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1. Introduction

K. Wohlfahrt [6] showed in 1964 that the only zeros of the Eisen-
stein series Ek for the modular group lie on transforms of the unit
circle when 4 ~ k ~ 26, and conjectured that this holds for all k &#x26; 4.

The range of k was extended to k 5 34 and k = 38 in [4], but in [2]
F.K.C. Rankin and H.P.F. Swinnerton-Dyer proved Wohlfahrt’s con-
jecture for all k by a simple argument. The purpose of the present
paper is to show that similar properties hold for a wide class of
meromorphic modular forms belonging to the modular group. In

particular, it is shown that, if Gk(z, m)(m E Z) is the mth Poincaré
series of weight k, then for m :5 1 all its finite zeros in the standard

fundamental region lie on the lower arc A, while for m &#x3E; 1 at most

m - 1 of these zeros do not lie on A; for m = 0 this reproduces the
result of [2].
Throughout the paper 1 shall be concerned with meromorphic

modular forms of even positive weight k 2: 4 on the upper half-plane
H = f z: Im z &#x3E; 01 for the modular group

The vector space of all such forms is denoted by Mk. Thus, if f E Mk,
f has a Fourier series expansion of the form

which is convergent when Im z is sufhciently large. The subspace of
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Mk consisting of forms f E Mk that are holomorphic on H is denoted by
Hk ; for such forms the series (1.1) converges for all zEH. The

subspace of Hk consisting of cusp forms, for which we can take
N = - 1, is denoted by Ck.

If f E Mk, then f has at most a finite number of poles in any
fundamental region. From the work of Petersson [1] it follows that

f (z) can be represented as the sum of Poincaré series

Here

where

and the summation is over all pairs of coprime integers c, d ; for each
such pair we choose a single T E r(i) with [c, d] as bottom row. Here
R(t) is a suitably chosen rational function of t. The series is ab-

solutely and uniformly convergent on every compact subset of H free
of poles of f.
To illustrate this result we take two special cases. In the first place,

take

and put

in this case. For m &#x3E; 0, Gk(z, m) ~ Ck and Ck is spanned by those
Gk (z, m ) for which

see [5], Theorem 6.2.1. For m = 0, Gk(z, 0) is an Eisenstein series,
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being usually denoted by Ek(z). For m  0, Gk(z, rn) E Hk and has a

pole of order m at 00.
As a second example take

where

Then Gk(z ; R) has poles of order n at those points of H congruent to
w modulo 1"(I).
By taking R to be an appropriate linear combination of the rational

functions described in the previous two paragraphs we see that any
function f E Mk can be expressed in the form (1.2).

If f E Mk, then fK E Mk, where

see §8.6 of [5]. Moreover, fK = f if and only if f has real Fourier
coefficients. Such a form we call a real modular form and denote by
Mt the subset of Mk consisting of such forms; similarly for Ht and
Ct. These are clearly vector spaces over the real field R. Note that, if
f E Mk, then both

are in Mt, so that there is, in a sense, no loss of generality in

confining attention to real modular forms.
If f E Mt and if f has a zero or pole at a point z E H, then it has

another of the same order at - z. Further, if the rational function R
has real coefficients, then clearly Gk(z; R) E Mt ; we call such a func-
tion R a real rational function. When representing real modular forms
as Poincaré series Gk(z; R) we shall restrict our attention to real

rational functions R. Such a function has the property that

for all tEC.

An arbitrary modular form may have a zero at any point of H.
However, we shall show that there is a wide class of real forms that
have all their zeros on transforms of the arc
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This is already known to be true for the Eisenstein series Ek ; see [2].

2. General results

We denote by F the standard fundamental region for 0393(1). This is
the subset of C consisting of all points z e H for which either

or

and we regard 00 as belonging to F. F is bounded on its lower side by
the arc S, but only half this arc, namely

is contained in F.

