@article{CM_1981__43_2_145_0, author = {Arbarello, Enrico and Harris, Joseph}, title = {Canonical curves and quadrics of rank 4}, journal = {Compositio Mathematica}, pages = {145--179}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {43}, number = {2}, year = {1981}, mrnumber = {622446}, zbl = {0494.14011}, language = {en}, url = {http://www.numdam.org/item/CM_1981__43_2_145_0/} }
TY - JOUR AU - Arbarello, Enrico AU - Harris, Joseph TI - Canonical curves and quadrics of rank 4 JO - Compositio Mathematica PY - 1981 SP - 145 EP - 179 VL - 43 IS - 2 PB - Sijthoff et Noordhoff International Publishers UR - http://www.numdam.org/item/CM_1981__43_2_145_0/ LA - en ID - CM_1981__43_2_145_0 ER -
Arbarello, Enrico; Harris, Joseph. Canonical curves and quadrics of rank 4. Compositio Mathematica, Tome 43 (1981) no. 2, pp. 145-179. http://www.numdam.org/item/CM_1981__43_2_145_0/
[1] On Period Relations for Abelian Integrals on Algebraic curves. Ann. Scuola Norm. Sup. Pisa 21 (1967) 189-238. | Numdam | MR | Zbl
and :[2] Sulle Superficie Algebriche le cui sezioni piane sono curve iperellittiche. Rend. Palermo IV (1890) 189-202. | JFM
,[3] Cohen-Macaulay Rings, invariant theory, and the generic perfection of Determinantal loci, Amer. Jour. of Math. 93 (1971) p. 1020-1058. | MR | Zbl
and :[4] Principles of Algebraic Geometry. Wiley-Interscience, (1978). | MR | Zbl
and :[5] The geometric genus of projective varieties. Ann. Scu. Norm Pisa, (to appear). | Numdam | Zbl
:[6] On the geometry of a Theorem of Riemann. Ann. of Math. 98 (1973) 178-185. | MR | Zbl
:[7] Another proof of the Existence of Special divisors. Acta Math 132 (1974) 163-176. | MR | Zbl
, and :[8] Uber die Invariante Darstellung Algebraischer Funktionen einer Veranderlichen. Math. Ann. 88 (1922) 242-289. | JFM | MR
:[9] Projective models of K-3 surfaces. Amer. Journ. Math. 96 (1974) 602-639. | MR | Zbl
:[10] On Petri's analysis of the linear system of quadrics through a canonical curve. Math. Ann. 206 (1973) 157-175. | MR | Zbl
:[11] Introduction to Algebraic Geometry, Oxford, 1949. | MR | Zbl
: