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Introduction.

Let E be an elliptic curve over a local field F. Following Deligne
and Langlands [10] we attach to E a complex two-dimensional

representation 03C3E of the Weil-Deligne group of F. By means of [4] we
associate to 03C3E a local factor ~ (03C3E) which is ±1. The purpose of this
paper is to describe this "local sign" in geometric terms.
Given a quadratic character w of F*, there is a quadratic separable

extension K of F such that the kernel of w is precisely the image of the
norm map from K*. Let N be the norm homomorphism from E(K) to
E(F) which assigns to P in E(F) the sum P + gP, where g generates
Gal(K/F). We consider the following

CONJECTURE: ~ (03C3E)~(03C3E Q9 W) = 03C9(-0394)(- 1)dim(E(F)/NE(K))
Here à is the discriminant of any model of E over F, and

dim(E(F)/NE(K)) is the F2-dimension of the two-group E(F)/NE(K).
In this paper we prove this conjecture in a large number of cases.

These include all cases where F is archimedean or of odd residue

characteristic. When F has even residue characteristic we prove the

conjecture when w is unramified or E has ordinary good reduction.
The conjecture is motivated by consideration of the parity of the rank
of the Mordell-Weil group of elliptic curves over quadratic extensions
of global fields [8]. For an elliptic curve over Q with L-series given by
the Dirichlet series associated to a modular form f, the e-factor of the
curve over Op is the negative of the eigenvalue of the Atkin-Lehner
operator Wp on f. The sign in the functional equation for the L-series of
the curve over 0 is a product of E-factors. We show that the conjecture
above is a consequence of the standard conjectures about elliptic curves
over global fields.

Research partially supported by grants from the National Science Foundation. The
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of this research was done.
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The conjecture suggests many relations between the representation
theoretic quantities on the left hand side and the geometric quantities
on the right. Since O"E depends only on the F-isogeny class of E, the
conjecture implies that 03C9(0394)(-1)dim(E(F)/NE(K)) is an F-isogeny invariant.
On the other hand, the conjecture gives a geometric method to

calculate E-factors, which are originally defined in group-theoretic
terms. This is similar to the results of [5] and [6] which give alternate
interpretations for e-factors of orthogonal representations. The

representations 0-E are not necessarily orthogonal, even though they
have real valued characters, since it is possible for the conductor
exponent of 0-E to be odd. There seems to be no direct connection of
our geometric results with the results of [5].
The first section of this paper recalls aspects of the theory of

elliptic curves over local fields. In section 2 we review the local

E-factors attached to representations of the Weil-Deligne group and
calculate these factors in some cases. Section 3 examines several

compatibility statements involving the conjecture, showing that it

follows from standard global conjectures. We prove the conjecture
for curves with potential multiplicative reduction in section 4, and for
curves over fields of odd residue characteristic in section 5. In section

6 the conjecture is proven for w unramified, while section 7 gives the
norm index in terms of Kodaira types of elliptic curves. The final
sections contain a compendium of results and examples when the
residue characteristic is two and some applications of our results to
elliptic curves over global fields. The residue characteristic two fields
are more troublesome due to the traditional problems of elliptic
curves over such fields and the large number of possibilities for 03C3E in

that situation. For odd residue characteristics (sections 5 and those
preceding) the possibilities for 0-E are rather limited.
The following notational conventions are employed throughout.

The cardinality of a finite set S is denoted |S|. Attached to a

nonarchimedean local field are its ring of integers 0, prime ideal P,
valuation v, and residue field k. These are indexed by the field
when several fields are being considered. By abuse of terminology we
sometimes refer to quadratic extensions which are in fact of degree 1

over the base. The F2-dimension of a 2-group A is denoted dim(A).

1. Elliptic curves over local fields

Let E be an elliptic curve over a local field F; that is a non-singular
projective curve of genus 1 over F with a rational point 0. We refer to
[16, §2] for the generalized Weierstrass equation of a model of E over
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F and the definition of the discriminant à of the model. We recall

that the isomorphism class of E determines à modulo (F*)’2, and that
F(0394) is the unique quadratic extension of F contained in the field
generated over F by the coordinates of the points of order 2 in the
abelian group E(F).
For each quadratic character w of F*, we obtain an elliptic curve

ECù over F, the twist of E by w. The curve E03C9 is isomorphic to E over
the quadratic field K corresponding to w, and is characterized by the
fact that E03C9(F) is the group of points P in E(K) where g(P)=
03C9(g) · P for g in Gal(K/F).
When F is a nonarchimedean field we will utilize the Tate module

of the elliptic curve E. Let t be a prime number different from the
residue characteristic of F, and let F, be a separable closure of F. The
Gal(F,/F)-module T~(E) is the projective limit of the groups of points
in E(Fs) of t"-power order. This is a free Z~-module of rank 2, and
we let Ve(E) = T~(E) ~ Ge. For each g in Gal(F,) it is known [16, §4]
that the determinant of the endomorphism of V~(E) given by g is the
unique element a(g) ~ Q*~ such that g(03BE) = e"(9) for all t-power roots
of unity in F,.
Let WF denote the absolute Weil group of F [18; §1]. Local

class-field theory gives an isomorphism of F* and W,b. When F is
nonarchimedean, WF is the subgroup of Gal(F,/F) which has image an
integral power of the canonical generator of Gal(Fnonram/F) ~
Gal(Fq/Fq), where the residue field of F is isomorphic to IF q- We
normalize the class field theory isomorphism so that if w E WF projects
to the canonical generator of Gal(Fq/Fq) (that is, raising to qth powers),
the corresponding element of F* ~ Wpb has valuation -1. We will
systematically identify continuous quasicharacters of F* and con-
tinuous 1-dimensional representation of WF via the class field theory
isomorphism.
The Weil-Deligne group W’F is defined to be WF x SL(2, C). By a

representation of W F we will mean a continuous complex represen-
tation which is analytic on SL(2, C). Every continuous representation
of WF provides one of WF by projecting the Weil-Deligne group on its
first factor. We now associate to each elliptic curve E over F a
representation 03C3E of W F.
When F = R, (TE is the two-dimensional representation of WF induced

from the identity character z - z of Wc = C* C WR. When F ~ C, 03C3E

is the sum of the identity character and its complex conjugate. In
these cases 03C3E does not depend on E. See [4; §8.12].
When F is nonarchimedean, consider the inertia subgroup I c Wp c

Gal(F,/F). We will denote the representation of WF on V~(E) by pe.
Since WF consists precisely of those elements which, considered
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modulo I, give an integral power of the canonical generator of the
absolute Galois group of the residue field we have that pe(w) has a
characteristic polynomial with rational coefficients independent of t
[15; Theorem 3]. When 03C1~(I) is a finite subgroup of Aut(V~(E))
(potential good reduction in the sense of [15; §2]) we choose any
imbedding Q~ ~ C and by means of this identify Aut(V~(E)) ~
GL(2, Ge) with a subgroup of GL(2, C). This gives a homomorphism
03C3E: WF - GL(2, C). Since the image of I is finite, (TE is a semi-simple
complex representation of WF. Changing the imbedding Q~ ~ C does
not alter the isomorphism class of (TE since pe(w) has rational
characteristic polynomial independent of t.
When 03C1~(I) is infinite we proceed as in [10; §4]. This is the case of

potential multiplicative reduction, so that E is isomorphic to a Tate
curve ET (that is ET(Fs) ~ F*s/qZ as a Gal(F,/F) module for some
q E F*) over a quadratic extension L. Let y be the quadratic charac-
ter of F* corresponding to L, so that E is the twist E~T (X = 1 if E is
isomorphic to ET over F).

Let sp’(2) be the representation of W F given by projection onto
SL(2, C). Let ~·~ be the unramified quasicharacter of F* for which
llxll = |kF|-03C5(x). Then we define the representation sp (2) of W’F to be
sp’(2) Q911 111/2 and we let (TE = sp(2) Q9 X, where Il 111/2, X are con-
sidered as 1-dimensional representations via the class-field theory
isomorphism chosen earlier.
We have now associated to each elliptic curve E over a local field

an isomorphism class of complex two-dimensional representations (TE
of Wk. It is clear that this representation depends only on the

F-isogeny class of E. Further, det (TE is the 1-dimensional represen-
tation of WF corresponding to ~ ~.
The symbol a(o-) will denote the exponent of the Artin conductor

of a representation (T of WF, when F is nonarchimedean [14 ;Chap.
VI]. We make the convention that 03B1(sp(2)~~)=max(1,203B1(~)),
when q is a 1-dimensional representation of WF [4; 8.12.1]. The
exponent of the conductor of E is by definition a(E) = 03B1(03C3E). This
agrees with the usual definition [15; §3].
To conclude this section we consider the norm map on elliptic

curves. Let L be a finite separable extension of F, and let L’ be the
Galois closure of L/F, with Galois group G and subgroup H stabiliz-
ing L. The norm homomorphism is the map
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We will show in (7.3) that NE(L) has finite index in E(F). The
following is a simpler version of that fact.

LEMMA 1.1: The subgroup NE(L) has finite index in E(F) when
[L : F] is not divisible by the residue characteristic of F. The index
divides a power of [L : F] in this case.

PROOF: The group E(F)INE(L) is annihilated by [L : F], so the
last statement follows once the index is known to be finite.

For F archimedean, the norm map is a continuous map of Lie

groups, and E(R) has at most two connected components. When F is
nonarchimedean, it is well known [17; (4.7)] that E(F) contains a
finite index subgroup U which is profinite of order a power of the
residue characteristic. If [L : F] is not divisible by the residue charac-
teristic, [L : F] U = U. Since NE(L) contains [L : F] E(F) the result
follows.

2. Local f actors attached to représentations of the
Weil-Deligne group.

In this section we review the definition and properties of local
E-factors attached to complex linear representations of Wp. For a
detailed discussion see [18; §3] and the references there.
Choose a nontrivial additive character ip and an additive Haar

measure dXF for F. Attach to each continuous linear representation o.-
of WF a complex number ~(03C3, «/1, dxp) as follows. For (r one-dimen-
sional, ~ (03C3, 03C8, dxF) is the factor appearing in the local functional

equation in Tate’s Thesis. For precise formulas, see [18; (3.2.1)]. In
general ~(03C3, 03C8, d~F) is the unique extension of this factor to a function
on all representations which is additive and inductive in degree zero
over F. The fact that such an extension exists has been verified by
Langlands and Deligne [4]. The following properties [18; (3.4)] are
used in the remainder of the paper. Let W, V be representations of
the Weil group WF.

If V is a virtual representation of dimension zero of WL, and L a
finite extension of F
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Let 03C8a(x) = 03C8(ax). Then for a E F*

If dxF is self-dual with respect to tp and V* is the contragredient of
V

Let F be nonarchimedean. There exists a choice of tp so that

when W is unramified. (7r a generator of 9F).
There are similar properties for representations of the Weil-Deligne

group Wp. (see [4,8.12]). We will use only that when X is a 1-

dimensional representation of WF

for suitable t/1 and dxp.
We now define the factor ~(03C3E) associated to the representation

attached to an elliptic curve E over F in section 1.

DEFINITION 2.2: e«(TE) = ~(03C3E, 03C8, dXF) where Ql is arbitrary and dXF
is self -dual with respect to tp.

Since det(03C3E (D Il 11-1/2) is trivial, property (2.1.4) shows that ~(03C3E) is
independent of the choice of 03C8. Further (TE 011 ~-1/2 is self-con-

tragredient, so e( (TE)2 equals 1 by (2.1.5).

DEFINITION 2.3: For each quadratic character w of F*, define
E(E, 03C9) to be E(UE)IE(UE 0w).

REMARK: The representation 03C3E ~ 03C9 is attached to the twisted

curve EW. Thus e (E, 03C9) = ±1.

PROPOSITION 2.4: (a) If F is archimedean, E(E, w) = 1.
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(b) If O"E is decomposable, E(E, 03C9) = 03C9(-1).
(c) If F is nonarchimedean and 7r has valuation one, then E(E, w) =

03C9(03C0)03B1(03C3E) for w unramified.

PROOF: (a) When F is archimedean, o-E is independent of E, and the
results of [18; (3.2)] shows that ~(03C3E) = ~(03C3E ~ 03C9) = -1.
For (b), suppose that 03C3E ~ 03BC ~ v. Then det aB = 03BCv = Il Il, so that if

dx is self dual with respect to tp:

~(03C3E, 03C8, dx) = ~(03BC, 03C8, dx)~(03BC-1~ Il, 03C8, dx) = 03BC(-1)

Similarly ~(03C3E ~ 03C9, 03C8, dx) = 03BC(-1)03C9(-1), so the result follows.
(c) This follows directly from the definition of E(E, 03C9) and property

(2.1.6) of E-factors.
The factors e(E, w) can now be calculated in certain cases.

PROPOSITION 2.5: Suppose that 03C3E=sp(2)~~. Then ~(E, 03C9) is
given by the following table :

PROOF: From (2.1.7) and (2.1.5) we see that if q is a quadratic
character of Wp we have for suitable t/J, dx :

The result now follows from the definition of ~ (E, w) and the above
formula.

The next result concerns the case when (TE is induced from an

index two subgroup of W k. By [3; Prop. 3.1.4] this always occurs if OEE
is irreducible when restricted to Wp and the residue characteristic is
odd. The result depends on the following Theorem of Frohlich and
Queyrut.

THEOREM 2.6[6]: Let 0 be a quasicharacter of a quadratic separ-
able extension L of F, and suppose 8 is trivial on F*. Let y be an

element of L* such that trLIF(Y) = 0. Then e( 0, t/J, dXL) = C O(y), where
c depends only on tp and dXL.



314

THEOREM 2.7: Suppose that (TE = IndWFWL 0, where L is the un-

ramified quadratic extension of F. Let y be a nonzero element of L with
trLIP(Y) = 0. Then

PROOF: Choose an additive character qi and self dual measure dx.
Since det uE(x) = Ilxll, we have that 8 IF- = WLII Il, where wL is the

unramified quadratic character. Let Co be the nontrivial unramified
quadratic character of L*, so that fi) IF* = 03C9L. Let a be the quasi-
character 0 . 03C9-1 · ~ ~-1 of L*. Then a is trivial on F*. Further

~(03C3E, gi, dx ) = 03B3~(03B8, 03C8 ° trL/F, dxL) by (2.1.2), where y depends only on
L/F, dx, and 03C8. Replacing 03C8 03BF tyL/F by a suitable t/J’ as in (2.1.6) and
invoking (2.1.4), we notice that 0 diff ers from a by an unramified
character  ~ ~, so that

~(03B8, 03C8 03BF trLIF, dxL) = 03B4(-1)03B1(03B1)~(03B1, 03C8 03BF trL/K, dXL)

where 5 depends only on L/F, dx, 03C8 and 03C8’. By (2.6), ~(03C3E, 03C8, dx) =
(-1)03B1(03B1)c’03B1(y) for a constant c’ depending only on L/F, y, dx, t/1 and
t/1’. Repeating the calculation with 03B8(03C9 03BF NL/F) in place of 0 and the
same choice of y, dx, t/1 and 03C8’ shows that ~(03C3E ~ w, 03C8, dx) =
(-1)03B1(03B1 · 03C9 03BF NL/F)c’03B1(y)03C9(NL/Fy). Hence

Notice that y2 = - Ny, so 03B1(y2) = 1. Also, 03B1(03B1) = 03B1(03B8) and

03B1(03B1 · 03C9 03BF NL/F) = 03B1(03B8 · 03C9 03BF NL/F). The special case w = 1 shows that
(c’)’ is 1. This proves the theorem.

COROLLARY 2.8: Suppose that 03C3E is irreducible and induced from
the absolute Weil group of the quadratic unramified extension of F. If
a(w) = 1, then E(E, w) = - 03C9(-1).

PROOF: By assumption (TE = IndWFWL 0. The fact that 03C3E is irreducible

is equivalent (by Frobenius Reciprocity) to the fact that 0 is not of

the form ~03BFNL/F for any quasicharacter q of F*. In particular
03B1(03B8) ~ 1, and hence a(8w 0 N) = 03B1(03B8). Since F has tamely ramified

quadratic characters, the residue characteristic is odd, and L =

F(u) for some u in OF* which is not a square modulo the prime
ideal. Take y = u in (2.6), so that 03C9(y2) = 03C9(u) = -1, since 03B1(03C9) = 1.
The corollary results immediately from the preceding theorem.
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3. Statement of the conjecture and motivation

Let E be an elliptic curve over a local field F, and let K be a

quadratic extension of F corresponding by local class field theory to a
quadratic character w (when 03C9 is trivial we take K = FEB F and
NE(K) = E(F)). The group E(F)/NE(K) is a finite 2-group by (7.3).
Let d be the dimension of this F2-vector space and define K(E, 03C9) by
(-1)d. The discriminant a of a model of E is determined up to

(F *)"-multiplication by the isomorphism class of E, so that w(à) is
well-defined. Recall from (2.3) that e(E, 03C9) is a product of local signs
for E and the twist E03C9.

CONJECTURE 3.1.: E(E, 03C9) = w(-L1)K(E, 03C9).

REMARKS: The conjecture is true when 03C9 is trivial, as both sides

equal 1.

When F = R and K ~ C, the left hand side is 1 (2.4.a). The norm
homomorphism maps the connected real Lie group E(C) to the real
Lie group E(R). Hence K(E, 03C9) = (-1)c-1, where c is the number of

connected components of E(R). It is well known that à &#x3E; 0 if and

only if E(R) has two components, which verifies the conjecture for F
archimedean.

REMARK: Conjecture 3.1 is compatible with the standard con-

jectures for elliptic curves over global fields. In order to check this
the formula developed in [8] for the parity of the rank of the

Mordell-Weil group over a quadratic extension can be used as fol-
lows. Let F be a global field (char(F) ~ 2) for this remark only, and
KI F a quadratic extension. Let E be an elliptic curve over F. If the 2
primary component of the Tate-Shafarevitch group III(E, K) is finite,
then

by Theorem 1 of [8]. On the other hand, if the L-function of E over F
is given by an automorphic L-function such that the local e-factors in
the functional equation are ~(E03C5, Mj, the Birch, Swinnerton-Dyer
conjecture would imply that
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Since 03A0 03C903C5(-0394) = 1, these two facts imply that n E(Ev, Ú)v) ==
v v

fi 03C903C5(-0394)03BA(E03C5, wv). Thus, if conjecture 3.1 is known for all but one
v

place Fv and quadratic character ú)v, it must be true for the remaining
place. In [8] conjecture 3.1 was shown if E has good or multiplicative
reduction. We show in section 6 that the conjecture is true for eu

unramified. Using this, it is possible to derive the conjecture from

global conjectures by choosing global fields with appropriate local
behavior.

Two other compativility properties of E (E, w) and K (E, w) will now
be checked. The first is a symmetry result. It is clear that E(E’, w) =
E(E, w), since 03C3E03C9 = 0-E Où). The ratio 0394E/0394E03C9 is in (F*)6. The con-
jecture suggests that K(E, 03C9) = 03BA(E03C9, w), which we now prove.

PROPOSITION 3.3: Let E be an elliptic curve over a local field F and
let w be a quadratic character of F*. Then |E(F)/NE(K)| =
|E03C9(F)/NE03C9(K)| in particular K(E, W) - K(EW, w).

PROOF: The result is obvious if w is trivial or F is archimedean.

For w nontrivial and F nonarchimedean, let K be the quadratic
extension of F corresponding to w, and let G = Gal(K/F). Then
H°(G, E(K)) ~ F(F)/NF(K) and H’(G, E(K)) ~ E03C9(F)/NE03C9(K), so we
must show that the Herbrand quotient h(E(K)) is trivial.
There is a finite index G-submodule U of E(K) with h(U) = 1, see

(7.3.1). (If the residue characteristic is odd, U may be taken to be the
kernel of reduction modulo the prime ideal of K). Since the Herbrand
quotient is an Euler-Poincaré characteristic trivial on finite G-

modules [14; VIII, §4] we have h(E(K)) = h(U) = 1. This proves the
symmetry result.

REMARK: It is easy to see that ~(E, 03C91)~(E, W2) = ~(E03C91, 03C9103C92). In
other words, E(E, w) may be considered as a 1-cocycle on the group
of quadratic characters of F* with values in the space of functions
from elliptic curves of F to {± 1}. (The action of the group of quadratic
characters is induced by the twisting action on elliptic curves). Since
03C91(-0394E)03C92(-0394E) = wiw2(-àE) = 03C9103C92(-0394E03C91) we see that a con-

sequence of (3.1) is the prediction that 03BA (E, 03C9) satisfies the cocycle
relation 03BA (E, 03C91)03BA(E, Ú)2) = K(EWl, 03C9103C92). The case W2 = 1 is the result

of (3.3). We have not been able to show this cocycle relation in

general.
A second compatibility stems from the behavior of conjecture (3.1)

under change of base field. Let L be a finite Galois extension of F.
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Denote by EL the elliptic curve obtained by considering E over L and
let NLIF be the norm map on fields.

PROPOSITION 3.4: Let L be an odd degree Galois extension of F.
Then ~(E, w) = e(EL, ú) 0 NL/F).

PROOF: Since the Galois groups of local fields are solvable, it

suflices to treat the case L/F cyclic of odd order. Notice that

UEL = ResW’FW’F 03C3E. Since restriction is adjoint to induction, we can use
the fact that E factors are inductive in degree zero to compute the
effect of restriction. We have

Thus E(Ind 0", t/1, dxp) = ~(03C3, 03C8 03BF trL/F, dxL)03BBdim 03C3L/F where 03BBL/F =

~(IndWFWL 1, t/1, dxF)/~(1, 03C8 03BF trL/F, dxL). When this is applied to o- =

Res(oE) we obtain

where X runs over the characters of G. By (2.1.5) and (2.1.6)

and E(X, tp, dx)’ E(X-’, tp, dx)’ and 03BB2L/F are positive. Since [L : F] is

odd, y and X-’ are distinct for nontrivial X. Thus,
e(Res 03C3E, 03C8 03BF trL/F, dxL) = ~(03C3E, 03C8, dx). The same reasoning applied to
03C3E~03C9 shows that e(Res 03C3E03C9, 03C8 otrLIP, dXL) = ~(03C3E03C9, 03C8, dx). Thus

E (EL, w - NLIF) = e(E, w).

The final theorem of this section is an analogous result for K(E, 03C9).
Notice that 03C9 · NL/F(-0394) = 03C9(-0394)[L:F] = 03C9(-0394) when [L : F] is odd.

PROPOSITION 3.5: Let L be an odd degree Galois extension of F.
Then K (E, 03C9) = 03BA (EL, 03C9 03BF NL/F).

PROOF: As before it suffices to treat the case that L is cyclic over
F with Galois group G. The result is obvious if 03C9 is trivial, so assume
that is the quadratic character corresponding to the quadratic
extension K. Consider the F2[G]-module V = E(L)/NE(KL). There is
a norm map from E(L) to E(F) which induces a surjective map N* of
V to E(F)/NE(K) (since [L : F] is odd). After tensoring with the
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algebraic closure F2, we see that V ~ F2 is a direct sum of characters
of the odd order group G, and the kernel of N* is the direct sum of the
nontrivial characters. Since V is an F2[G]-module, the character has
values in F2. By linear independence of characters, this means that the
kernel of N* is even dimensional (if X is nontrivial, the multiplicities of
X and X-’ in V0F2 have the same parity). Hence the dimension of
E(F)/NE(K) is congruent modulo two to dimF2(E(L)/NE(LK)).

REMARK: A further compatibility involves isogeny. Conjecture 3.1
predicts that W(-,àE)K(E, 03C9) is an isogeny invariant (since (JE is).
When E is replaced by a curve isogenous to E by an odd degree
isogeny this is straightforward: the norm index remains the same, and
odd isogenies do not alter the quadratic nature of the discriminant. An
even isogeny may alter both the norm index and quadratic nature of
0394. Thus (3.1) predicts a factorization of the isogeny invariant e(E, 03C9)
into the product of two geometric, but not isogeny invariant factors.

4. The case of potential multiplicative reduction.

In this section conjecture 3.1 is proved when E has potential
multiplicative reduction over a nonarchimedean field F [16; §6]. The
group of points of E in a separable closure F, of F is isomorphic to
(Fs)*/qZ, where q is an element of the prime ideal of the ring of
integers of F. The action of GF = Gal(F,/F) on E(F,) is described by
a homomorphism X of GF to Aut(E) ~ {±1}. Then E becomes a Tate
curve over the quadratic extension L -stabilized by the kernel of X.
When P in E(Fs) is represented by x in F*s, the image g(P) for g in
GF is represented by g(x)~(g).