If f E Mk and has N zeros and P poles in F, counted with appropriate
multiplicities, then

see [5], Theorem 4.1.4. Here zeros or poles at i are counted with

weight 1 2, while those at p = e"’ 13 are counted with weight 3.
Let

and

so that Li, A and Lp form the boundary in H of the right-hand half of
F.

For k 2: 4 we express k in the form
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where

and

If f is holomorphic at i and p, then, since

we see that we must have

in the six cases, respectively. Accordingly the total weighted order of
the zeros of f at i and p is at least s/12 in each case.

Let Gk(z ; R) be defined as in (1.2) and suppose that this function is
holomorphic on the arc A. We wish to count the number of its zeros
on A. For this purpose it is convenient to consider points on the
larger arc S and put

where 0 E [(Tr/3), (27T/3)] = I, say. If we pair the terms of the Poincaré
series corresponding to c, d and d, c, and use (1.5), we see that
Fk(8, R) is real for 0 E I.

Further,

where

and Ft(8; R) consists of those terms of the series defining Fk for
which c2 + d2  2. Note that gk(03B8; R) arises from the terms with

c,d = ±1,0 and 0, ±1.
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As 0 increases from n-/3 to 27r/3 the point

describes in a clockwise direction a curve y beginning at

which encircles the origin, passing through the point

and returning to - ro. The curve y is pear-shaped and symmetric about
the real axis. It has a cusp at - ro, the two tangents there making
angles of ± 03C0/3 with the positive real axis. The curve y and its interior
D03B3 are entirely contained in the unit disc

Moreover there is a one-to-one correspondence between points t =

e21riz in D03B3 and points z of F for which Izi &#x3E; 1.

We now assume that R has na zero or pole on y and that it has Ny
zeros and Py poles in D03B3, counted with the appropriate multiplicities.
Then the variation in the argument of eik03B8/2R(t) as t describes S, i.e. as
03B8 goes from 03C0/3 to 21r/3 is clearly

by the Argument Principle.
Because of the symmetry of y about the real axis, the variation irr

the argument of eik8/2R(t) as t describes A, i.e. as _0 goes from u13 to

7r/2, is half this amount, namely

Now

and
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Thus we may take

where no and ni are integers and

Now suppose that Gk(z; R) has NR zeros and, PR poles in F,
counted with appropriate multiplicities and weights. Then

We are now ready to prove our main theorems. These apply to
rational functions R with certain properties’ We shall say thai R: has
property Pk if (i) R is a real rational function, (ii) aH the poles of R lie
in D03B3, R has no zeros on y, (iii) 1 2: N03B3 - Py, and (iv)

for 03B8 ~ I0 = [03C0/3, 1T12]. Note that (2.14) ensures that Gk(z; R) does not
vanish identically.

THEOREM 1: Suppose that Rî has property Pk. Then. the Poincaé
series Gk,(z; R) has at least NR - N’Y zeros at points of A.

PROOF: Note that Ny is an integer, but NR need not be. Further,-, by
our. assumptions, PR = Py. It can, be checked in each 01 the six cases
° that the intqsvài [pro+ k/6, Mi + k/4] contains exacHy 

integers N. Note that n, - n0 + 1q by (2.12) and condition (iii).At the corresponding points N 03C0, gk(03B8; R) takes aiternately the
values ± |gk(03B8; it follows by continuity from (2.10 14) that
Fk(03B8; R) vanishes at least once in each of the n1 - n0 + l’subintervals
between these points. Hence Gk(z; R) has at least-

zéros at interior points of A and therefore by (2.13), at least
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zeros on A.

As an immediate corollary we have

THEOREM 2. Suppose that R has property Pk and that it does not

vanish in D03B3. Then all the zeros of Gk(z ; R) in F lie on A. They are all
simple zeros except that, when k ~ 2 (mod 6), there are of necessity
double zeros at p = e03C0i/3.

PROOF: For Ny = 0 and we see that in (2.8), 2 3 occurs only for k = 2
(mod 6).

