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Introduction

The point of this paper is to observe that one can in a natural way
associate to any ergodic diffeomorphism of a manifold (or more
generally, to any Lie group acting ergodically on a manifold by
diffeomorphisms) an algebraic group that reflects the action of the
diffeomorphism (or Lie group) on the tangent bundle. We then relate
the structure of this group to a measure theoretic version of a notion

suggested by H. Furstenberg and studied by M. Rees [15], namely,
that of a tangentially distal diffeomorphism, and to the vanishing of
the entropy of the diffeomorphism. More precisely, we prove the
following (see the sequel for the definitions involved).

THEOREM: Let H be a discrete group acting by diffeomorphisms on
a manifold M and IL a measure on M quasi-invariant and ergodic
under the H-action. Suppose the H-action is essentially free, i. e.,
almost all stabilizers are trivial, and suppose further that the action is
amenable [19], [20] (for example, if H itself is amenable). Then the
following are equivalent.
1) The action is tangentially measure distal of all orders.
2) Every element of the algebraic group associated to the action has
all eigenvalues on the unit circle.
3) There is a measurable Riemannian metric on M and H-invariant
measurable sub-bundles of the tangent bundle 0 = Vo C VI C ... C
Vk = T(M) such that H is isometric on Vi+tI Vi for all i.

* Partially supported by NSF grand NSF MCS76-06626
** Sloan Foundation Fellow.
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The algebraic group associated to the action is defined in section 1.

Tangential measure distality is described and the above theorem

proven in section 2. In section 3 we observe that the entropy of a

tangentially measure distal C2 diffeomorphism of a compact M

preserving a finite smooth measure vanishes.
The author would like to thank M. Rees for discussions concerning

questions related to this paper.

1. Ergodic actions of algebraic groups

To construct the algebraic group associated to an ergodic diffeo-
mophism we shall find it convenient to discuss first some general
features of ergodic group actions. If G is a locally compact second
countable group acting on a standard measure space (S, IL), IL is
called quasi-invariant if for A C S measurable and g E G, 03BC(Ag) = 0 if
and only if IL(A) = 0, and the action is called ergodic if Ag = A for all
g implies A is null or conull. (We always assume the action to be such
that S x G ~ S, (s, g) ~ s · g is Borel.) Thus any action by diffeomor-
phisms of a manifold leaves a smooth measure quasi-invariant. If

H C G is a closed subgroup and S is an ergodic H-space, then there
is a naturally associated induced ergodic G-space X which we denote
by X = indGH(S). This notion is studied in [20] and here we only briefly
recall the construction. Let X = (S x G)/H be the space of H-orbits
under the product action (s, g)h = (sh, gh). There is also a G-action
on S x G given by (s, g)go = (s, gÕlg), and as this action commutes
with the H-action G acts on X as well. Furthermore, by projecting a
probability measure in the natural measure class on S x G to X, we
obtain a quasi-invariant ergodic measure on X. A natural criterion for
determining when an action is induced from that of a subgroup is the
following.

PROPOSITION 1.1: If X is an ergodic G-space and H C G is a closed
subgroup then X = indGH(8) for some ergodic H-space S if and only if
there is a G-map X ~ GIH. (As usual, we allow ourselves to discard
invariant Borel null sets.)

PROOF: [20, Theorem 2.5].

The following observation is the basic point in the construction of
the algebraic group associated to an ergodic diffeomorphism.



61

PROPOSITION 1.2: Suppose G is a real algebraic group and X is an
ergodic G-space. Then there is an algebraic subgroup H C G such that
X is induced from an ergodic H-space but not from an ergodic action
of any smaller algebraic subgroup. This group H is unique up to
conjugacy.

PROOF: The existence of such an H is clear from the descending
chain condition on algebraic subgroups, and so the point of the
proposition is the uniqueness. Suppose there exist G-maps X ~ G/Hi,
X ~ G/H2 where Hi are algebraic subgroups and satisfy the above
minimality property. Then there is a G-map ~: X ~ GIHI x GIH2
which, of course, need no longer be measure class preserving.
However, ~*(03BC) is a quasi-invariant G-ergodic measure on GIHI x
GI H2. Because algebraic actions are "smooth" in that every ergodic
measure is supported on an orbit [2, pp. 183-4], [3], ~*(03BC) is sup-

ported on a G-orbit in G/Hl x G/H2. We can identify the orbit with
GI Go, where Go is the stabilizer of a point, and we can then view cp as
a G-map X~G/G0. Since Go = hHlh-1 n gH2g-1 for some h, g E G, it
follows by the minimality of Hi that Hl = (h-lg)H2(h-’g)m.

DEFINITION 1.3: We call H the algebraic hull of the ergodic G-
space X. It is well-defined up to conjugacy. We call X Zariski dense if
the algebraic hull is G itself.

This terminology is justified by the fact that if X = G/ Go for some
closed subgroup Go C G then the algebraic hull of X is just the usual
algebraic hull of the subgroup Go. In other words, H is the

algebraic hull of the virtual subgroup [7] of G defined by X.
In this framework, the Borel density theorem [1] has a natural

formulation.

THEOREM 1.4: Let G be a Zariski connected semisimple real al-
gebraic group with no compact factors. Suppose X is an ergodic
G-space with finite invariant measure. Then X is Zariski dense in G.

PROOF: If X- G/H is a G-map then G/H has a finite invariant
measure and the result follows by the theorem of Borel [1].
Suppose S is an ergodic H-space and G is locally compact (second

countable) group. A Borel function a : S  H ~ G is called a cocycle
if for all hl, h2 ~ H, a(s, hl, h2) = a(s, h1)03B1(sh1, h2) a.e., and the co-
cycle is called strict if equality holds for all (s, hl, h2). There is a natural
G-action associated to any cocycle that reduces to the induced action
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if H C G and a(s, h) = h. Namely, we let H act on S x G by (s, g)h =

(sh, ga(s, h)) and let X be the space of ergodic components. G also
acts on S x G as in the inducing construction and this will factor to an

ergodic action of G on X. We call this action the Mackey range of a.
(See [7] for discussion and [14], [17] for details of the construction.]
Two cocycles a, /3 are called equivalent if there is a Borel function cp:
S - G such that for all h ~H, ~(s)03B1(s, h)~(sh)-1 = 03B2(s, h) a.e. The
Mackey ranges of a and 03B2 will then be isomorphic G-spaces.

PROPOSITION 1.5 : If G is a locally compact group and a : S x H - G is
a cocycle on the ergodic H-space S, then a is equivalent to a cocycle 03B2
taking values in a closed subgroup Go C G if and only if the Mackey
range is induced from an action of Go.

PROOF: Proposition 1.1 and [17, Theorem 3.5].

Thus, if G is algebraic the algebraic hull of the Mackey range of a
is the unique (up to conjugacy) smallest algebraic subgroup which
contains the image of a cocycle 8 which is equivalent to a.
Suppose now that H is a Lie group acting by diffeomorphisms on a

smooth manifold M of dimension n. For each m E M and h E H we

have a linear isomorphism dhm : TmM - Tm. hM. We can choose global
Borel sections of the tangent bundle, so from the Borel point of view
the tangent bundle can be trivialized. Under a choice of trivialization,
dhm corresponds to an element of GL(n, R), and we define d(m, h) =
(dhm)-1, so that d : M  H ~ GL(n) is a strict cycle. Different trivi-
alizations clearly yield equivalent cocycles. Suppose now that the
H-action is ergodic with respect to some quasi-invariant mesure g
on M.

DEFINITION 1.6: By the algebraic group associated to the differen-
tiable ergodic action of H on (M, g) we mean the algebraic hull of the
Mackey range of d.

We remark that this algebraic group may be trivial without the
action being trivial. For example, the group will be trivial for any
ergodic translation of a torus. However, the group will be nontrivial
for any smooth measure preserving diffeomorphism of a compact
manifold with positive entropy.

PROPOSITION 1.7: Suppose that the differentiable action of H on
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(M, ¡..t) is amenable. (This holds, in particular, if H is amenable; see
[19], [20] for the general definition.) Then the algebraic group asso-
ciated to the action is amenable.

PROOF: By [19, Theorem 3.3], the Mackey range of d is an

amenable ergodic action, and by [20, Theorem 5.7] this action is

induced from an action of an amenable subgroup. By a result of C. C.
Moore [9], every amenable subgroup of GL(n, R) is contained in an
amenable algebraic subgroup. [20, Prop. 2.4] then implies that the
Mackey range of d is induced from an action of an amenable

algebraic subgroup, from which the proposition follows.

2. Measure distal linear extensions

Among the best understood continuous group actions on compact
metric spaces are the distal actions, whose structure was described by
Furstenberg in [5]. For actions on measure spaces there is a parallel
theorem proved by the author in [18]. (See also [10].) For smooth
actions there is a natural notion of tangential distality and the problem
of investigating the structure of such actions was raised by Fursten-
berg. These actions were studied by M. Rees in [15] where she shows
that one can deduce results about the structure of such actions on the

tangent bundle, and the vanishing of entropy for measure preserving
tangentially distal diffeomorphisms. The point of the rest of this paper
is to define the notion of a tangentially measure distal action (which is
weaker than that of a tangentially distal action), to show that one has
an analgous description of the structure of such actions on the

tangent bundle, and to discuss the relationship with entropy.
Let S be an ergodic H-space. For simplicity, we assume H is a

countable discrete group. The results in this section should carry over
to a general locally compact H, but we work in the discrete case to
avoid some measure theoretic technicalities. Suppose E-S is a

measurable vector bundle such that H acts on E in such a way that
the projection to S is an H-map and the induced maps from fiber to
fiber are linear. We call E a linear extension of S. For example, if
a : S X H ~ GL(n, R) is a cocycle, (which, by discarding an invariant
Borel null set we can assume is strict, owing to countability of H),
we have an action of H on the product S x Rn given by (s, v) · h =

(sh, a(s, h)-lv). Clearly, every linear extension is equivalent in the
obvious sense to one of this form.
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DEFINITION 2.1: We call the linear extension ~: E ~ S a measure
distal linear extension of S’ if there is a decreasing sequence of
measurable sets Ui C E such that

(i) Ui(s) = Ui np-,(s) is an open neighborhood of the origin in
~-1(s) for almost all s.

(ii) ~ Ui(s) = {0} a.e.
(iii) for almost all s, if v E ~-1(s) and there is a sequence hi E H such

that (s, v) . hi E Ui(shi) for all i, then v = 0.

Following [15], we call a linear extension measure distal of order p
if the linear extension 039Bp (E) ~ S is a measure distal, and measure
distal of all orders if 039BP (E) ~ S is measure distal for all 1 ~ p ~
dim E. These conditions are clearly invariant under a change to an
equivalent extension. An ergodic action of H by diffeomorphisms on
(M, 03BC) is called tangentially measure distal (of order p, of all orders) if
the tangent bundle is a measure distal (of order p, of all orders) linear
extension of M. The main result of this section is the following. It is a
measure theoretic analogue of the results of M. Rees [15]. It can also be
considered as an extension to measurable bundles of the results of C. C.

Moore on distal linear actions [8] and we in fact use this latter result.

THEOREM 2.2: Let S be an essentially free amenable ergodic H-
space (in particular, if H is amenable) where H is a countable discrete
group and suppose a : S X H ~ GL(n) is a cocycle. Then the following
are equivalent.

(i) ,S x R n , with the action defined by a, is a measure distal linear
extension of all orders.

(ii) a is equivalent to a cocycle into an amenable algebraic group G
such that all eigenvalues of each element of G are on the unit circle.

(iii) There is a measurable assignment of inner products s ~~ , )s on
Rn and a collection of H-invariant measurable fields of subspaces
s - Vi(s), fOl = Vo(S) C ... C Vk(s) = Rn such that H acts (via the
action defined by 03B1) by isometries on the fibers of Vi+1/Vi, i. e.,
03B1(s, h) : ( Vi+1(sh)/Vi(sh), ~,~sh) ~ (Vi+1(s)/Vi(s), (,)s) is an isometry.

The theorem stated in the introduction follows by applying
Theorem 2.2 to the tangent bundle of M.

PROOF: That (ii) and (iii) are equivalent follows easily from results
of Moore [8]; that (ii) and (iii) imply (i) is straightforward; thus the
problem is to show (i) implies (ii). Let G be the algebraic hull of the
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Mackey range of a so that G is an amenable algebraic group. Then
there is a sequence of subspaces 101 = Vo C VI C ... C Vk = Rn and an
inner product on R n such that for T = Ig E GL(n, R) |g(Vi) = Vi and
the induced map on each Vi+1/ Vi is a similarity of the induced inner
product} we have G n T is an algebraic subgroup of finite index in G
[6, p. 356], and hence Go = ngEG g(G n T)-1g 1 is a normal algebraic
subgroup of finite index in G. Let 03B2 : S  H ~ G be a cocycle
equivalent (as cocycles into GL(n, R)) to a and q : G- G/G0 the
natural projection. The cocycle q°03B2 : S  H ~ G/G0 cannot be