Recall that àE = q à (1 - qn)24, so that 0394/q is a square [16; §61.
n=l

For the remainder of this section let E be an elliptic curve over F
with potential multiplicative reduction which becomes a Tate curve
over the quadratic extension L (we take L = F if E is a Tate curve over
F). Let 03C9 be a nontrivial quadratic character of F* with corresponding
quadratic extension K.

PROPOSITION 4.1: If LK = K, then E(F)/NE(K) has order at most
2. Further, in this case K(E, 03C9) = - w(q).

PROOF: The description above shows that E(K) ~ K*/q’ and

E(F) = {z E K * | g(z) = z 11(g) q’ for all g E GF, some i E Z}/qZ. Alter-
nately, E(F) may be described as the elements of K* with g(z) . z-~(g) a
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power of q, modulo qZ. The norm map from E(K) is represented by
z H z - g(z)~(g), where g generates Gal(K/F). If X is trivial, this is the
usual norm and the result is clear. If X is nontrivial, let E(F)’ =
{z e O*K | NK/FZ = 1}. Then E(F)’ ~ E(F) and Hilbert’s Theorem 90
shows that NE(K) = E(F)’. Hence E(F)/NE(K) = E(F)/E(F)’. The
latter group is cyclic, generated by an element x E K * such that NK/F(x)
is 1 or q. It is easy to see that E(F)I E(F)’ has order 2 if q is a norm from
K *, and has order 1 otherwise. This establishes the proposition.
We now consider the case that LK has degree 4 over F. In this case

The norm map from E(K) to E(F) is represented by NKL/L. Let E(F)’
be the subgroup f z E L* 1 NLIPz = 1} of E(F).

LEMMA 4.2: N(E(K)) C E(F)’.

PROOF: Let x in (LK)* represent a point P of E(K). Then N(P) is
represented by NLK/L(x). Since x represents a point of E(K) we have
NLKIK(X) = q’ for some i. Hence NL/F(NKL/L(x)) = q 2i which implies
that NKLIL(X)lq’ has norm 1 to F, and so NKL/L(x) is in E(F)’.

PROPOSITION 4.3: With notation as above, when LK has degree 4
over F the order of E(F)INE(K) divides 4. Further, K(E, 03C9) = w(q).

PROOF: We first note that E(F)/E(F)’ has order dividing 2, and is a
nontrivial group if and only if q is a norm from L (that is, if and only
if X(q) = 1).
To determine E(F)’/NE(K) we consider E(K)’ =

f z E (LK)* 1 NLK/K(Z) = 1} C E(K). Denote the generator of

Gal(LK/K) by h, so that E(K)’ = f x/h(x) | x E (LK)*}. Then NE(K)’ =
{NLK/L(x)/h · NLKIL(X) 1 x E (LK)*}. By Theorem 90 and the fact that
NLK/L(LK)* has index 2 in L* we see that NE(K)’ has index 2 in
E(F)’. To determine E(F)’/NE(K) we note that NE(K) = NE(K)’
unless there exists an element z of (LK)* such that NLKIK(Z) = q and
NLK/L(Z) = q ylhy for some y in L* which is not a norm from LK.
Notice that if y = NLK/L(U), then NLK/K(z · u/hu) = q and

NLKIL(Z - ulhu) = q, so that q = z’h(z’) = z’g(z’) with z’ = zulhu. Hence
gh(z’) = z’ and 03C9~(q) = 1. Conversely, if 03C9~(q) = 1, q = NKL/K(z’) =
NKLIL(Z’) for some z’ fixed by gh. Then y is a norm from LK.
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Thus E(Fl’INE(K) has order 1 or 2, and is trivial if and only if

03C9~(q) = -1. Together with the first sentence of the proof this proves
the claim.

THEOREM 4.4: Let E be an elliptic curve over F with potential
multiplicative reduction. Then E(E, 03C9) = 0)(-,AE)K(E, w).

PROOF: The claim is true if w = 1. When is nontrivial and X = 03C9
or X = 1 Proposition 4.1 applies to show that K (E, 03C9)03C9(-0394) =
- 03C9(-1). Otherwise, 4.3 applies to show K (E, 03C9)03C9(-0394) = 03C9(-1). All
that remains is to check the theorem using Proposition 2.5. We need
only to notice that the unramified quadratic character has value -1 on
a uniformizer to verify the result.

5. The case of potential good réduction in odd residue characteristic

Conjecture 3.1 has been established for archimedean fields and also
for curves with potential multiplicative reduction. For this section
only we assume that E is an elliptic curve with potential good
reduction over a nonarchimedean field F with odd residue charac-

teristic. This means that the image of the inertia subgroup in the

é-adic representation on the Tate module is finite [15 ; §2]. Since the
residue characteristic is odd, we may utilize the representation of
Gal(F,/F) on the 2-adic Tate space V2(E). Let K be a quadratic
extension of F, with corresponding quadratic character w. Let A(E, w)
equal (-1)d, where d is the F2-dimension of the group E(K)2 of
elements of E(K) of order dividing 2. In the first part of this section
we show that e(E, w) = 03C9(-0394)03BB(E, w). Proposition 5.11 will show that
03BB(E, 03C9) = K (E, 03C9) for curves with potential good reduction over fields
of odd residue characteristic.

Let p be the representation of WF on the 2-adic Tate module T2(E).
Choose a basis to identify Aut(T2(E)) and GL(2, 7 2).

LEMMA 5.1: The image p(I) of the inertia subgroup in GL(2, Z2)
satisfies

PROOF: The subgroup 1 + 4M2(Z2) of GL(2,Z2) contains no

elements of finite order [15; pg. 479]. Thus p(I) injects into
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GL(2, Z2)/1 + 4M2(Z2). The elements of the 2-group
p(I ) ~ (1 + 2M2(Z2)/1 + 4M2(Z2)) are conjugate in GL(2, Q2) to matrices

[03B1 0 0 03B2], with « and i3 equal to ± 1. Since det(p) is trivial on I, the

elements of this 2-group must be scalars.
Let p denote the modulo 2 reduction of p, considered as a

homomorphism of WF to GL(2, F2). Let q be the number of elements
in the residue field kF.

LEMMA 5.2: Suppose that p(I ) is cyclic.
(a) If p(I) is trivial, then OEE is a reducible representation of WF.
(b)If 03C1(I) has order 2, then OEE is a reducible if and only if q ~ 1

(modulo 4).

PROOF: The previous lemma shows that 03C1(I) n 1 + 2M2(Z2) is cen-
tral in GL(2, Z2). In the case that p(I ) is trivial, p(I ) C 1 + 2M2(Z2), so
the image of I is central, and p(WF) is abelian. Thus OEE has abelian

image, and so is reducible.

When 03C1(I) has order 2, 03C1(I) is a cyclic group contained in

GL(2, Z/4Z) with modulo 2 reduction of order 2. All such groups have
order 4. When OEE is reducible, then in GL(2, Ô2) the image of p is

conjugate to diagonal matrices il (03BC 0 0 03C5). The entries , v are charac-
ters of WF with values in Q*2 such that jiv is trivial on I. Hence p(I) is
a quotient of O*F/(1 + PiF) for some i, and thus p(I) has order dividing
(q - 1)q°°. Since q is odd, 03C3E reducible implies that 4 divides (q - 1).
When 03C3E is irreducible and 03C1(I) is cyclic there is a subgroup

H C WF of index 2 such that I C H and p(H) is reducible. By
Frobenius reciprocity p is induced from a 1-dimensional represen-
tation 0 of H. By class field theory, p(I) is a subquotient of

O*L/(1 + PiL) for some i, where L is the quadratic unramified exten-
sion of F. Since det p is trivial on 1 we see that 0 is trivial on fi). Thus
the order of p(I) divides (q + 1)q°°, a multiple of the order of

O*L/O*F(1 + il t). Thus 0-E irreducible implies that (q + 1) is divisible by 4.

In subsequent proofs it will be convenient to make an odd Galois

extension L of F and work over L. The following proposition is

analogous to (3.4) and (3.5).

PROPOSITION 5.3: Let E be an elliptic curve over a local field F. Let
L be an odd degree Galois extension of F. Then 03BB(E, 03C9) =
03BB(EL, 03C9 03BF NLIF) for each nontrivial quadratic character (ù.
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PROOF: It suffices to notice that A(E, 03C9) = - 1 if and only if E(K)2
has order 2, where K corresponds to w. Also E(K)2 has order 2 if and
only if 03C1(WK) has order 2. Since WLK is a normal subgroup of odd
index in WK, 03C1(WK) has order 2 if and only if 03C1(WLK) has order 2, that
is if and only if A(EL, (ù 0 NL/F) = -1.

LEMMA 5.4: Suppose that p(I) is trivial. Then 03C9(-0394E)03BB(E, 03C9) =
03C9(-1).

PROOF: By (5.3) we may make a degree 3 Galois change of base if
necessary, and so we may assume p(Wp) has order dividing 2. The
discriminant 0394 = 0394E is a square if and only if 03C1(WF) is trivial, in

which case E(K)2 has 4 elements. If à is a nonsquare, E(F(VL1))2 has
four elements while E(F)2 has 2. Since p is trivial on the inertia group
I, F(0394) is unramified. If K is unramified K = F(VL1) and

03C9(-0394)03BB(E, w) = 1. If K is ramified, w is a tamely ramified character
and 03C9(-0394) = w (- 1). Then E(K)2 has 2 elements and

w(-L1)A(E, (ù) = 03C9(-1).

LEMMA 5.5: Let p(Wp) be abelian, and p(I) of order 2. Then

w(-L1E)A(E, w) = 1.

PROOF: The discriminant à of E is not a square since the image of
p is not in the alternating subgroup A3 C GL(2, F2). Since p( WF) is an
abelian subgroup of even order in S3, it has order 2. Then E(F(0394))
has order 4. For the quadratic unramified extension L (which is

distinct from F(VL1) since p(I) is nontrivial) and the other quadratic
extension M of F we have the following values:

The lemma now follows.

THEOREM 5.6: Let E be an elliptic curve over a local field of odd
residue characteristic. Let K be a quadratic extension of F with
character w. Assume that p(H) is abelian, where H is the unique index
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two subgroup of WF containing 1. Then

PROOF: Under the hypotheses 03C1(I) is diagonalizable in GL(2, Q2),
and hence cyclic since the determinant of p is trivial on I. We

distinguish two cases.

Case 1. The group p( WF) is cyclic. By passing to the field stabil-
ized by the 3-Sylow subgroup of p( WF) we may assume p(WF) has
order 1 or 2, and (5.3) shows that úJ (- L1E)A (E, 03C9) is unchanged.

If p(I ) is trivial, Lemma 5.2a shows that (TE is reducible and

03C9(-0394)03BB(E, 03C9) equals 03C9(-1) by (5.4).
If p(I ) has order 2, Lemma 5.2b shows that (TE is reducible if and

only if q = 1 (modulo 4). By (5.5) 03C9(-0394)03BB(E, w) = 1.

Case 2. The group 03C1(WF) is GL(2, F2), in which case 03C1(I) must be
the unique subgroup of order 3. Clearly (TE is irreducible in this case,
since 03C1(WF) has a nonabelian quotient. The field stabilized by the
inverse image of p(I) in WF is the quadratic unramified field F(v’ L1).
Since 1 stabilizes F(0394), 03C9(0394) = - 1 for each ramified quadratic
character w. For each quadratic extension K of F, E(K)2 has order 1.
Thus 03C9(-0394)03BB(E, 03C9) = 1 or -03C9(-1) according to whether w is un-

ramified or ramified.

The theorem now follows by checking the two cases and recalling
that a ramified quadratic character takes value 1 at -1 if and only if

q = 1 (modulo 4).

COROLLARY 5.7: Suppose that (TE is reducible when restricted to the
index two subgroup H of WF stabilizing the quadratic unramified
extension. Then E(E, w) = 03C9(-0394E)03BB(E, w).

PROOF: The previous theorem applies to this situation. Notice that
the exponent of the Artin conductor of (TE is even, since a(oE) =
a(ReSH(TE) = 03B1(03BC, ~ v), while 03BC03C5 = det 03C3E | H is unramified, so 03B1(03BC) =
a(v). Further, if (TE is irreducible and the restriction to H is reducible,
(TE is induced from a character of H. Statements (2.4) and (2.7) prove
the claim of the theorem.

