# Compositio Mathematica 

## Robert Speiser

# Vanishing criteria and the Picard group for projective varieties of low codimension 

Compositio Mathematica, tome 42, no 1 (1980), p. 13-21
[http://www.numdam.org/item?id=CM_1980__42_1_13_0](http://www.numdam.org/item?id=CM_1980__42_1_13_0)
© Foundation Compositio Mathematica, 1980, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numbam

# VANISHING CRITERIA AND THE PICARD GROUP FOR PROJECTIVE VARIETIES OF LOW CODIMENSION 

Robert Speiser

## Introduction

Let $X$ and $Y$ be closed subschemes of $\mathbb{P}^{n}$, where $X$ is irreducible and smooth, and $Y$ is a local complete intersection (characteristic 0 ) or Cohen-Macauley (characteristic $p>0$ ). We shall be interested in two invariants: first, the cohomological dimension

$$
\operatorname{cd}(X-Y)=\sup \left\{i \begin{array}{c}
H^{i}(X-Y, F) \neq 0 \\
\text { for some coherent } \\
\text { sheaf } F \text { on } X
\end{array}\right\}
$$

and second, the Picard group $\operatorname{Pic}(X)$.
Let $s=\operatorname{dim}(X)$ and $t=\operatorname{dim}(Y)$. Our main result for $\operatorname{cd}(X-Y)$ is (2.1), which generalizes some earlier vanishing criteria: we have

$$
s+t>n \Rightarrow \operatorname{cd}(X-Y)<s-1
$$

In particular, we find

$$
s+t>n \Rightarrow X \cap Y \text { is connected, }
$$

a result recently proved [6] by Fulton and Hansen, under weaker assumptions. Their method is based on specialization of cycles.

For $\operatorname{Pic}(X)$, assume the characteristic is $p>0$ and that $s=\operatorname{dim}(X) \geq$ $\frac{1}{2}(n+2)$. Then (3.1) the Picard group $\operatorname{Pic}(X)$ is a finitely generated abelian group of rank 1 , with no torsion prime to $p$. (The assertion
about the torsion is [5, Cor. 4.6], but the assertion about the rank, although expected, is new.) The analogue in characteristic 0 , (compare, for example, Ogus [8]), has been known for some time.

Our proofs are mainly based on ideas used, for example, in [2], [9], [8], [5] and [11]. The approach to (2.1) is though a study of the cohomology of coherent sheaves on a formal completion, with the needed preliminary results in §1. For (3.1) we use Hartshorne’s version of the Barth-Lefschetz theorem for $l$-adic cohomology.

Notation will be standard, except that all schemes will tactily be assumed separated and of finite type over the spectrum of an algebraically closed field $\boldsymbol{k}$, of arbitrary characteristic.

## §1. Formal Neighborhoods in $\mathbb{P}^{n}$

Fix a closed subscheme $X \subset \mathbb{P}^{n}$, and denote by $\hat{\mathbb{P}}^{n}$ the formal completion of $\mathbb{P}^{n}$ along $X$. For a coherent sheaf $F$ on $\mathbb{P}^{n}$, write $\hat{F}$ for the formal completion of $F$. In particular, the standard invertible sheaf $\mathcal{O}(\nu)$ on $\mathbb{P}^{n}$ has completion $\hat{O}(\nu)$.

For a coherent sheaf $F$ on $\mathbb{P}^{n}$, the homological dimension $\operatorname{hd}(F)$ is the maximum projective dimension $\operatorname{dim} \operatorname{proj}\left(F_{x}\right)$ of a stalk of $F$, where $x$ ranges over all scheme points $x \in \mathbb{P}^{n}$, and the projective dimension of $F_{x}$ is taken over the local ring of $\mathrm{P}^{n}$ at $x$.

For each integer $i$, define a $\underline{k}$-vector space $V^{i}$ as follows. In characteristic zero, let $X_{0}$ be $V\left(\mathcal{O}_{X}(-1)\right)$ minus the zero-section, where of course $\mathcal{O}_{X}(-1)=\mathcal{O}(-1) \mid X$; then set

$$
V^{i}=H_{D R}^{i}\left(X_{0}\right)
$$

the algebraic de Rham cohomology group [13]. In characteristic $p>0$, set

$$
V^{i}=H^{i}\left(X, \mathcal{O}_{X}\right)_{s},
$$

the stable part of $H^{i}\left(X, \mathcal{O}_{X}\right)$ under the action of the $p^{\text {th }}$-power endomorphism of $\mathcal{O}_{X}$.

Theorem (1.1): Let $X \subset \mathbb{P}^{n}$ be a closed subscheme. If the characteristic is zero, suppose $X$ is a local complete intersection, or, if the characteristic is $>0$, that $X$ is Cohen-Macaulay. Given any coherent sheaf $F$ on $\mathrm{P}^{\boldsymbol{n}}$ there are, for all integers $k$, natural maps

$$
\beta^{k}: \underset{i+j=k}{\oplus} H^{i}\left(\mathbb{P}^{n}, F\right) \underset{\underline{k}}{\bigotimes} V^{j} \rightarrow H^{k}\left(\hat{\mathbb{P}}^{n}, \hat{F}\right)
$$

which are bijective for $k<\operatorname{dim}(X)-\operatorname{hd}(F)$, and injective for $k=$ $\operatorname{dim}(X)-\operatorname{hd}(F)$.

Let $S=\underline{k}\left[X_{0}, \ldots, X_{n}\right]$ be the homogeneous co-ordinate ring of $\mathbb{P}^{n}$. Then

$$
M^{i}=\sum_{\nu \in Z} H^{i}\left(\hat{\mathbb{P}}^{n}, \hat{O}(\nu)\right)
$$

is a graded $S$-module under the cup product. With $F=\mathcal{O}(\nu)$ in (1.1), then, summing over $\nu$ and taking into account the standard results on the cohomology of invertible sheaves on $\mathbb{P}^{n}$, we obtain the following:

Corollary (1.2): Let $X \subset \mathbb{P}^{n}$ be as in (1.1). We have a natural map of graded $S$-modules

$$
\beta^{i}: S \otimes_{k} V^{i} \rightarrow M^{i}
$$

which is bijective for $i<\operatorname{dim}(X)$ and injective for $i=\operatorname{dim}(X)$.

Proof of (1.1): In characteristic zero, (1.1) is an immediate special case of Ogus' result [8, Th. 2.1, p. 1091]. In characteristic $p>0$, (1.2) is [2, Cor. 6.6, p. 140], plus the Lemma of Enriques and Severi [2, Ex. 6.13, p. 143]. To deduce (1.1) from (1.2), one can repeat Ogus' argument, once one has the maps $\beta^{k}$, to which we now proceed.

## Construction of the $\beta^{k}$

Here we work in the category of graded ( $S, F$ )-modules; [2, p. 127-143] contains the definitions and the foundational results we shall need. Since $S$ is regular, the $p^{\text {th }}$-power endomorphism $F: S \rightarrow S$ is flat [loc. cit. Cor. 6.4, p. 138], hence the functor $G$ [loc. cit., p. 132] is left exact.

Lemma (1.3): Let $M$ be a graded ( $S, F$ )-module such that $M_{s}$ is finite dimensional over $\underline{k}$. Then:
(a) there is a natural injection of (S,F)-modules

$$
\underset{\underline{k}}{S} \bigotimes_{k}\left(M_{0}\right)_{s} \rightarrow G(M) ;
$$

(b) if $M_{\nu}=0$ for $\nu \ll 0$, this map is a bijection.

Proof: If $M_{\nu}=0$ for $\nu \ll 0$, this is precisely [2, Theorem 6.1, p. 133]. If not, consider the functor acting on ( $S, F$ )-modules via

$$
M \mapsto M^{+}=\sum_{v \geq 0} M_{\nu},
$$

where the image $M^{+}$is an $(S, F)$-module by restriction. We have

$$
M_{s}=\left(M_{0}\right)_{s}=\left(M^{+}\right)_{s},
$$

and, since $G$ is left exact, we have a natural inclusion $G\left(M^{+}\right) \subset G(M)$ induced by the inclusion of $M^{+}$in $M$. Since (b) holds for $M^{+}$, we obtain a composite injective morphism of functors of $M$ :

$$
S \otimes_{k}^{\otimes}\left(M_{0}\right)_{s}=S \underset{k}{Q}\left(M_{0}^{+}\right)_{s} \cong G\left(M^{+}\right) \rightarrow G(M) .
$$

This proves (1.3).
We can now construct the $\beta^{k}$. By [2, Theorem 6.3, p. 135], we have a natural isomorphism

$$
M^{i} \cong G\left(\sum_{\nu \in \mathbb{Z}} H^{i}\left(X, \mathcal{O}_{X}(\nu)\right)\right)
$$

hence an injection

$$
S \underset{k}{\otimes} V^{i}=S \underset{k}{\otimes} H^{i}\left(X, \mathscr{O}_{X}\right)_{s} \rightarrow M^{i}
$$

by (1.3)(a), since, plainly, $\left(\sum H^{i}\left(X, \mathcal{O}_{X}(\nu)\right)\right)_{s}=H^{i}\left(X, \mathcal{O}_{X}\right)_{s}$. This injection restricts to the subspace $1 \otimes V^{i}$; hence in degree 0 we have an injection

$$
V^{i} \xrightarrow{\alpha} H^{i}\left(\hat{P}^{n}, \hat{O}_{\mathrm{P}}\right) \subset M^{i} .
$$

