f’c) up to a point f ’. This
contradicts the choice of f. Hence the first part of (2) is proved.
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ASSERTION 2: Each point q ~ F-1(a) has a unique foot on F-1(a) and
moreover there is a unique segment T(q,f) from q to f

PROOF: From the existence of a strongly convex ball around q (see
[9]) and the total convexity of F-1(a) it follows that for sufficiently
small positive E there is a unique foot of q on F-1(F(q) - e) (or F-1(F(q)
+ 03B5)). If there are distinct feet f and f ’ of q on F-1(a), then Assertion 1
implies that there are at least two feet of q on F-1(F(q) - e) (or
F-1(F(q) + e» thropgh which T(q, f) and T(q, f’) pass respectively, a
contradiction.

The argument above is useful to prove the second part. If the unique-
ness of the existence of the segment from q to f is false, then there exist
at least two feet of q on a level of F between F-1(a) and F-1(F(q)), a
contradiction.

Let f be a foot of q on F-1(a) and let y : ( - oo, ~) - M be a geodesic
determined by y(O) = f and 03B3(d(q, f)) = q.

ASSERTION 3: d(y(t), f ) = d(y(t), F -1(a» = 1 t for all t E ( oc, ~).

PROOF: Let to be the least upper bound of t where y(t) has the foot f
on F-1(a). We must prove that to = oo. Suppose to  oo. Then for

sufficiently small e &#x3E; 0 y(to - e) is evidently a foot of y(to + e) on
F -1(F(y(to - e») since Assertion 1 implies that y is perpendicular to
F-1(F(03B3(t0 - 03B5))) at y(to - e). However since y(to + e) has a foot on
F-’(a) different from f, y(to - e) cannot be a foot of 03B3(t0 + 03B5) on
F -1(F(y(to - 03B5))), a contradiction.
We can prove similarly on the nonpositive part of y.
By the Assertion 1 to 3 we obtain the following.

ASSERTION 4: The exponential map of the normal bundle of F-1(a)
onto M is a diffeomorphism.

It turns out that this diffeomorphism is an isometric map by the fol-
lowing assertion and thus the proof is complete.

ASSERTION 5: Let q and q’ be any points in F-1(c) and let f and f ’ be
the feet of q and q’ on F-1(a) respectively. Then d(q, q’) = d( f, f ’) and
d(q, f ) = d(q’, f ’).

The first part implies that all levels of F are isometric to each other
and the second part implies that there exists an isometric map I of the
Riemannian product F-1(a) x R onto M such that FoI(x, t) = bt + a
for all x ~ F-1(a) and for all t ~ R.
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PROOF: First we consider the case where q’ is close to q, more pre-
cisely, the least upper bound of the set of all the lengths of T(fd, f’d),
a ~ d ~ c (or c ~ d ~ a if c  a), is smaller than the greatest lower
bound of the set of all the convex radii of points in T(q, f ), where fd and
fd are points at which T(q, f ) and T(q’, f’) intersect F-1(d) respectively.
Since T(q, f) and T(q’, f’) are perpendicular to each level through which
they pass, it follows from the first variation formula (see [9]) that d(q, q’)
= d(f, f’).
In general case, take a partition of a segment T(q, q’), q = qo, ql,. ..., qn

= q’, in this order such that every pair of qi and qi + 1, i = 0,1,..., n - 1,
satisfies the condition above. And let fi, i = 0, 1, ..., n, be a foot of qi on

F-1(a). Then

From Assertion 1, (2), it follows that f ( f ’) is the foot of q (q’) on F-1(a)
implies that q (q’) is the foot of f ( f ’) on F-1(c). Thus we obtain
d(f, f’) ~ d(q, q’). This proves d(q, q’) = d(f, f’).
On the second part, we have only to consider the variation made of

the totality of segments each of which joins a point of T(q, q’) and its
foot on F -1(a). We complete the proof.
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