The only remaining case to consider is the case that (TE is irreduci-
ble when restricted to the unique index two subgroup containing I.
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Since the residue characteristic is odd, 03C3E is induced from the

subgroup WL for some quadratic ramified extension L [4; (3.14)].
Then 03C1(I) is nonabelian, so that 03C1(I) is not cyclic ( p (I ) is the quotient
of p(I ) by the central subgroup 03C1(I) n (1 + 2M2(Z2))). Hence à is not a
square in F*, and F(0394) is ramified and equal to L, since p(WL) is
abelian. Let Fnr, F(VL1) and M be respectively the unramified

quadratic extension of F and the remaining two quadratic extensions
of F. Then

Since 03C3E is induced from WF(0394), we have 03C3E ~ 03C3E ~ 03C9F(0394), so

e(E, 03C9F(0394)) = 1. By (2.4c) e(E, 03C9Fnr) = (-1)03B1(03C3E) and

PROPOSITION 5.8: If 03C3E is irreducible, but not induced from the
subgroup stabilizing the quadratic unramified extension, then a(UE) is
odd, greater than 2. Thus, (3.1) is true in this case.

PROOF: The exponent of the Artin conductor of 03C3E = IndWFWL 03B8 is

a(8) + 1 [14; VI§2, Prop. 4]. Since det (TE = Il Il, 81K* = (Vdl Il [5;
Prop. 1.2]. Thus 0 is trivial on (1 + jF), Since L is ramified,
(1 + PF)(1 + P2j+1L) = (1 + PF)(1 + P2jL) for j&#x3E;0. Thus if 03B1(03B8)&#x3E;0,
we have that a(8) is even, and hence a(aE) is odd.

In the case 03B1(03B8) = 1 (a(8) = 0 is impossible since irreducible

representations have Artin conductor exponents at least equal to their
dimensions) we let Gal(L/F) = (h). Then 8h-l is an unramified

quadratic character (since 03B8|K* = 03C9L~ 11). Thus (TE ~ 03C9 ~ (TE where 03C9

is quadratic unramified. This would imply that (TE was induced from
the subgroup stabilizing the quadratic unramified extension, contrary
to assumption. Thus, a(aE) is odd and at least 3 under the hypotheses
of the theorem.

REMARK: The situation of (5.8) can only occur in residue charac-
teristic 3 (or 2, if even residue characteristic is allowed). It is well

known that conductor exponents for elliptic curves are less than or
equal to 2 for residue characteristics 5 or greater.

For elliptic curves E having potential good reduction we need to
know that dim E(F)/NE(K) = dim E(K)2 (mod 2) if char(kF) ~ 2. To
prepare for the proof of this fact, we recall the following filtration on



325

E(F). Let Eo be the connected component of the identity in the

Néron model for E over CF. Then E(F)/Eo(F) is a finite group and
Eo(F) corresponds to the points having non-singular reduction in a
minimal generalized Weierstrass model for E over Op [17; p. 41]. Let
Ei (F) be the kernel of reduction, so that it fits into the exact

sequence:

where Eo denotes the reduction of Eo. There is a formal group
structure on the prime ideal 9F giving rise to an isomorphism
PF ~ E1(F). In particular E1(F) is uniquely divisible by 2 if

char(kf) 7é 2.

LEMMA 5.9: Let w be a quadratic character of F* corresponding
to the extension KIF. Suppose that E has potential good reduction
over F and good reduction over K. Then E or E03C9 has good reduction
over F.

PROOF: Since E attains good reduction over the quadratic exten-
sion K, the image of inertia has order at most 2 in the ~-adic

representation (~ ~ residue characteristic). If the image of inertia is
nontrivial, then the é-adic representation on E03C9 is trivial on inertia.

This proves the result.

LEMMA 5.10: Suppose that char(kf) 0 2. Then E has reduction of
Kodaira type I*,, over F, with v &#x3E; 0, if and only if for each ramified
quadratic character p of F* there is a curve Z with reduction of type Iv
over F such that E = e .

PROOF: Choose a prime 7r of F such that ’Tr 1/2 generates the

quadratic extension corresponding to p. Suppose that E has reduction
of type I* over F. Choose a minimal model for E over F in

generalized Weierstrass from (7.0.1) satisfying the conditions 7r | a1,
o I a2, U2 a3, ’Tr31 a4, 1T41 a6 of Tate’s algorithm [17, case 7]. By a
translation of y, we obtain the model

with bi as in [17, p. 36]. Nowu | b2, ’Tr21 b4, 03C04 1 b6. Let e be the curve
with bi replaced by b = bi7T-t/2i. The algorithm [17, case 2] shows that
e has multiplicative reduction, type I,,. To see that in f act v = v’, recall
that aF(e) = 1. Hence aF(E) = maxIaF(Z), 2a(p)l = 2. Let DE and 0394g
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denote the discriminant of E and 6. By the algorithm, these discrimi-
nants are minimal and by [17, p. 38, (2.3)] àE = 0394g03C06. Now the
conductor-discriminant formula [13] shows that 03C5F(0394E) = 6 + v while
03C5F(0394g) = v’. Hence v = v’.
The converse can be treated similarly, as can the case v = 0. We do

not use this information later on.

REMARK: If char(kf) = 2, curves of type I* need not have potential
multiplicative reduction. Consider for example the curve y2 =
x3 - x 2 - 4x + 4 of conductor 24 over 0 and type I*1 over 02 (see [2, p.
83]). It has integral j-invariant j = 24 · 133 · 3-2 over O2.

PROPOSITION 5.11: Suppose that E has potential good reduction
over F, with char(kF) ~ 2. Let K be a quadratic extension of F. Then
dim E(F)/NE(K) --- dim E(K)2(mod 2).

PROOF: Suppose first that E has good reduction over K. By
Lemma 5.9 and symmetry, Proposition 3.3, we may assume that E
has good reduction over F. In particular, the minimal discriminant à
of E is a unit. If KIF is unramified, à therefore is a square in K and
dim E(K)2 must be even. By [11, Corollary 4.4] E(F)/NE(K) is trivial
as desired. If KIF is ramified, then by [11, Corollary 4.6] and the fact
that N: E1(K) ~ E1(F) is surjective because El is divisible by 2,
E(F)/NE(K) is isomorphic to É(kF)I2É(kF). Hence

dim E(F)/NE(K) = dim E(kF)2. But the 2-division field of E is un-

ramified because E has good reduction and char(kF) ~ 2. Hence
E(kF)2 ~ E(F)2 = E(K)2 as desired.
Next suppose that E has potential good reduction, but not good

reduction over K. Then E0(K)/E1(K) ~ kK. Since Ei(K) is uniquely
divisible by 2, so is Eo(K). Let M be the subgroup of E(K) generated
by Eo(K) and representatives for the cosets of odd order in

E(K)/E°(K). Since the curve E has additive reduction over K, not
type I * with v &#x3E; 0, the table of possibilities [17, p. 46] shows that

E(K)/Eo(K) is annihilated by 2. Hence E(K)2 ~ E(K)/M. Let G =

Gal(K/F). In reduced Galois cohomology we have H’(G, M) = 0.
Hence E(F)/NE(K) ~ H°(G, E(K)) ~ H°(G, E(K)2) ~ E(F)2/NE(K)2.
We have the exact sequence:

But E03C9(F)2 ~ E(F)2. Hence dim E(F)2/NE(K)2 = dim E(K)2 (mod 2)
as desired.
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6. Unramified extensions.

Let E be an elliptic curve having minimal discriminant a over the
local field F, with finite residue field kF. Let KIF be an unramified

quadratic extension with corresponding character w. We now verify
conjecture (3.1) that E(E, w) = 03C9(-0394)(-1)dimE(P)/NE(K). In view of the
previous section, we could assume that char(kp) = 2. However, we
present a uniform proof.

Let Eo be the connected component of the identity in the Neron
minimal model for E. It follows from Lang’s theorem [9] that N:

E0(K) ~ E0(F) is surjective. Let X be the 2-Sylow subgroup of

E(K)/Eo(K). Let G = Gal(K/F). Then

LEMMA 6.1: Let M be the maximal unramified extension of F and
let n be the number of components in the singular fiber of E over M.
Then dim E(E)/NE(K) ~ n - 1 (mod 2).

PROOF: The table [17, p. 46] gives n and c = JE(M)IEo(M)I. For
reductions of type Io, Iv with 03C5F(0394) = v odd, II, II*, IV, IV*, c is odd
and n is odd. Since X must be trivial, dim E(F)/NE(K) = 0. Hence
dim E(F)/NE(K) --- n - 1 (mod 2).

For reduction of type III or III*, X ~ Z/2Z and n is even. Hence

dim H°(G, X) = 1 ~ n - 1 as desired. For reduction of type Iv,
E(K)/E0(K) ~ ZlnZ and v = n = 03C5M(0394) = 03C5F(0394). Moreover, if we

choose for E the curve which has rational tangents at the node in its
reduction over kF and for ECù the unramified twist of E over F, as we

may do without changing the norm index by Proposition 3.3, then the
points of E/E° already are rational over F. Hence G acts trivially on
X and H’(G, X) ~ X/2X. Then dim E(F)/NE(K) = dim X ~ n - 1
(mod 2).
Next consider type It for v 2: 0. If v is odd, the points of El Eo may

not be defined over F, but certainly are over K. Hence X =- Z14Z.
Then G acts either trivially or by inversion. Hence H0(G, X) ~ Z/2Z.
Furthermore n = 5 + v is even, as desired. If v is even, X is anni-

hilated by 2. Let g generate G. Then g - 1 = g + 1 on X. Hence
dim H°(G, X) = dim[Kernel g - 1] - dim[Image g - 1] 1 dim X (mod
2). If v &#x3E; 2, all of E/E0 need not be defined over F, but is defined over
K. Hence X = Z/2Z + Z/2Z is even dimensional. If v = 0, then (X( =
1 + number of roots of a cubic. The cubic is defined over F and has

distinct roots in M. Hence its discriminant is a square in K and
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|X| = 1 or 4. Again dim X is even. Furthermore n = 5 + v is odd, as

desired.

THEOREM 6.2: Let w be the unramified quadratic character of F.
Then e(E, w) = 03C9(-0394) · K(E, w).

PROOF: By the previous Lemma, K(E, m) = (-1)n-’, where n is the

number of connected components of the Néron fibre. From (2.4.c),
E(E, úJ) = (-1)03B1(03C3E). The value of 03C9(-0394) is (-I)v(.1). The theorem then
follows from the Ogg relation [13] between the conductor and dis-
criminant :

REMARK: The theorem depends on the validity (modulo 2) of Ogg’s
conductor relation. In [13] the proof of this relation is given for odd
residue characteristic and the case when F has characteristic 2.

7. The norm index and the Néron model

Let E be an elliptic curve defined over a local field F with finite
residue field kF, ring of integers OF and maximal ideal PF. Let VF be
the additive valuation of F. Let K be a quadratic extension of F. The
object of this section is to express the norm index E(F)/NE(K) in
terms of information available from the Néron model.

Let Eo be the connected component of the identity in the Néron
minimal model for E over (5? and let Éo denote the reduction over kF.
We may identify Eo(F) with the group of points on a minimal

generalized Weierstrass model

for E over OF with non-singular reduction. For n &#x3E; 0 we have the

filtration En(F) consisting of the zero element together with {(x, y) E
Eo(F) 1 VF(X):5 - 2n}.

It will be convenient for us to work with the same filtration on a

possibly non-minimal model A for E over CF. The following lemma
gives the relation between the two models. Those aspects not expli-
citly mentioned in [16] are clear.

LEMMA 7.1: (1) There is an isomorphism for Weierstrass models
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E(F)  A(F) given by (x’, y’) ~ (x, y) with x = u2x’ + r, y =

u3y’ + su2x’ + t and u, r, s, t E OF. Let àF(E) be the (minimal) dis-
criminant of E and à the discriminant of A. Then 0394 = u120394F(E). For
future use, write u = uF(E, A).

(2) For n , 1, both An(F)/An+,(F) and En(F)/En+,(F) are isomor-
phic to kF. Furthermore E(F)/En+03C5F(u)(F) ~ A(F)/An(F).