equivalent to a cocycle into a proper subgroup of G/ Go, for then, by
[20, Lemma 5.2] j3 (and hence a) would be equivalent to a cocycle into
a proper algebraic subgroup of G which would contradict the

definition of G. It follows that the skew product action of H on
X = ,S x G/ Go given by (s, [g]). h = (sh, [g]q(03B2(s, h))) is ergodic [17,
Cor. 3.8]. Let 03B2 : X  H ~ G be the cocycle 03B2(x, h ) = 03B2(p(x), h)
where p : X - S is a projection. By [20, Lemma 5.1], P is equivalent
to a cocycle y taking values in Go. Since /3 defines a measure distal
linear extension, it is clear that à and hence y do as well.
Now let Tl be the subgroup of T consisting of all matrices for

which all eigenvalues lie on the unit circle. Since any g E T is a

similarity on Vi+1/Vi, g E Tl if and only if (det g | (Vi+1/Vi))2 = 1, and
hence Tl is a normal algebraic subgroup of T. Let G1= Go n Tl, so
that G1 is a normal algebraic subgroup of Go. We claim that to prove
(i) implies (ii), it suffices to show that G1 is of finite index in G. By [8,
Theorem 1], to see that all eigenvalues of elements of G are on the
unit circle, it suffices to show that G is distal on Rn. However, we
know G1 is distal on Rn by [8, Theorem 1], and it is straightforward to
check that if a subgroup of finite index acts distally, so does the
whole group.
To show that G1 is of finite index in G, we first claim that the fact

that y : X  H ~ Go defines a measure distal linear extension implies
that r ° 03B3 : X  H ~ G0/G1 is equivalent to the identity cocycle where
r : G0 ~ Go/G1 is the natural projection. There is a natural injection
G0/G1~ T/T1 and TITI is naturally isomorphic to R’=
log ((R*)k/(± I)k) via the map that takes g E T to the set of deter-
minants of g|(Vi/Vi-1), i = 1, ... , k. Since Gol G1 has only finitely
many components, GolGI is embedded as a vector group in Rk. To see
that r - y is a trivial cocycle, it suffices to see that it is trivial when
viewed as a cocycle into Rk, and to show this it suffices, by an
inductive use of [20, Lemma 5.2], to show that the projection of this
cocycle onto each factor in R k is trivial. We denote these projections
by ri - y. Since R has no non-trivial compact subgroups, it follows
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from [4, Proposition 8.5 and Remark on p. 322] (see also [16]) that
ri° y is trivial if 00 is not contained in the extended asymptotic range
(or "extended asymptotic ratio set") [4, p. 317 ff.] of ri - y. We show

this by induction on i, and let ro be the projection to a point, for which
the assertion is trivial.
For any subset Y C X, let Y * H = {(x, h) x, xh E YI. If 00 is not in

the extended asymptotic range of a real valued cocycle, then every
set of positive measure contains a subset Y of positive measure such
that the cocycle is bounded on Y * H. So if oc is not in the extended
asymptotic range rp 0 y, p = 0, ... , i - 1, then we can find a subset Y
of positive measure such that rp ° y is bounded on Y * H for all

p = 0, ... , i - 1. Let Uj c X x 039Bi(Rn) be open sets as in Definition 2.1.
For ~ &#x3E; 0, let B(E) be the open ball in 039Bi(Rn) (with respect to the
inner product on Rn above) of radius E. We can find 61 &#x3E; 0 such that
for A1 = {x ~ Y | B(~1) ~ U1(x)} we have 03BC(A1)&#x3E;303BC(Y)/4. Choose Ej
and Aj inductively such that for A; = f x E Aj-1 1 B(,Ej) C Uj(x)} we have
03BC(Aj)&#x3E;03BC(Aj-1)-03BC(Y)/2j+1. Thus for A= ~Aj, we have 03BC(A) &#x3E;
03BC(Y)/2. If 00 is in the extended asymptotic range of ri ° 03B3, then by
discarding a null set in A we have for each x E A and all N, there is
hN E H such that xhN E A and |ri ° 03B3(x, hN)| &#x3E; N. Let BN(A)=
{x E A| there is hN with xhN E A and ri o 03B3(x, hN ) &#x3E; NI and CN (A) =
{x ~ AB there is hN with xhN E A and ri ° 03B3(x, hN)  - N}. Thus for
each N, BN(A) U CN(A) = A and BN+1(A) C BN(A), CN+1(A) C CN(A).
We claim that both nBN(A) and n CN(A) are of positive measure. If
one of them, say nBN(A), is null, it follows that lim 03BC(CN(A)) =
03BC(A), and so in fact all CN(A) = A. But ri 0 y(xhN, h-’)
- ri ° y(x, hN). We claim this implies BN(A) is also equal to A from
which our assertion will follow. If D = A - BN (A) is of positive
measure, we can form BN(D) and CN(D) as above, so BN(D) U
CN(D) = D. We cannot have CN(D) of positive measure, for if x,