Finally, composing $\alpha$ with the cup product

$$
H^{i}\left(\mathbf{P}^{n}, F\right) \underset{k}{\otimes} H^{i}\left(\hat{P}^{n}, \hat{O}_{\mathrm{P} n}\right) \rightarrow H^{i+j}\left(\hat{\mathbf{P}}^{n}, \hat{F}\right),
$$

we obtain $\beta^{k}$, and this establishes (1.1).

Remark: Unfortunately for us, [2] only treats the case $F=\mathcal{O}_{\mathrm{p}}(\nu)$; we shall need general coherent $F$, however, in order to prove (2.1) below.

## §2. Vanishing Criteria

We shall be concerned for the rest of this section with the following situation: $X$ and $Y$ will be connected closed subschemes of $\mathbb{P}^{n}$, with $s=\operatorname{dim}(X)$ and $t=\operatorname{dim}(Y)$. We shall assume $X$ is smooth and that $Y$ is a local complete intersection if the characteristic is zero, or, if the characteristic is $>0$, that $Y$ is Cohen-Macaulay. We want bounds on the cohomological dimension $\operatorname{cd}(X-Y)$.

By Lichtenbaum's Theorem (Cf. [7] or [2, Cor. (3.3), p. 98]), $\operatorname{cd}(X-Y)<\operatorname{dim}(X)=s$ if and only if $Y \cap X=\emptyset$; for lower cohomological dimensions the situation is more complicated.

Here is our main result:

Theorem (2.1): With closed subschemes $X$ and $Y$ of $\mathbb{P}^{n}$ as above, suppose $s+t>n$. Then we have

$$
\operatorname{cd}(X-Y)<s-1
$$

in particular, $X \cap Y$ is connected.

Corollary (2.2) (A weak form of Hartshorne's Second Vanishing Theorem [3, Theorem 7.5, p. 444]): Let $Y \subset \mathrm{P}^{n}$ be a positive dimensional closed subscheme satisfying the hypotheses of (2.3). Then

$$
\operatorname{cd}\left(\mathbb{P}^{n}-Y\right)<n-1
$$

Corollary (2.3) (Compare [10, Theorem D, p. 179]): Let $X \subset \mathbb{P}^{n}$ be a smooth hypersurface, $Y \subset X$ a closed subscheme as in (2.3), of dimension $t>1$. Then

$$
\operatorname{cd}(X-Y)<n-2
$$

The corollaries are immediate consequences of (2.1). To prove (2.1), we shall need the following result.

Lemma (2.4) (Hartshorne [2, Theorem 3.4, p. 96]): Let $X$ be $a$ smooth projective variety, $Y \subset X$ a closed subset. The following are equivalent:
(a) $\operatorname{cd}(X-Y) \leq a$
(b) the natural map

$$
\alpha^{i}: H^{i}(X, F) \rightarrow H^{i}(\hat{H}, \hat{F})
$$

is bijective for $i<\operatorname{dim}(X)-a-1$ and injective for $i=\operatorname{dim}(X)-a-1$, for all locally free sheaves $F$ on $X$.

Proof of (2.1): Let $F$ be a locally free sheaf on $X$. Hence $h d(F)=\operatorname{hd}\left(\mathcal{O}_{X}\right)=n-s$. Denote by ""»" the operation of formal completion along $Y$. Applying (1.1) to the $t$-dimensional subscheme $Y \subset \mathbb{P}^{n}$, we find that the natural maps

$$
\beta^{k}: \bigoplus_{i+j=k}^{\oplus} H^{i}\left(\mathbb{P}^{n}, F\right) \underset{\underline{k}}{\otimes} V^{j} \rightarrow H^{k}\left(\hat{\mathbb{P}}^{n}, \hat{F}\right)
$$

are bijective for $k=0$ and injective for $k=1$. Hence, since $Y$ is connected, $V^{0}=\underline{k}$. Thus the bijection $\beta^{0}$ reduces to the natural map

$$
\alpha^{0}: H^{0}(X, F) \rightarrow H^{0}(\hat{X}, \hat{F})
$$

indeed, $X$ is the support of $F$, so we can replace $\hat{\boldsymbol{P}}^{n}$ with $\hat{X}$. Similarly the injection $\beta^{1}$ induces

$$
\alpha^{1}: H^{1}(X, F) \rightarrow H^{1}(\hat{X}, \hat{F})
$$

on the summand corresponding to $i=0, j=1$. Since $\alpha^{0}$ is bijective and $\alpha^{1}$ is injective, our assertion about $\operatorname{cd}(X-Y)$ follows from (2.4). Finally, to see that $X \cap Y$ is connected, one applies [2, Cor. 3.9, p. 101].