We shall study the norm mapping N on the filtration An. To do so
we need some information on the trace map Tr: OK ~ OF, especially
for use when KIF is ramified and char(kF) = 2. However, we give a
uniform description of the situation. For the moment we assume only
that KIF is a separable, finite extension of local fields with finite

residue fields.

LEMMA 7.2: Let KIF be a finite, separable extension o f local fields
and let D be the corresponding différent ideal. Let a = 03C5k(D). Define

03C8(n) by Tr(PnK) = 9P’j’,(n). Then 03C8(n) = [n + 03B1 e(K/F)] where e(KIF) is the
ramification index of KIF and [ ] is the greatest integer function.

PROOF: Clearly Tr(PnK) is an ideal of F, so has the form P03C8(n)F. By
[14; III, §3, Proposition 7] we have PnK ~ P03C8(n)FD-1 and

PnK ~ P03C8(n)+1FD-1. But gpFOK = Pe(K/F)K and CZlJ = P03B1K. Therefore

e(K/F)03C8(n) - 03B1 ~ n  e(K/F)[03C8(n) + 1] - a.

The resulting inequalities on 03C8(n) are

so that l/1(n) = [n + 03B1 e(K/F)] as desired.

The next proposition determines the norm image in filtration groups
with large index. In section 8 we analyze the norm map on the full
filtration by formal group methods.

PROPOSITION 7.3: Let KIF be a finite separable extension of local
fields with different D and ramification index e(K/F). Let a = 03C5K(D).
Assume that n + a + 1 ~ 0 (mod e(K/F)) and n  a + 1. Then N:
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An(K) ~ A03C8(n)(F) and is surjective. Furthermore, the quotient
A(F)/NA(K) is finite.

PROOF: There is a f ormal group law on 9À providing us with an
isomorphism PnK ~ An(K) which we denote by z - P (z). This

isomorphism is defined over F, since A is. See [16; §3] for explicit
formulas. We now validate the following commutative square:

The congruence n + a + 1 ~ 0(e(KIF)) implies that 03C8(n + 1) =
03C8(n) + 1. Hence the horizontal arrow J above induced by trace is

well-defined, and is surjective by definition of 03C8.
Let L be the Galois closure of K over F and let (Ti = 1, cr2,..., (Te

be a complete set of distinct coset representatives for

Gal(L/F)/Gal(L/K). For z E K, let zi = 03C3i(z) with i = 1,...,~. Thus
Tz = z1 + ··· + zé,.
Suppose that z, z’ E PnK. By the explicit addition formulas [16; (16)]

P(z) + P(z’) = P(z + z’ + zz’03C9) = P(z + z’) + P(03C9’) where 03C9,03C9’ ~ OK
and VK(W’) = 03C5K(zz’ 03C9) ~ 2n. Repeated use of this formula shows that

where P’Ei A2n(K) n A(F). That is P’ = P(w’) with w’ E OF and

VF(W’) ~ 2n/e(K/F). Our hypotheses on n imply that 2n/e(K/F) ~
tf¡(n) + 1. Hence P’ E Atf¡(n)+l(F).

It follows that the horizontal arrow N above induced by N is

well-defined and that the diagram commutes. Hence N is surjective,
and so must N be using successive approximations. The quotient
A(F)/NA(K) is finite because A03C8(n)(F) has finite index in A(F).

COROLLARY 7.3.1: Let K be a quadratic separable extension of F,
and E an elliptic curve over F. There is a finite index subgroup U of
E(K) such that (H°(Gal(KIF), U)j = |H1(Gal(K/F), U)I.

PROOF: For n as in 7.3, [An(K) ~ A(F)]/NAn(K) is isomorphic to
A{n/e(K/F)}(F)/A03C8(n)(F), and has order dependent only on KIF. Apply
this for A equaling E and E03C9 to compute that the order of HO and H’
agree for U = An(K).
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As a computational device, we introduce some choices of models
for E and E03C9. Let A be a possibly non-minimal model for E over CF,
in generalized Weierstrass form (7.0.1). If ch(kF) ~ 2 we obtain by
translation of y the integral model

with bi as in [17; (1.2)] and discriminant à preserved. If K = F(1/â)
and w is the quadratic character of F* corresponding to K, then

is a model for E03C9 over OF with discriminant a’ = ad6. The inclusion i:

A’(F) ~ A(K) is given by the composition of the map (x, y) ~
(xld, yld3/2) to Atra°S(K) with translation of y back to A(K).

If char(kf) = 2 the following construction serves in both the equal
and unequal characteristic cases. Suppose that K = F(O) where 0 is a
root of the Artin-Schreier equation x2 - x + 03B3 = 0 with y E F. Again
assume that A is given in generalized Weierstrass form (7.0.1) over
OF. Let g generate Gal(K/F). The condition for P = (x, y) E A(F) to
be in E03C9(F) is that Pg = -P or equivalently x E F and y + yg =
- 03B11x - a3. Write y = y0 + y103B8 with yo, y 1 E F. Then P ~ E03C9(F) if and

only if y, = - 2 yo - a 1 x - a3 and, from substituting y in (7.0.1),

Further stretching may now be required to obtain an integral model.
To do so, let 8 = 1 - 4y If char(F) ~ 2, we see that as 8 ranges over
the discriminants of quadratic extensions of F, y provides the cor-
responding Artin-Schreier equations. Hence all quadratic extensions
KIF are in this form and we may assume vF(s) = 0 or 1. Choose

minimal r ~ 0 such that 03C02rF 03B3 E CF. From the integral equation X2-
03C0rFx + 03C02rF03B3 = 0 for K over F we see that d = 03C02rF(1 - 403B3) = 03C02rF03B4 is the
discriminant of KIF determined up to the square of a unit of F. It

follows from (7.4.3) that a model for E03C9 over Op is

with discriminant à’= d6 ¿B. The map i : A’(F) ~ A(K) is given by
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The following Lemma summarizes those aspects of the above

discussion which we shall need later.

LEMMA 7.5: Let A be a possibly non-minimal Weierstrass model
for E over OF having discriminantà. Let w be a quadratic character of
F* and let K be the corresponding extension. There is a model A’ for
ECù over CF having discriminant 0394’ = 0394d6, where d is the discriminant
of KIF, determined up to the square of a unit of F. The map i:

A’(F) ~ A(K) has the form i(x’, y’) = (x, y) with x = x’I d.

We now come to the formula for the norm index in terms of the

group of components of multiplicity one of the singular fiber in the
Néron models of E and its twist. Let IlaiiF = IkFI-vF(a) be the absolute
value on F. Let ~ ~K be the corresponding absolute value on the
quadratic extension K, and let w be the quadratic character of F*
corresponding to KIF.

THEOREM 7.6: Choose a Weierstrass model A for E over OF and use
the same model for E over K. Choose a model A’ for E03C9 over CF as in
the above Lemma. In the notation of Lemma 7.1, let the "stretching
f actors" from minimality be given by UF = uF(E, A), UK = uK(E, A),
uF = uF(E03C9, A’). Let CF = IE(F)/Eo(F)I, CK = IE(K)/Eo(K)I, CF =

|E03C9(F)/E03C90(F)|. Then

PROOF: We produce the following exact sequence, as explained
below.

Clearly E(F)/NE(K) is isomorphic to A(F)/NA(K). Choose n as in
Proposition 7.3. Exactness to the right of the map N follows from
surjectivity of N: An(K) ~ A03C8(n)(F). Moreover, if NP E A03C8(n)(F) we
may correct P by an element of An(K) so that NP = 0. But then
P = i(Q) for some Q E A’(F). Since the other inclusion is trivial,
Ker N = Image i. To compute q and verify exactness on the left, note
first that if (x’, y’) = P E A’(F) then by (7.5), i(P) = (x’/d, ...) is in

An(K) if and only if 03C5K(x’/d) ~ -2n. Recall the notation a = VK(0))
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where D is the différent of KIF. Hence 03C5K(d) = 2a and i(P) E An(K)
if and only if 03C5K(x’) ~ -2n + 2a.
Now n ~ 03B1 + 1. Hence 03C5F(x’) is negative, so must be even. It

follows that i(P) E An(K) if and only if P E A’q(F) with q = {n - 03B1 e(K/F)}e(K/F)
where {I} is the smallest integer not smaller than I.
From the Euler characteristic of exact sequence (7.6.1) and Lemma

(7.1.3) we see that

Let Lp (resp. Lep, LK) be the L-function for E over F (resp. E"
over F, E over K). Then LF(1) = |kF|/|E0(kF)| by [17; (5.2)]. But
LK = Lp Lep. Hence

Furthermore, q + 03C8(n) = n-a 1+1 n+a is obviously 2n if

E(KIF) = 1 and is n if E(KIF) = 2 since n ~ a + 1 (mod 2) by the
hypothesis of Proposition 7.3. Substituting in (7.6.2) yields the desired
formula.

REMARK: Clearly the norm index E(F)/NF(K) is independent of
the choice of model A. To see that the right side of the formula in
Theorem 7.6 is independent of A, let 0394F, 039403C9F, 0394K be the minimal
discriminants for E over F, Ew over F and E over K. Then

Hence

We leave it to the reader to express this in terms of conductors
and numbers of components in the singular fibers of the Néron

models.

EXAMPLE: We apply the previous results to the curve E with
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model y2 = x3 - x2 + x over 02. This is the curve 24A of Table 1 of [2]
(E is isogenous over 0 to the modular curve Xo (24)). Over O2 E has
Kodaira type III, discriminant L1E = -24 · 3, and Cp = 2. It is easy to

check that over a ramified quadratic extension K this model remains
minimal and the type is I* with cK = 4. The curves 48A, 144E, 192E
and 192K are the twists of E by the quadratic fields Q2(-1),
O2(3), Q2(-2). Q2(2) respectively (the other ramified twists have
conductors outside the range of the table). Then formula (7.6) and the
remark above can be applied to compute that E(F)/NE(K) has order
1 for the first two fields listed, and order 2 for the remaining two.
To complete verification of (3.1) in these cases we notice that

03C9(-0394) = 03C9(3) = 03C9(-1)(-1)03B1(03C9) (see 8.16.1). Then 03C9(-0394)(-1)dim E(F)/NE(K)
is 1 for the field Q2(-2) and -1 otherwise. The value of E(O"E) is the
negative of the eigenvalue of the operator W2, given in Table 3 of [2].
Using this it is easy to see ~(03C3E)~(03C3E ~ 03C9) = 03C9(-0394)(-1)dim E(F)/NE(K) in all
cases above.

We remark that e(E, w), w(-0394E) and the parity of

dimF2 (E(F)/NE(K)) are locally constant functions of the coefficients
of E. Hence the above example can be perturbed to yield infinitely
many nonisomorphic curves over 02 for which conjecture (3.1) is true
for thé quadratic extension considered.

Similar computations apply to other examples. Conjecture 3.1

would imply that there is an algorithmic method for computing
e(E, w), which is completely divorced from the definition of e-factors
in group theory terms.

COROLLARY 7.6: If KIF is unramified or if char(kF) ~ 2 then

IluKllK/llupupllp = 1 and IE(F)/NE(K)I = CFCF/CK.

PROOF: Let L1p (resp. L1p) be the minimal discriminants for

E (resp. E03C9) over OF. By symmetry we may assume 03C5F(0394F) ~ 03C5F(039403C9F).
Let A in Theorem 7.6 be the minimal model for E over OF. We claim
that the model A’ also is minimal over OF. Otherwise, since the

discriminant changes by a twelfth power, 03C5F(039403C9F) ~ vp(A’) - 12 =

03C5F(0394Fd6) - 12. But our hypotheses imply 03C5F(d) ~ 1, contradicting the
inequality 03C5F(0394F) ~ 03C5F(039403C9F).
Furthermore, the model A remains minimal over K. We show this

first in char(kf) 0 2. If A is not minimal over K and if oK is a prime of
K, we have 03C0iK | bi in the model (5.10.1) using the algorithm [17]. Choose
F if KIF unramified and 03C02K = 03C0F if KIF ramified. Then

17r’ F | bidi/2, contradicting minimality of the model (7.4.2) for E03C9.

Finally, if char(kp) = 2 and KIF is unramified similar arguments
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apply to the models A and A’ coming from the Artin-Schreier

equations as described above. Alternatively, the terms in the conduc-
tor-discriminant formula [13] are not changed upon unramified base-
change. Hence 03C5K(0394F) = 03C5F(0394F) is already minimal.