xh E D with ri - y(x, xh )  - N, then xh E BN (D) C BN (A). Since xh is
also in D, this is impossible. On the other hand, BN(D) C BN(A) fl D
which implies that it too is null. Thus D is null and BN(A) = A.

Let x E BN(A). Then the definition of ri 0 y implies that for any unit
vectors vp E Vp 8 Vp-1, p = 1, ... , i, we have

But by the definition of Y, rp 0 y is bounded on Y * H for p  i and

by the choice of A and BN (A), for any j we can find h E H such that
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(x, 039Bi(03B3(x, h)-1)03C51 A ... A Vi) E U;. This contradicts the condition that
039Bi(03B3) defines a measure distal linear extension. This verifies our
assertion that 00 is not in the extended asymptotic range of ri ° y and
with it the assertion that r - y : X x H ~ Go/01 is trivial.

It follows from [20, Lemma 5.2] that y, and hence à, is equivalent
to a cocycle into Gi. Let 03BB : X ~ G be a Borel map such that (recalling
that X = S x G/Go) for each h, A(s, [g])03B2(s, h)A«s, [g]). h)-’ E Gi a.e.
Thus, letting w : G ~ G/Gi the projection, we have

(*) (w 0 A)(s, [g]) · (3(s, g) = (03C9 0 A)(sh, ]g]03B2(s, h)).

Let F be the space of functions from G/ Go to G/Gi. Then G acts on
03A6 ~ F by (0 - g)(y) = lP(yg-1) . g. By identifying a function with its
graph, F can be considered as a subset of the space Y of finite

subsets of G/Go x G/Gi. Furthermore, G acts naturally on J and the
restriction to F is just the action described above. As in the proof of
[20, Theorem 5.5], Y has a natural standard Borel structure, and the
action of G is smooth on J because G, Go, and Gi are algebraic
groups. Thus, G acts smoothly on F. Define a map 03A6 : S ~ F by
lP(s)(y) = w(A(s, y)). Equation (*) then implies that for each h and
almost all s,

(**) 0(s) (3(s, h) = 0(sh).

In particular, 0(s) and 0(sh) are in the same G-orbit in 3i, and since
the action of G on 3i is smooth, ergodicity of G on S implies that
almost all 0(s) are in the single G-orbit in J. Let 00 be an element in
this orbit. We can then find a Borel map 8 : Orbit (03A60) ~ G such that
00 - O(z) = z for all z. Let f : Su G be given by f = 0 - 0. Then (**)
implies 00 - f(s)(3(s, h)f(sh)-1 = 00. Thus 03B2 is equivalent to a cocycle
(3’ taking values in a subgroup of G leaving 03A60 fixed, and in particular
into the subgroup G ~ G leaving lPo(G/Oo) C GIGI invariant.

However, since OO(GIGO) is a finite set, G is an algebraic subgroup of
G and by the definition of G it follows that G = G. From this it follows
that oo must be surjective and so G/G1 is finite. (This in fact shows
G1 = Go.) This completes the proof.

3. Vanishing entropy

Our aim in this section is to observe the following result.

THEOREM 3.1: Let T : M ~ M be a C2 ergodic diffeomorphism of a
compact manifold M that preserves a finite smooth measure ¡L. If T is
tangentially measure distal then the entropy h(T, 03BC) = 0.
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PROOF: It suffices to show that all characteristic exponents of T

are 0 [12, Theorem 5.1]. (See also [11], [13] for the theory of

characteristic exponents.) If A is a characteristic exponent, then for

almost all x E M there is a non-zero v E TxM such that

Thus, if À  0, lim ~d(fn)x03C5~ = 0 and it is easy to see that this con-

tradicts tangential measure distality. On the other hand, if 03BB &#x3E; 0, then
- 03BB is a characteristic exponent of f-1, which in a similar manner is
impossible.

We remark that for tangentially distal diffeomorphisms, vanishing
of topological entropy was demonstrated by M. Rees [15].
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