THEOREM 3: Suppose that R has property Pk and that it has exactly
one zero in D’Y’ which is at the origin and is simple. Suppose also that
R is bounded on D -D’Y. Then Gk(z; R) has a simple zero at 00. All

its other zeros in F lie on A and are simple except that, when k ~ 2
(mod 6), there are double zeros at p.

For it is easy to see that Gk(z; R) has a zero at 00 whenever

R(O) = 0.

3. Applications

Before the theorems of the previous section can be applied, it is

necessary to put condition (2.14) of property Pk into a more usable
form. For our present purposes fairly crude estimates sufhce, al-

though we shall require more refined approximations in §4.
For c2 + d2 ~ 2 and z = ei8 E A,

say. Now it is easily checked, since |cd| ~ 1, that

and hence
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Accordingly,

Define

Note that M is finite by condition (ii) of Pk since, at any pole t of

R, |t|  r0.
Accordingly we have

where, in the summation we take

Now

has, for 0 E Io, a maximum value when 0 = ir/3 of

and accordingly

subject to the same conditions (3.5). The series on the right is, apart
from the omission of the terms with c2+ d2 = 1, a well-known Epstein
zeta-function and we therefore have

where
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Here e is the Riemann zeta-function and, for s &#x3E; 1, Z3(s) is the

Dirichlet L-series

ak is a decreasing function of k. We have

while

and for large k

Accordingly, condition (2.14) will be satisfied if

We now make a number of applications of thèse results.

CASE 1: Talee 

so that MR = e03C0m3, while

SQ that (3.9) is satisfied because 03B1k  1.

Since P03B3 = m and N03B3 = 0 it is elcar that- property Pk holds. We
deduce that- the Poincaré méfies Gk(z, m) haW all- its zeros in F on A
and that thdy -arc ait simple except- as specified in Theorem 2. This

includes the case m = 0 considered in [2].

where fm and gn are real polynomials with leading coefficients 1 and
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of degrees m and n, respectively, where m 2: n. They therefore
possess a total of m + n non-leading coefficients all of which are real.
We assume that the zeros of f m and gn lie in D03B3. Property Pk then
holds.

We deduce from Theorem 1 that, provided that

the Poincaré series Gk(z; R) has at least NR - N’Y zeros on A. Now
(3.10) is satisfied when fm(t) = tm, gn(t) = t" by Case 1. Because of

continuity and the compactness of the sets involved, there exists a
neighbourhood U of the origin in Rm+n such that, if the non-leading
coefficients of f m and gn lie in U, then Gk(z; R) has at least NR - Ny
zeros on A.

In particular, if n = 1, gn(t) = t and m ~ 1, it follows from Theorem
3 that, on some neighbourhood V of the origin in Rm containing the
non-leading coefficients of fm, Gk(z; R) has the properties stated in
that theorem, provided that fn(0) ~ 0.

CASE 3: We examine in greater detail the special case when

where m EE N and q ~ R ~ Dr Accordingiy 

Note that

Then, for t ~ 03B3,

where

Also, for
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Accordingly (3.10) is satisfied whenever

and we have

Condition (3.11) is easily seen to be equivalent to

Thus, when q lies in this interval, all the zeros of Gk(z ; R) lie on A,
for all k 2: 4.

4. Application to cusp forms

In what follows we take

so that, by (1.3),

We assume that

For Gk(z, rn) vanishes identically for k = 4, 6, 8, 10, 14, while, for
k = 12, 16, 18, 20, 22, 26, the location of its zeros is known, since

where Ek-12 is an Eisenstein series (Eo = 1) and Bk,m is a constant. It is
known that the functions Gk(z, m) (0  m ~ l) span Ck and therefore
do not vanish identically.

