p-adic L-functions for elliptic curves with complex multiplication I
Compositio Mathematica, Tome 42 (1980) no. 1, pp. 31-56.
@article{CM_1980__42_1_31_0,
     author = {Cassou-Nogu\`es, Pierrette},
     title = {$p$-adic $L$-functions for elliptic curves with complex multiplication {I}},
     journal = {Compositio Mathematica},
     pages = {31--56},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {42},
     number = {1},
     year = {1980},
     mrnumber = {594482},
     zbl = {0475.14021},
     language = {en},
     url = {http://www.numdam.org/item/CM_1980__42_1_31_0/}
}
TY  - JOUR
AU  - Cassou-Noguès, Pierrette
TI  - $p$-adic $L$-functions for elliptic curves with complex multiplication I
JO  - Compositio Mathematica
PY  - 1980
SP  - 31
EP  - 56
VL  - 42
IS  - 1
PB  - Sijthoff et Noordhoff International Publishers
UR  - http://www.numdam.org/item/CM_1980__42_1_31_0/
LA  - en
ID  - CM_1980__42_1_31_0
ER  - 
%0 Journal Article
%A Cassou-Noguès, Pierrette
%T $p$-adic $L$-functions for elliptic curves with complex multiplication I
%J Compositio Mathematica
%D 1980
%P 31-56
%V 42
%N 1
%I Sijthoff et Noordhoff International Publishers
%U http://www.numdam.org/item/CM_1980__42_1_31_0/
%G en
%F CM_1980__42_1_31_0
Cassou-Noguès, Pierrette. $p$-adic $L$-functions for elliptic curves with complex multiplication I. Compositio Mathematica, Tome 42 (1980) no. 1, pp. 31-56. http://www.numdam.org/item/CM_1980__42_1_31_0/

[1] N. Arthaud: On Birch and Swinnerton-Dyer's conjecture for elliptic curve with complex multiplication I. Compositio Math. 37 (1978) 209-232. | Numdam | MR | Zbl

[2] J. Coates: p-adic L functions and Iwasawa theory in Algebraic Number Fields, editor A. Fröhlich Academic Press, 1977. | MR

[3] J. Coates and A. Wiles: On the conjecture of Birch and Swinnerton-Dyer, Inventiones Mathematicae 39 (1977) 223-251. | MR | Zbl

[4] J. Coates and A. Wiles: Kummer's criterion for Hürwitz numbers. Proceedings of the International Conference on Algebraic Number Theory. Kyoto Japan 1976. | Zbl

[5] J. Coates and A. Wiles: On p-adic L-functions and elliptic units. J. Austral. Math. Soc. (series A) 26 (1978) 1-25. | MR | Zbl

[6] A. Fröhlich: Formal groups. Lecture Notes in Mathematics 74. Springer 1968. | MR | Zbl

[7] E. Hecke: Mathematishe werke n ° 14. Eine neue Art von Zeta funktionen und ihre Beziehungen zur Verteilung der Primzahlen, Zweite Mitteilung p. 249-289.

[8] K. Iwazawa: Lectures on p-adic L-functions. Ann. of Maths Studies 74. Princeton University Press, 1972. | MR | Zbl

[9] N. Katz: The Eisenstein measure and p-adic interpolation. Amer. J. Math. 99, p. 238-311. | MR | Zbl

[10] N. Katz: Formal groups and p-adic interpolation, Astérisque 41-42, p. 55-65. | Numdam | MR | Zbl

[11] H.W. Leopoldt: Eine p-adische Theorie der Zetawerte II. J. Reine Ang. Math. 274-275 (1975) 224-239. | EuDML | MR | Zbl

[12] S. Lichtenbaum: On p-adic L-functions associated to elliptic curves, Inventiones Mathematicae 56 (1980) 19-55. | EuDML | MR | Zbl

[13] J. Lubin: One parameter formal Lie groups over p-adic integer rings. Ann. of Maths 80 (1964) 464-484. | MR | Zbl

[14] J. Lubin and J. Tate: Formal complex multiplication in local fields. Ann. of Maths 81 (1965) 380-387. | MR | Zbl

[15] J. Manin and S. Vishik: p-adic Hecke series for quadratic imaginary fields. Math. Sbornik 24 (1974) 345-372. | Zbl

[16] G. Robert: Unités elliptiques. Bull. Soc. Math. France, mémoire 36 (1973). | Numdam | MR | Zbl

[ 17] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Pub. Math. Soc. Japan II (1971). | MR | Zbl

[18] C.L. Siegel: Lectures on advanced analytic number theory. Tata Institute of fundamental research Bombay. | MR | Zbl

[19] J. Tate: Arithmetic of elliptic curves. Inventiones Math. 23 (1974) 179-206. | EuDML | MR | Zbl

[20] S. Vishik: The p-adic zeta function of an imaginary quadratic field and the Leopold regulator. Math. Sbornik 102 (144) (1977) No. 2. | EuDML | MR | Zbl