Example: Let $X=\mathbf{P}^{m} \times \mathbf{P}^{1}, Y=\mathbf{P}^{m} \times\{P\}$ for a closed point $P \in$ $\mathbb{P}^{1}$. By [12, (1.3)], $\operatorname{cd}\left(\mathbb{P}^{m} \times \mathbb{P}^{1}-Y\right)=m$. (Since $Y \neq \emptyset$, we can't have $\mathrm{cd}=m+1$, by Lichtenbaum's Theorem.) We therefore obtain the bound

$$
n \geq 2 m+1
$$

for any $\mathbb{P}^{\boldsymbol{n}}$ containing $\mathbf{P}^{\boldsymbol{m}} \times \mathbf{P}^{\mathbf{1}}$. Now any smooth projective variety of dimension $m+1$ can be projected isomorphically into $\mathrm{P}^{2(m+1)+1}=$ $\mathbf{P}^{2 m+3}$; Hartshorne, however, shows [4, pp. 1025-1026] that $\mathbf{P}^{m} \times \mathbf{P}^{1}$ can be projected isomorphically into $\mathbf{P}^{2 m+1}$, two dimensions less. In other
words, the inequality of (2.1) actually gives the embedding dimension of $\mathbb{P}^{m} \times \mathbb{P}^{1}$, hence is best possible.

Remark: Related techniques (compare [5], [8], [9]) give other, perhaps better known, results. For example, with $F=\mathcal{O}_{X}(1)$ in (1.1), we find

$$
V^{j}=\left\{\begin{array}{l}
\underline{k} \text { if } j=0 \\
0 \text { if } 0<j \leq 2 \operatorname{dim}(X)-n .
\end{array}\right.
$$

Then a straightforward inspection of the $\beta^{k}$, with $F$ locally free on $X$, gives the inequality

$$
\begin{equation*}
\operatorname{cd}(X-Y)<n+s-t-\inf (s, t) \tag{2.5}
\end{equation*}
$$

With $s \leq t$, we obtain $\operatorname{cd}(X-Y)<n-t$. On the other hand, with $t \leq s$ (e.g., if $Y \subset X$ ), we find $\operatorname{cd}(X-Y)<n+s-2 t$.

Taking $X=\mathbb{P}^{n}$, the last inequality gives

$$
\operatorname{cd}\left(\mathbb{P}^{n}-Y\right)<2 n-2 t,
$$

a result due originally to Barth [1, §7, Cor. of Th. III] in the complex case.

## §3. The Main Result for $\operatorname{Pic}(X)$

Theorem (3.1): Let $X \subset \mathbb{P}^{n}$ be a smooth closed subscheme of dimension $s$, over the spectrum of an algebraically closed field of characteristic $p>0$. If $s \geq \frac{1}{2}(n+2)$, then $\operatorname{Pic}(X)$ is a finitely generated abelian group of rank 1, with no torsion prime to $p$.

Proof: $\operatorname{Pic}\left(\mathbb{P}^{n}\right) \rightarrow \operatorname{Pic}(X)$ is injective; if not, $\mathcal{O}_{\mathrm{P}^{n}}(d) \mid X$ would be trivial for some $d>0$, but $\mathcal{O}_{\mathrm{p}^{n}}(d) \mid X$ is very ample. By [5, Cor. 4.6, p. 74], $\operatorname{Pic}(X)$ has no torsion prime to $p$, so $\underline{\operatorname{Pic}^{0}}(X)_{\text {red }}$, an abelian variety, is trivial. Hence

$$
\operatorname{Pic}(X)=\underline{\operatorname{Pic}}(X) / \underline{\operatorname{Pic}^{0}}(X)=N S(X),
$$

a finitely generated abelian group, by the Theorem of the Base.
For the rest of the proof, let $l$ be a prime different from $p$, and consider the $l$-adic étale cohomology of $X$. Then, by [4, Remark 2, p.