It is necessary to assume in what follows that
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By (2.12) and (4.2),

so that the interval [no + k/6, ni + k/41 contains 1 - m + 1 * 2 integers
and condition (iii) of property Pk holds.
To obtain the results we wish to prove we must examine the

function F*k(03B8; R) in greater detail than previously. We consider first
the terms with

These give contributions

Write

and put

for 03C0/3 ~ 03B8 ~ 03C0/2. Then

The expression in square brackets decreases as 0 increases taking its
maximum value of ((2wm - k3) at 6 = 1 303C0. This value is negative, so
that G’(03B8) ~ 0 and therefore

Also

which is positive since k 2: 12m. Hence
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We have c2 + d2 ? 5 for the remaining values of c, d summed over
in Fk(03B8; R), and 03C8T(03B8) ~ 0; see (3.1). Hence, as in § 3, an upper bound
for the remaining terms is given by

We have

and, by using the approximations

we find that

The only condition of property Pk that remains to be checked is

(2.14), which now takes the form

For this to hold we require that

which, by (4.6), since 12(m + 1) ~ k, reduces to

For k 2: 24 the left-hand side is less than 0.00849 so that condition

(2.11) is satisfied.
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THEOREM 4: Suppose that 1 = dim Ck ~ 1 and that 0  m ~ 1. Then

Gk(z, m) has at least f2k - m zeros on A and at least one at 00. In

particular, all the zeros of Gk(l, m) in F are simple, except for a
double zero at p = e03C0i/3, when k = 2(mod 6). One of these simple zeros
is at 00 and the others lie on A.

In view of the preceding analysis we need only remark that the
theorem is trivial when m = 1 since in that case there are at least s/12
zeros at i and p.

5. Cusp forms of weight 24

Theorem 4 gives an exact estimate of the number of zeros of
Gk(z, m) on A only when m = 1. For m &#x3E; 1 only a lower bound is given.
It would be of interest to have more precise information about the
location of zeros when m &#x3E; 1. In this section we examine the first such

case, which arises when

The space C24 has a basis consisting of the newforms

where the coefficients 03BBj(n) are the eigenvalues corresponding to
Hecke’s operator Tn. We have (see [3], (9.7))

where

and

It follows from (5.1, 2) that
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so that

For later purposes we also require the values

and

In all these and later estimates the last digit may be in doubt.
Write

Then

where Tm is Hecke’s operator; see [3]. If we write

then

We are particularly interested in the location of the zeros of g2, and
therefore require to evaluate el and 03BE2.
From [3] (p. 205) we know that el and e2 are positive and that (see

[3], equation (7.4), with q = 20, r = 4, k = 24)

Here
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and an is the coefficient of e203C0iz in the Fourier expansion of En(z), and
not the quantity defined in (3.8). Also

Finally

where the product is carried out over all prime numbers p.
By using the values of Àj(2) and Àj(3) and Deligne’s bounds

for p &#x3E; 3 we find that

which leads to the values

and

From (5.3, 5) we see that g2 has a simple zero at 00. We now show
that it does not vanish on A, but that its remaining zero in F lies on

Lp, the right-hand boundary of F, and is simple. For this purpose we
put

where hn E H12 and

Then h2 has exactly one zero, which is simple, in F. Since h2 E H 2 this
zero lies either on A or on Li or on Lpo To check this we require the
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values of E12 and à at the points i and p. We have

so that

See (6.1.14-16) of [5];in (6.1.16) the denominator should be 762048. It
follows that

for 384q  1723008.

Since h2 is real on Lp and h2(-) = elXI + 03BE203BB2 &#x3E; 0, by (5.5), it follows
that h2 has a simple zero at a point of Lp. It can be shown in a similar
way that the same is true for h4. On the other hand, h3 has a simple
zero on Li. Observe that Lp forms part of the set of transforms of the
unit circle under r(1), whereas Li does not.

Finally, by using the fact that f 1 and f2 are orthogonal and the
asymptotic formula for 03A3n~x03BB2i(n) we can show that for every N E N
there exists an n 2: N such that gn does not vanish on A. A similar

result holds with A replaced by Li and Lpo
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