Each Schwartz Fréchet space is a subspace of a Schwartz Fréchet space with an unconditional basis
Compositio Mathematica, Tome 42 (1980) no. 3, pp. 273-278.
@article{CM_1980__42_3_273_0,
     author = {Bellenot, Steven F.},
     title = {Each {Schwartz} {Fr\'echet} space is a subspace of a {Schwartz} {Fr\'echet} space with an unconditional basis},
     journal = {Compositio Mathematica},
     pages = {273--278},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {42},
     number = {3},
     year = {1980},
     mrnumber = {607371},
     zbl = {0432.46003},
     language = {en},
     url = {http://www.numdam.org/item/CM_1980__42_3_273_0/}
}
TY  - JOUR
AU  - Bellenot, Steven F.
TI  - Each Schwartz Fréchet space is a subspace of a Schwartz Fréchet space with an unconditional basis
JO  - Compositio Mathematica
PY  - 1980
SP  - 273
EP  - 278
VL  - 42
IS  - 3
PB  - Sijthoff et Noordhoff International Publishers
UR  - http://www.numdam.org/item/CM_1980__42_3_273_0/
LA  - en
ID  - CM_1980__42_3_273_0
ER  - 
%0 Journal Article
%A Bellenot, Steven F.
%T Each Schwartz Fréchet space is a subspace of a Schwartz Fréchet space with an unconditional basis
%J Compositio Mathematica
%D 1980
%P 273-278
%V 42
%N 3
%I Sijthoff et Noordhoff International Publishers
%U http://www.numdam.org/item/CM_1980__42_3_273_0/
%G en
%F CM_1980__42_3_273_0
Bellenot, Steven F. Each Schwartz Fréchet space is a subspace of a Schwartz Fréchet space with an unconditional basis. Compositio Mathematica, Tome 42 (1980) no. 3, pp. 273-278. http://www.numdam.org/item/CM_1980__42_3_273_0/

[1] S.F. Bellenot: Prevarieties and intertwined completeness of locally convex spaces. Math. Ann. 217 (1975), 59-67. | MR | Zbl

[2] S.F. Bellenot: The Schwartz-Hilbert variety. Mich. Math. J. 22 (1975), 373-377. | MR | Zbl

[3] S.F. Bellenot: Factorization of compact operators and uniform finite representability of Banach spaces with applications to Schwartz spaces. Studia Math. 62 (1978) 273-286. | MR | Zbl

[4] S.F. Bellenot: Basic sequences in non-Schwartz Fréchet spaces. Trans. Amer. Math. Soc. 258 (1980), 199-216. | MR | Zbl

[5] J. Diestel, S.A. Morris and S.A. Saxon: Varieties of linear topological spaces. Trans. Amer. Math. Soc. 172 (1972), 207-230. | MR | Zbl

[6] H. Jarchow: Die Universalität des Räumes c0 für die Klasse der Schwartz-Räume. Math. Ann. 203 (1973), 211-214. | MR | Zbl

[7] J.L. Kelly and T. Namioka: Linear Topological Spaces, Van Nostrand, 1963. | MR | Zbl

[8] G. Köthe: Topological Vector Spaces, I, Springer-Verlag, 1969. | MR | Zbl

[9] V.B. Moscatelli: Sur les espaces de Schwartz et ultranucléaires universels. C. R. Acad. Sc. Paris (serie A), 280 (1975), 937-940. | MR | Zbl

[10] A. Pietsch: Nuclear Locally Convex Spaces, Springer-Verlag, 1972. | MR | Zbl

[11] A. Pietsch: Ideals of operators on Banach spaces and locally convex spaces. Proc. III Symp. General Topology, Prague, 1971. | Zbl

[12] D.J. Randtke: A simple example of a universal Schwartz space. Proc. Amer. Math. Soc. 37 (1973), 185-188. | MR | Zbl

[13] D.J. Randtke: On the embedding of Schwartz spaces into product spaces. Proc. Amer. Math. Soc. 55 (1976), 87-92. | MR | Zbl