1021], the natural maps

$$
H^{i}\left(\mathbb{P}_{\underline{\underline{\text { et }}}}^{n}, \mathbb{Q}_{l}\right) \xrightarrow{\gamma^{i}} H^{i}\left(X_{\underline{\underline{e t}}}, \mathbb{Q}_{l}\right)
$$

are bijective for $i \leq 2 s-n$. In particular, $\gamma^{2}$ is bijective. Recall that, as functors, we have

$$
H^{i}\left(*_{\underline{\mathrm{et}}}, \mathbb{Q}_{l}\right)=H^{i}\left(*_{\underline{\mathrm{et}}}, \mathbb{Z}_{l}\right) \otimes_{\mathbb{Z}_{l}} \mathbb{Q}_{l},
$$

where

$$
H^{i}\left(*_{\underset{\mathrm{et}}{ }}, \mathbb{Z}_{l}\right)=\underset{\vec{r}}{\lim } H^{i}\left(*_{\underline{\mathrm{tt}}}, \mathbb{Z} / l^{r} \mathbb{Z}\right)
$$

Hence, bijectivity of $\gamma^{2}$ implies that $H^{2}\left(X_{\underline{\text { et }}}, \mathbb{Z}_{l}\right)$ has rank 1 .
Since the base field is algebraically closed, we can make a noncanonical identification $\mu_{l^{r}}=\mathbb{Z} / l^{r} \mathbb{Z}$. Then the Kummer sequence reads

$$
0 \rightarrow \mathbb{Z} \| \mathbb{Z} \rightarrow \mathbb{G}_{m} \xrightarrow{l r} \mathbb{G}_{m} \rightarrow 1 .
$$

Passing to cohomology, we obtain the exact sequence

$$
H^{1}\left(X_{\underline{\underline{t}} \mathrm{t}}, \mathrm{G}_{m}\right) \xrightarrow{l r} H^{1}\left(X_{\underline{\text { et }}}, G_{m}\right) \rightarrow H^{2}\left(X_{\underline{\underline{\mathrm{t}}}}, \mathbb{Z} / l^{r} \mathbb{Z}\right) .
$$

Since $H^{1}\left(X_{\underline{e} t}^{\prime}, \mathrm{G}_{m}\right)=\operatorname{Pic}(X)$ we have a natural inclusion

$$
\operatorname{Pic}(X) / l^{r} \operatorname{Pic}(X) \hookrightarrow H^{2}\left(X_{\underline{\mathrm{et}}}, \mathbb{Z} / l^{r} \mathbb{Z}\right)
$$

compatible with the reduction maps on both sides are $r$ varies. Letting $r \rightarrow \infty$, we find

$$
\operatorname{rank}(\operatorname{Pix}(X)) \leq \operatorname{rank}\left(H^{2}\left(X_{\underline{\mathrm{et}}}, \mathbb{Z}_{l}\right)\right)=1,
$$

and this completes the proof.

## REFERENCES

[1] W. Barth: Transplanting Cohomology Classes on Complex Projective Space. Am. J. Math., 92 (1970) 951-967.
[2] R. Hartshorne: Ample Subvarieties of Algebraic Varieties. Springer Lecture Notes in Mathematics, Nr. 156 (1970).
[3] R. Hartshorne: Cohomological Dimension of Algebraic Varieties. Ann. of Math., 88 (1968) 111-125.
[4] R. Hartshorne: Varieties of Small Codimension in Projective Space. Bull. Ann. Math. Soc., 80 (1974) 1017-1032.
[5] R. Hartshorne and R. Speiser: Local Cohomological Dimension in Characteristic p. Ann. of Math., 105 (1977) 45-79.
[6] W. Fulton and J. Hansen: A Connectedness Theorem for Projective Varieties, with Applications to Intersections and Singularities of Mattings. Annals of Math. (to appear).
[7] S. Kleiman: On the Vanishing of $H^{n}(X, F)$ on an $n$-Dimensional Variety. Proc. Am. Math. Soc. 18 (1967) 940-944.
[8] A. Ogus: On the Formal Neighborhood of a Subvariety of Projective Space. Am. J. Math., 97 (1976) 10885-1107.
[9] A. Ogus: Local Cohomological Dimension of Algebraic Varieties. Ann. of Math., 98 (1973) 327-365.
[10] A. OgUS: Cohomological Dimension of Noncomplete Hypersurfaces. Inv. Math., 21 (1973) 143-150.
[11] A. OgUS: Projective Varieties of Low Codimension in Characteristic $p>0$. Trans. Am. Math. Soc., 240£ (1978) 329-343.
[12] A. OgUs: Extending Meromorphic Functions on $\mathrm{P}^{m} \times \mathrm{P}^{n}$. J. Für die Reine und Ang. Math., 305 (1979) 126-133.
[13] R. Hartshorne: Algebraic Dhe Rham Cohomology, Publ. Math. IHES, No. 45 (1976) 9-99.