8. The case of residue characteristic 2.

Throughout this section F is a local field with finite residue field kF
such that char(kf) = 2. Let UF denote the units of F and 6? the ring
of integers. Let E be an elliptic curve defined over F, with dis-

criminant à determined modulo (F*)12. Let K be a separable quadra-
tic extension of F corresponding to the character to of F*. Let

03BA(E, w) = (-1)dim E(F)/NE(K). In this section we shall examine the con-
jecture that E(E, w) = 03C9(-0394)03BA(E, w) in various cases, including those
for which E has good reduction and for which the exponent of the
Artin conductor of E is 2. When KIF is unramified, the conjecture is
valid by Theorem 6.2. Hence we assume that KIF is ramified. The

arguments below could also be used in the unramified case after slight
modification, which we leave to the reader.

Suppose that E has good reduction over F. Recall the notation É
for the reduction of E and E, for the kernel of reduction.

LEMMA 8.1 : Suppose that E has good reduction over F and that KIF
is ramified. Then NE(K) = 2E(F) + NEI(K) and the following sequence
is exact :

PROOF: The map E(F)/E1(F) ~ E(K)/E1(K), which obviously is

injective, must be surjective because domain and codomain are

isomorphic to the finite group É(kF). Hence E(K) = E(F) + E1(K) and
NE(K) = 2E(F) + NEI(K). It follows that N induces multiplication by
2 upon reduction and the rest of the desired exact sequence is clear.

See also [11, Corollary 4.6].
Now suppose further that E has ordinary good reduction. Then

IE(kp)/2E(kp)1 = IÈ(kF)21 = 2 and we shall analyze the norm N on Ei
by relating it to the field-theoretic norm. Recall that multiplication by
2 on E is the product of dual isogenies of degree 2 defined over kF,
the Frobenius 7-F which is inseparable, and a separable isogeny 03C8. If

char(F) = 2, the same applies over F. If char(F) = 0 there is a unique
point of order 2 which reduces trivially. It must therefore be fixed by
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Galois(FIF) and hence be in Et(F). If we form the isogeny whose
kernel is E,(F)2, it reduces to Frobenius. It follows that in general,
multiplication by 2 on E is the product of dual isogenies of degree 2
defined over F, say 2 = 7r - 03C8, where 7r: E - E’ reduces to Frobenius
7r while 03C8: E’ ~ E is separable and reduces to the separable isogeny
03C8.

LEMMA 8.2: Let L be a separable extension of F. Then 03C8 induces an
isomorphism E’1(L)  EI(L). Let FS be the separable closure of F and
g = Gal(Fs/F). There is an exact sequence

The image of À, has order 2 and corresponds by Kummer theory to
the unique unramified quadratic extension of F. More precisely, if
char(F) = 0 then H1(g, E’03C8) = F*/F*2 and Image 03BB03C8 =

(1 + 4OF)F*2/F*2. If char(F) = 2, then H1(y, E’03C8) = FlgpF, where P is
the Artin-Schreier function gp(x) = x2 + x, and Image 03BB03C8 =

(kF + gpF)lgpP.

PROOF: Since tp is separable, we have a surjection tp: E’1(Fs) ~
E,(FS), which is an injection because Ker tp n E’1 = {0}. Taking fixed
points under Gal(F’/L) provides the isomorphism E’1(L)  E1(L).
The desired exact sequence above arises from the Kummer theory

of elliptic curves, with the map 03BB03C8 obtained as follows: Given P E
E(F), choose Q E t/J-1(p). Form the cocycle which sends g ~ y to
(g - 1)(Q) in E’03C8. The identification of H1(y, E’03C8) with F*IF*2 if

char (F) = 0 (respectively, with F19F if char(F) = 2) is obtained by
associating to P a Kummer (respectively Artin-Schreier) generator
for the separable extension of degree at most 2 over F containing Q.
We now determine the image of Àp. Let 03C8: É’(kF) ~ Ê(kF) be the

reduction of 03C8. Since |Coker 03C8| = )Ker Ql) = 2 is not trivial, the coker-
nel of tp cannot be trivial. Let P E E(F) reduce to P E É(kF). Choose
Q defined over at most a quadratic extension of kF, such that

03C8(Q) = P. Let L be the unramified quadratic extension of F. Since 03C8:
E’1(L) ~ E1(L) is surjective we may choose Q ~ E(L) such that

03C8(Q) = P. Since Image 03BB03C8 is not trivial it corresponds by Kummer
theory exactly to the extension L as desired.

LEMMA 8.3: There is an exact sequence
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Let T’ be the point of order 2 generating E’(F)03C8. Then 03BB03C0(T’) =
coset{0394} whereà is the minimal discriminant of E.

PROOF: If char(F) = 0 then H1(G, E7T) = F*/F*2 and we obtain the
exact sequence

again by Kummer theory, or by the cohomology of the short exact
sequence 0 ~ E(F)03C0 ~ E(F) ~ E’(F) ~ 0 where F = FS is the alge-
braic closure of F. By local duality theory (J. Tate, Duality theorems
in Galois cohomology over number fields, Proc. Inter. Congress Math.
at Stockholm, 1962, 288-295) the image of 03BB03C0 and the image of 03BB03C8 are
orthogonal complements in the perfect pairing

It follows that Image 03BB03C0 = UF/U2F. If char(F) = 2 there is a similar

cohomological argument via the duality theory [12], or else the

Lemma can be checked by explicit computation [7, Proposition 1.1(b)
and Proposition 2.2].
To determine 03BB03C0(T’) note that Ker jr is defined over F. Hence the

2-division field of E is M = F(03941/2). Let T be a point of order 2 in
E(M) not in Ker 7T. Then T’ = ’Tr(T). By our exact sequence, 03BB03C0(T’) is
trivial if and only if T’E F; that is, if and only if M = F and à E F .
It follows that 03BB03C0(T’) = coset{0394}.

LEMMA 8.4: If E has ordinary good reduction over F then [E1(F) +
2E(F)]/2E(F) is isomorphic to UF/U2F · 0394Z where à is the minimal

discriminant of E and A’ is the cyclic group generated by 0394.

PROOF: Let us first show that 03C8[E’(F)] = E1(F) + 2E(F). Given
P E E’(F), pass to P E Ê’(kF). Since the Frobenius 7-F is inseparable
while kF is perfect we have P = 03C0(Q) for some Q E E(kF). Choose
Q ~ E(F) which reduces to Q. Then P - 03C0(Q) ~ E’1(F). Hence

q,(P) = 03C8(P - 7TQ) + 2Q is in E1(F) + 2E(F). Conversely, since

E1(F) = 03C8E’1(F) and 2E(F) = (03C8 03BF 03C0)[E(F)] we obtain the reverse

inclusion, 03C8E’(F) ~ EI(F) + 2E(F), and hence equality. Now we
clearly have isomorphisms
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COROLLARY 8.5: Let E have ordinary good reduction over F and let
K be a ramified quadratic extension of F. Then

PROOF: From the above Proposition we obtain the commutative
diagram

In particular, N induces corestriction in cohomology and hence field-
theoretic norm N on UK. By Lemma 8.1, 2E(F) + NBt(K) = NE(K).
Hence the cokernel of N is [E1(F) + 2E(F)]/[NE1(K) + 2E(F)] =
[E1(F) + NF(F)]/NF(F) and is isomorphic to UF/(NUK) · 0394Z, the

cokernel of N.

PROPOSITION 8.6: Suppose that E has ordinary good reduction over
F and that KIF is a quadratic extension corresponding to the charac-
ter w of F*. Then 

Furthermore, K(E, w) = w(L1) and E(E, w) = w(-L1)K(E, w).

PROOF: If KIF is unramified, than E(F) = NE(K) for example by
[11, Corollary 4.4]. Since à is a unit, 03C9(0394) = 1. By (2.4), E (E, w) = 1 as
desired.

If KIF is ramified, then by Lemma 8.1 |E(F)/NE(K)| =
|E(kF)/2E(kF)| · j[EI(F) + NE(K)]/NE(K)I. But IË(kp )/2Ë(kp)1 = 2 and
|[E1(F) + NE(K)]/NE(K)| = |UF/(NUK) · 0394Z| = 1 or 2, according to

whether 03C9(0394) = -1 or 03C9(0394) = + 1, by local class field theory. Finally,
E(E, w) = w(-1) by 2.4b as desired.

We now turn our attention to curves with supersingular good
reduction. Supersingular reduction implies that É(kF) has odd order,
so that (8.1) shows that E(F)/NE(K) is isomorphic to E,(F)/NE,(K).
We will use the formal group law on the prime ideal 9K to study the
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norm map. Our method is exactly analogous to the treatment of the
norm map for multiplicative groups of fields [14; chap. V]; for the
formal group associated to elliptic curves it does not appear to be in
the literature.

We recall a few facts about quadratic extensions of local fields. If w is
a quadratic character of F* and K is ramified quadratic

Since E has supersingular reduction it has a minimal Weierstrass

model (7.0.1) with v(al) 2: 1. Further, since F does not have charac-
teristic 3, we may arrange that a2 = 0 [17; (5.2)]. Then the formal

group law [16; (16)] is

We may now compute the Norm map N: E1(K) ~ E1(F) explicitly.
When z E PnK, we have

when Tr and N are the trace and norm for KIF. Since N(z) and the

right side of (8.8.2) are both in F, we have

From the explicit formula for the discriminant in [16, (2)] we see that

The goal of this section is to compute 03C9(-0394)(-1)dim E(F)/NE(K) when
v (a 1) is sufliciently large with respect to a (w). Notice that when E has
supersingular good reduction, v(al) 2: 1 and 03C5(03B13) = 0. Assume 03B1(03C9) ~
2.

LEMMA 8.9: When n 2: a(w) - 1, N(P2n-a(03C9)+1K) = PnF.
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PROOF: It is easy to see from (8.8.3) that N(P2n-a(03C9)+1K) ~ PnF for
n 2: 03B1(03C9) - 1. The map induced on the quotients P2n-a(03C9)+1K/P2n-a(03C9)+3K ~
PnF/Pn+1F is given by z ~ Tr z, and hence is surjective. This shows that
N(P2n-a(03C9)+1K) = 9P’F (see [14, V.l Lemma 2]).

LEMMA 8.10: Let n  a(w) - 1. For z E 9Pk, N(z) = Trz - 03B11Nz + a3Nz2
modulo P2n+[n+1/2]F.

PROOF: This follows from the fact that 2a3Nz(Trz)2 and 4 P2nF are
contained in P2n+[n+1/2]+1F 1 when n :5 03B1(03C9) - 1.

LEMMA 8.11: Suppose that 3n  03B1(03C9) - 2. Then for z in 9PK N(z)=
- 03B11Nz + 03B13Nz2 mod P2n+1F. Further, if 03C5(03B11)  n + 1 then the induced

map Nn: PnK/Pn+1K ~ P2nF/P2n+1F is bijective.

PROOF: For 3n ~ 03B1(03C9) - 2 we have Tr(PnK) ~ P2n+1F. When 03C5(03B11) ~
n + 1, N(z) = 03B13Nz2(mod P2n+1F), so that the induced map on the quo-
tients (which are isomorphic to k) is a nonzero multiple of squaring,
and hence bijective.

LEMMA 8.12: Suppose that 3(03B1(03C9) - 1) ~ 3n &#x3E; 03B1(03C9) + 1. Then for z
in 9PK, N(z) = Trz - 03B11Nz mod P[n+a(03C9)/2]+1F. Further, if 03C5(03B11) 

[03B1(03C9) - n 2] + 1, then N(PnK) = P[(n+a(03C9))/2]F.

PROOF: For such n, 2n ~ n + 03B1(03C9) 2 + 1. When 03C5(03B11) ~

[03B1(03C9) - n 2] + 1, N(z) = Trz mod P[(n+a(03C9))/2]+1F. Then N induces the trace
map on quotients PnK/Pn+1K ~ P[(n+03B1(03C9))/2]F/P[n+03B1(03C9)/2]+1F when n + 03B1(03C9) is

odd. By the same reasoning as above N(PnK) = P[(n+03B1(03C9))/2]F.

LEMMA 8.14: Let A0 ~ A1 ~ ··· ~ An and B0 ~ B1 ~ B2 ~ ··· ~ Bn be
two filtered abelian groups, and let ~: A ~ B be a homomorphism with
finite cokernel which preserves the filtration. Let ~i: Ai/Ai+1 ~ Bi/Bi+1.
If ~n is surjective and ~i is injective for i  n - 2, then [A: ~(B)] =
n-i

2: |coker ~i|.
i=O

PROOF: By replacing Ao by Ao/An and Bo by Bo/Bn we may assume
that An = Bn = 0. The result is clear if n = 0, 1 and we proceed by
induction. Apply the Snake Lemma [14; V.1 Lemma 1] to the exact
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sequences

Since ~0 is injective, we have that icoker ~| = [BI: ~(A1)] + Icoker ~0|.
The result now follows by induction.

PROPOSITION 8.15: Let E be an elliptic curve with supersingular
good reduction over a local field F of residue characteristic 2. Assume
that the valuation v(al) of the coefficient al in a minimal model

satisfies 3 v (a 1) 2: a (w) - 1. Then

PROOF: When 3i S 03B1(03C9) - 2, (8.11) shows that the induced map N:
PiK/Pi+1K ~ P2iF/P2i+1F is injective. When 3i &#x3E; a(w) + 1, (8.12) shows
that N(PiK) = P[(i+03B1(03C9))/2]F. Thus Lemma 8.14 applies to this situation to

compute EI(F)/NEI(K). Notice that n = [03B1(03C9)+1 3] is the unique

integer such that 03B1(03C9) - 2  3n  03B1(03C9) + 1. Application of (8.10) and
straightforward calculation yield the proposition.

It will be necessary to compute 03C9(-0394) in order to check (3.1). From
(8.8.4) we see that when 303C5(03B11) 2: 03B1(03C9) - 1 and 03C5(03B13) = 0:

LEMMA 8.16: Let w be a ramified quadratic character of F* of
conductor exponent a(w). For x in P03B1(03C9)-1F, 03C9(1 + x) equals (-1)tr(03B3x),
where y = (NK/F03C0)03B1(03C9)-1/(TrK/F(03C003B1(03C9)-1))2 for 03C0 03B1 generator of gpK and tr
is the trace from O/P ~ kp to F2.

PROOF: The maps x ~ (-1)tr(03B3x) and x ~ 03C9(1 + x) are quadratic
characters of P03B1(03C9)-1F/P03B1(03C9)F, so it suffices to check that then kernels agree.
The kernel of w consists of norms from K*. By [14; Chap. V] we see that
the kernel of w on P03B1(03C9)-1F/P03B1(03C9)F is



342

By parameterizing P03B1(03C9)-1K/P03B1(03C9)K by elements of CF/J)F via choice of an
element of K of valuation 03B1(03C9) - 1, we see that the kernel is

((TrK/F03C003B1(03C9)-1)2/NK/F03C003B1(03C9)-1){w + w2 w E O/P}. This is clearly the kernel
of x - tr(Tx).

EXAMPLE 8.16.1: We may compute w(1 - 4 y ) for v ( y ) ~ 0 by use of
(8.16). The result is

This is clear if 03B1(03C9) is even by (8.7.2). If 03B1(03C9) is odd, we have
a(w) - 1 = 2v(2) and appropriate choice of 7T in the previous Lemma
shows 4y is congruent to 1 modulo il. In particular, w(-3)=
(-1)(dim k)03B1(03C9).

In order to utilize (8.15) we must compute the map induced on
PnK/Pn+1K by the norm map for elliptic curves. When 303C5(03B11) ~ 03B1(03C9) we
see easily from (8.10) that Nn is the zero map when a(w) is divisible
by 3 and is surjective otherwise. Further, under this condition on
v (a 1), 03C9(0394) = 03C9(-3).

THEOREM 8.17: Let E be a supersingular curve with good reduction
over the local field F of residue characteristic two. Let w be a

quadratic character of F*. If in some minimal Weierstrass model for
E, 3v(a,) ~ 03B1(03C9), then w(L1) = (-1)dim(E(F)/NE(K)). In particular, conjecture
3.1 is true in this case.

PROOF: For a curve of good reduction, ~ (E, 03C9) = 03C9(-1). Hence
conjecture 3.1 follows from the claimed value of 03C9(0394) in the theorem
statement. For unramified w, the result is known from section 6. If 03C9

is ramified, we apply the result of (8.15) together with the remarks on
Nn preceeding the theorem. Then dim(E(F)/NE(K)) is congruent to
03B1(03C9) · dimF2 (kp) in all cases. From the example following (8.16) we
see that the statement of the theorem results.

The only remaining case to which these methods apply is when

3v(al) = a(w) - 1. If v(al) is smaller, with respect to a(w), more terms
in the formal group law are necessary to analyze the norm map.
To analyze Nn in this final case we need the following Lemma. It

can be easily shown using the modification of discriminants for

polynomials over characteristic 2 fields, but we give a proof in the
spirit of the preceeding investigation.
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LEMMA 8.18: Let k be a finite extension of F2. Consider the

endomorphism ~(w) = 03B1w + (3w2 + w4 of k, where (3 E k and « E k*.
Then dimF2(ker(~)) ~ trk/F2(1 + 03B23/03B12) modulo 2.

PROOF: The cardinality of Ker (~) is 1 plus the number of roots of
the separable cubic Q(w) = a + (3w + w3. Let élk be the extension
obtained by adjoining the roots of Q(w) = 0 to k. Thus the dimension
of Ker( 1» is odd if and only if [é : k] is even. By Hensel’s lemma there
exist unramified extensions L and K of Q2 with residue fields é and k

respectively such that L is obtained by adjoining the roots of the
cubic (w) = A + Bw + w3 to K, and Q reduces modulo the prime
ideal of K to Q. Hence [~ : k] = [L : K], and we discover if [L : K] is
even by examining the discriminant -4B3 - 27A2. Thus [~ : k] is even
if and only if -4B3/A2 - 27 is not a square in K. Since -4B3/A2 - 27 =
1- 4(7 + B3/A2), this discriminant is a nonsquare if and only if there is
a quadratic character taking nontrivial value on it. All characters of

conductor exponent less than or equal to twice the K-valuation of 2
clearly are trivial on this quantity. For the quadratic characters of K*
of maximal conductor exponent, example (8.16.1) shows that the

value is (-1)tr(1+B3/A2). Since the trace is computed from the residue
field k to F2, we see that dim Ker(~) is odd if and only if

trk/F2(1 + 03B23/03B12) is odd.

THEOREM 8.19: Let E be a supersingular elliptic curve with good
reduction over F. Let 03C9 be a quadratic character such that in a
minimal Weierstrass model 3v(al) = 03B1(03C9) - 1. Then 03C9(0394) =
(-1)dim(E(F)/NE(K)), and conjecture (3.1) is true in this case.

PROOF: We notice from (8.15.1) that in this case 03C9(0394) =
03C9(1 - 4 + 03B131/03B13) = 03C9(-3)03C9(1 + 03B131/03B13) = 03C9(-3)·(-1)tr(03B303B131/03B13) for 03B3 as in

(8.16). On the other hand, the map Nn of (8.15) is given by Nn(z) =
z ’ tr(03C0n) + Z2 . alN (7T)n + Z4 · 03B13N03C02n, where z = Z . ’Trn ~ PnK with z E

OF. Identifying PnK/Pn+1K and P2nF/P2n+1F with kF, we may apply (8.18)
with « = tr(03C0n)/(03B13N03C02n), (3 = 03B11/(03B13N03C0n). Hence the cokernel of Nn
has F2-dimension congruent mod 2 to trk/F2(03B131N03C0n/03B13(tr03C0n)2 + 1) by
(8.18).

Recall that y = N03C003B1(03C9)-1/(tr ’Tra(w)-1)2, and notice that 03B303B131/03B13 and

03B131N03C0n/03B13(tr03C0n)2 are units congruent modulo the prime ideal of OK
(since tr 03C003B1(03C9)-1 = tr(03C003B1(03C9)-1 - (N03C0n)03C0n) + tr(03C0n)N03C0n and (N03C0n)03C0n =
7Ta(w)-l . E with E - 1 E P03B1(03C9)-1F [14; Chap IV.2 Prop. 5]).
Thus the F2-dimension of the cokernel of Nn is congruent to
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trk/F2(03B303B131/03B13 + 1). Since 03B1(03C9) - 1 3 ~ 03B1(03C9) - 1 modulo 2, we have

To provide further evidence for the conjecture (3.1) we examine
the case in which the exponent of the Artin conductor is 2.

PROPOSITION 8.20: Let F be a local field whose residue field kF has
characteristic 2. Then the exponent of the Artin conductor of the
elliptic curve E defined over F is a(E) = 2 if and only if E has
reduction of Kodaira type IV or IV*.

PROOF: Since conductor and Kodaira type are invariant of un-
ramified base change, we may replace F by its unramified closure M.
By [15; §3] a(E) = 2 if and only if E has additive reduction and, for
each prime t -::,t. 2, the t -division field of E is tamely ramified. Let L be
the 3-division field of E over M. Since Gal(L/M) can be represented in
GL2(F3) and |GL2(F3)| = 48 we have 03B1(E) = 2 if and only if E has additive
reduction and IGal(L/M)l divides 3. In fact IGal(L/M)l = 3, since L must
ramify by [15].

If indeed IGal(LIM)/ = 3, let g be a generator for Gal(L/M)
represented as a matrix in GL2(F3). Then 1 is an eigenvalue of g.

Hence E has a point of order 3 defined over M. Conversely, if E has
a point of order 3 defined over M, then by choosing suitable basis for

E3, Gal(L/M) is contained in 1 * , using the f act that 03BC3 C M to get

determinant 1. Hence 03B1(E) = 2 if and only if E has additive reduction
and a point of order 3 over M.
Suppose E has additive reduction. Then E0(M)/E1(M) ~ kM and

E,(M) are divisible by 3. Hence E(M) contains a point of order 3 if
and only if [E(M) : Eo(M)] is divisible by 3. Equivalently, by the table,
[17, pg. 46], E has reduction of Type IV or IV*.

REMARK: It follows from the discussion above that

if kF does not contain the cube roots of unity the image of
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the é-adic representation for é = 3 is nonabelian when a(E) = 2. Thus
(TE is irreducible under these circumstances.

REMARK 8.21: One can see from the algorithm [17] that E has

reduction of type IV over F if and only if there is a generalized
Weierstrass model (7.0.1) for E over Op whose coefficients satisfy
03C0F | 1 al, 03B12; 03C0F Il 03B13; 03C02F| 1 a4, a6. If we pass to a ramified cubic extension
R of F and take for E over OR the Weierstrass model with

coefficients Ai = 03B1i03C0-iR then it is easy to see that E has supersingular
good reduction over R. Similarly, E has reduction of type IV* over F
if and only if we have 03C0F | 1 al, 03C02F | 03B12, 03C02F~ 03B13, 03C03F| 03B14, 03C04F| a6. We then
obtain a model for E over OR with supersingular reduction by taking
coefficients Ai = 03B1i03C0-2iR. By the formula for the discriminant we

have module P203C5F(2)+403C5F(03B130+1F

COROLLARY 8.22: Suppose that E has reduction of type IV or IV*
over F and that in a generalized Weierstrass model for E we have
03C5F(03B131/03B13) ~ a(w) - 1, where a(w) is the exponent of the Artin conduc-
tor of the quadratic character w of F*. If the cube roots of unity are
contained in F then Conjecture 3.1 is valid for E and w.

PROOF: There exists a ramified Galois cubic extension R of F. The

curve E has supersingular reduction over R by the above Remark.
Moreover, from our hypotheses on vF(a;/a3) and the fact that 03B1R(03C9) =
303B1F(03C9) - 2 we find that 303C5R(A1) ~ aR(w) -1. Hence the conjecture is
valid for E and w over R by Theorems 8.17 and 8.19. It then holds
over F by Propositions 3.4 and 3.5, which show that odd Galois

change of base doesn’t change the quantities in the conjecture.
To cover the case in which F does not contain the cube roots

of unity we resort to an argument using the formula of Theorem
7.6.

LEMMA 8.23: Suppose that E has reduction of type IV or IV* over
F and that K is a ramified quadratic extension of F corresponding to
the character w of F*. Then JE(F)INE(K)l = c’ Ikplt where c’ =

[E03C9(F) : E03C90(F)] and t is an integer.
We have the following possibilities for t according to types of
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reduction of E and E03C9:

Moreover,

PROOF: Using the fact that E has conductor 2 by Proposition 8.20
and the conductor-discriminant formula, or else from the above

Remark, we see that 03C5F(0394F) = 4 or 8 according to whether E has
reduction of type IV or IV*. Here 0394F is a minimal discriminant for E

over F and in the notation of Theorem 7.6, vF(uF) = 0. Over K, the

exponent of the Artin conductor of E remains 03B1K (E) = 2, for example
because the 3-division field remains tamely ramified. By Proposition
8.20, E has reduction of type IV or IV* over K, and the same
constraints apply to 03C5K (0394K), where aK is the minimal discriminant of
E over K. Thus 03C5K(0394K) = 03C5K(0394F) - 1203C5K(uK) = 203C5F(0394F) - 1203C5K(uK).
The only possibilities are either that E has type IV over F, type IV*
over K and vK(uK) = 0 or else that E has type IV* over F, type IV
over K and 03C5K(uK) = 1. Let 039403C9F be the minimal discriminant for Ew
over F. Then

wnere d is the discriminant of K over F and hence VF(d) = a(w).
Moreover ap(EW) = max(ap(E), 2a (w» = 203B1(03C9) by an argument along
the lines of [14, Chap. VI, §2, Proposition 5]. The conductor-dis-
criminant formula gives
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In particular, n03C9F ~ 1 (mod 4) and by the table [17, p. 46] the only
possibilities are

From these values, we recalculate vF(uF) in (8.23.1) and determine
t = vF(uF) - vK(uK) as given above.
Now cF, CK E 11, 3}, while E(F)/NE(K) is a 2-group. Hence by

Theorem 7.6 JE(F)/NE(K)l = c’IkFIt. The sign K(E, w) can then be
determined using the fact that 03B1(03C9) · dim kF is even or odd according
to whether w(-3) = 1 or -1, and that c03C9F = 1 if E" has reduction of

type II or II*.

PROPOSITION 8.24: Suppose that E has reduction of type IV or IV*
and that in the minimal model of Remark 8.21, 03C5F(03B131/03B13) ~
03B1(03C9) - 1. Then Conjecture 3.1 is valid for E and w.

PROOF: In view of Theorem 6.2, we may assume that is a

ramified character. Hence 2 ~ 03B1(03C9) ~ 203C5F(2) + 1. It follows from our

hypothesis on vF(a;/a3) and the inequalities on vF(a¡) in Remark 8.21
that AF -3aj+ a3103B133 (mod P03B1(03C9)+403C5F(03B13)F). Hence 03C9(0394F) = 03C9(1 + a 3 a
03C9(-3).
Next we obtain a model for EW over F by putting X = x003B403C02sF,

Y = y003B4203C03sF in (7.4.3), with s chosen as the smallest integer such that
the coefficients in the resulting generalized Weierstrass model are in
OF. These coefficients are

Recall that 8 = 1- 4y, vF(8) is 0 or 1 according to whether 03B1(03C9) is

even or odd, and vF(y) = 1 - a(w).
One now checks that from the conditions on vF(a;/a3) and on vF(a¡)

in Remark 8.21, s is determined by consideration of 03B1’6, so that

03C5F(03B4303C06sF03B303B123) ~ 0. Using the inequality 03B1(03C9) ~ 2 we find that

03C5F(03B403C02sF) ~ 0 and then in fact 03C5F(03B1’i) ~ 1 for all i = 1, 2, 3, 4, 6.

Furthermore, consideration modulo 2 and 3 shows that the only
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possibilities are

In the first case above, it follows that vp(a6) = 1 and that E has
reduction of type II by the algorithm [17]. Hence K (E, w) =
03C9(-3)(-1)dim kF by Lemma 8.23. But a(w) - 2VF(a3) (mod 3) together
with 03C5F(03B131/03B13) ~ 03B1(03C9) - 1 forces 03C5F(03B131/03B13) ~ a(w). Hence 03C9(-0394F) =
w (3), and 03C9(-0394)03BA(E, 03C9) = e(E, w) by Lemma 8.24.2 below.

In the second (respectively, third) case of (8.24.1) one checks
further that 03C5F(03B1’3) ~ 2, vF(a4) ~ 3, vF(a6) = 3 (respectively, 5). [To do
this it must be observed that now 03C5F(03B403C02sF) ~ 1 if E has reduction of
type IV; that is, if VF(a3) = 1]. If in fact 03C5F(03B1’6) = 5, we arrive at type
II* for E03C9 in the algorithm [17], and 03C9(-0394)03BA(E, 03C9) = ~(E, 03C9) as

above.

If vp(a6) = 3, then Ew has reduction of type It and c’ - 1 is the

number of roots in kF of reduction of P(T) = T3 + 03B1’2,1T2 + a4,2T + a6,3,
in the notation of [17, (8.1)]. Modulo 03C0F, the following congruences
hold:

By making the change of variables U = T-’, we may apply Lemma
8.18 to conclude that ord2(c03C9F) ~ Tr(1 + b) ~ Trb + dim kF (mod 2),
where b is the residue in kp of (03B1’2,1)3/03B1’6,3 and hence of y2a;a 32. But
Tr(y2a6a 32) = Tr(03B303B13103B1-13). Hence (-1)c03C9F = 03C9(1 + 03B13103B1-13)(-1)dim kF by
Lemma 8.16, and therefore (-1)c03C9F = 03C9(-30394)(-1)dim kF. Hence by
Lemma 8.23, 03BA(E, 03C9) = 03C9(0394)(-1)dim kF. Conjecture 3.1 now holds by
the Lemma below.

LEMMA 8.24.2: Suppose that (TE has conductor exponent 2 and F
has even residue characteristic. Then e(E, (ù) = 03C9(-1) (-1)dim kF when 03C9
is ramified.

PROOF: If (TE is irreducible and has conductor exponent 2 it is in

fact induced from a character 0 of conductor exponent 1 of the

unramified quadratic extension L (see, for example, On the Local
Langlands Conjecture for GL(2), Inv. Math. 46 (1979), Proposition
3.5). An application of 2.7 then shows that ~(E, 03C9) = (-1)1+03B1(03C9) 03C9(-y2)
where y is a nonzero element of L such that trL/p(y) = 0.
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When dim kF is odd we may take y = -3 or y = 1 according to
F having characteristic 0 or 2. In either case, dim kF odd implies
e(E, w) = 03C9(-3)(-1)(1+03B1(03C9))dim(k), which is precisely 03C9(-1)(-1)dim kF by
the previous computation of 03C9(-3). To conclude, recall the remark that
dim kF odd implies uE is irreducible, so the above applies. In case dim kp
is even, make a Galois cubic change of base, so that E attains good
reduction and ~(E, 03C9) is unchanged. For curves of good reduction the
product of local signs is 03C9(-1), verifying the lemma.

9. Applications.

In this section we consider some applications of the results of
previous sections. The first application deals with the relation of

Kodaira types [17; §6] and the corresponding t-adic representations.
For example, it is well known that type Io implies that the image of
the inertia subgroup is trivial, while type Iv for v &#x3E; 0 implies that the
image of inertia is infinite.

THEOREM 9.1: Let E be an elliptic curve of conductor exponent 2
and potential good reduction over a nonarchimedean local field F. The
representation (7E is irreducible if and only if E(E, w) = -w(- 1) for
ramified quadratic characters w.

PROOF: When the residue characteristic is odd this follows from

(2.8) and (2.4b). For even residue characteristic we apply (8.24.2) and
obtain E (E, 03C9) = 03C9(-1)(-1)dim (kF). As pointed out in the proof of that
result, (7E is irreducible when dim(kf) is odd. When dim(kf) is even,
03C3E is reducible (and of conductor exponent zero) after restriction to a
normal subgroup of index 3. By Frobenius reciprocity this implies
that 03C3E is reducible.

COROLLARY 9.1.1: Let E be an elliptic curve of conductor exponent 2
and Kodaira type III or III * over a local field F of residue field
cardinality q. Then (7E is irreducible if q ~ 3 (modulo 4) and is reducible if
q = 1 (modulo 4).

PROOF: The algorithm and table of [17] show that type III or III*
curves have E(F)JEO(F) order 2 and odd discriminant valuation. If

the residue characteristic is odd, E(F)2 has order 2 and the number of
points in E(K)2 for a ramified quadratic extension K is 4 when
K = F(0394) and 2 otherwise. Thus À(E, WK) = 03C9K(-0394) in these cases.
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From the results of section 5 we have ~ (E, 03C9) = 03BB(E, 03C9)03C9(-0394) = 1.
The result now follows from (9.1).
The remaining applications are of a global nature. They involve the

main formula of [8] which we restate here. In the sequel F will denote
a global field and K a separable quadratic extension described by a
character = Il w, of the idele class group of F.

THEOREM 9.2 [8]: Let E be an elliptic curve over a global field F
(char F ~ 2). Let K be a quadratic extension of F. If the 2-primary
component of the Tate-Shafarevitch group III(E, K) is finite, then

REMARK: The product is taken over all places v of F. The hypo-
theses are conjecturally always true (III should be finite) and are
checkable by descent in many cases.

THEOREM 9.3: Let E be an elliptic curve over the global field F
(char F ~ 2) with integral j-invariant and cube-free conductor. If K is
a quadratic extension of F such that IH2-(E, K) is finite, then

rank E(K) is congruent modulo 2 to the number of places v of F

ramified in K such that CTEv is irreducible.

PROOF: We apply (9.2) to conclude (-1)rank E(K) = 03A0 03BA (E03C5, wv). Since
03C9 is an idele class character, 03C9(-0394) = 1. Thus (-1)rank E(K) =
Il K(Ev, 03C903C5)03C903C5(-0394) = II E(Ev, wv), by the known cases of (3.1). By (2.4)
we have e(Ev, wv) = wv(-1) if v is not ramified in K or CTEv is

reducible. By (2.4a) and (9.1) we have E(Ev, wv) = - wv (- 1) when v is

ramified and CTEv is irreducible. This establishes the result.

As a final application we study a compatibility of the Birch,
Swinnerton-Dyer conjecture under twisting. Let E be an elliptic
curve over a global field F which has an L-series given by an
automorphic L-function L(s, 7r) for some representation 7T of GL(2).
When F = 0 this just means that the L-series is the Dirichlet series of
a modular form. Further assume that ~ (03C003C5) = e(uv), where 7T = 0 03C003C5.
This has been checked (by Deligne, unpublished) when E is a quo-
tient of the Jacobian of a modular curve and v has odd residue

characteristic. A consequence of the Birch, Swinnerton-Dyer con-
jecture is the

PARITY CONJECTURE: rank E(F) = ords=1 L(E, s) (modulo 2).
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We now check that under assumptions as in (9.2), the parity
conjecture is simultaneously true or false for all twists of E.

THEOREM 9.4: Let E be an elliptic curve satisfying the assumptions
and hypothesis above. Then the parity conjecture for E implies the

parity conjecture for E03C9, assuming the truth of conjecture 3.1.

PROOF: The parity of the order of zero at s = 1 of L(E, s) may be
determined from the functional equation L(E, s ) = e(E) L(E, 1- s).

Under the above assumptions, ~(E) = fl e(lTEv). Hence the parity
v

conjecture is equivalent to (-1)rankE(F) - 03A0 ~(03C3E03C5). Since rank E(K) =v

rank E(F) + rank E03C9(F) we have that (-1)rank E(K) = 03A0 e(Ev, wv) if and
v

only if the parity conjecture is simultaneously true (or false) for E
and E03C9. Conjecture (3.1) allows e(Ev, wv) to be replaced by
K(Ev, 03C903C5) 03C903C5(-0394), and then the equation is a consequence of (9.2).

COROLLARY: Let E be an elliptic curve over a global field F
(char F ~ 2) with good or potential multiplicative reduction above all
places v of F of even residue characteristic. Then if the order of zero
of L(E, s) at s = 1 has the same parity as rank E(F), the same is true

for the twisted curve E03C9 if 1112-(E, K) is finite.

PROOF: Conjecture 3.1 will be true for all places of F under the
hypotheses, so this follows from (9.4).

REMARK: Additive reduction may be allowed at places of even
residue characteristic under certain circumstances. This results from

the same proof as above, taking into account (8.24).
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