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0. Introduction

The purpose of this paper is to give a formula for the Tamagawa
number of a reductive quasi-split algebraic group G defined over an
algebraic number field in terms of the Tamagawa number of a
maximal torus of G (cf. Theorem 7.1).
The Tamagawa numbers of classical groups were determined by

Weil [23]. In [15] Langlands determined the Tamagawa number of all
split semisimple groups. We extend the result of Langlands to quasi-
split groups.

1 am most grateful to R.P. Langlands for explaining his methods to
me. 1 would like to thank M. Rapoport for sending me his paper [ 18]
and J. Arthur for useful suggestions.

NOTATIONS:

F = number field

Fv = completion of F at the place v
F = algebraic closure of F

v|ce = v is an infinité place
v  oo = v is a finite place

Ov = OFv = ring of integers of Fv (v  ~)
q = order of residue field of Fv
v = uniformizing element of Ov (v  ~)
A = adeles of F, Ây = adeles trivial outside 9’

||v = normalised absolute value at v (v  ~): lv|v = q-t
|| = adelic absolute value.

0010-437X/80/OS/0153-36$00.20/0
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For an algebraic group H defined over F, we write

For a complex valued function f (x), write f(x) for the complex
conjugate of f (x).

1. Quasi-split algebraic groups

1.1. Let G be a connected reductive algebraic group defined over
F. We say that G is quasi-split if one of the following equivalent
conditions is satisfied

(I) G has a Borel subgroup B defined over F,
(II) the centralizer in G of a maximal F-split torus is a maximal

torus of G,
(III) G has no anisotropic roots.

In the following G denotes a connected reductive quasi-split group.

1.2. Let A be a maximal torus of G lying in B and defined over F,
L the group of characters of A, L = Hom(L, Z), 03A3() the set of roots
(coroots) of G with respect to A, â basis of X with respect to B and
â the elements of 1 corresponding to à. There is a bijection between
F-isomorphism classes of triple (G, B, A) and isomorphism classes of
based root system 03C80(G) = (L, 0394, L, Â). This bijection yields a con-
nected reductive C-group Ô’ with based root system qio(à°) =
(, , L, 0394). Let Â° (resp. Êo) be the maximal torus (resp. Borel
subgroup) defined by tPo(âO).
Let E be a Galois extension of F such that G splits over E. If

u E Gal(E/F), À E L, we denote the action of U on À by aÀ where
03C303BB(a) = 03C3(03BB(03C3-1a)) for a E A. As G is quasi-split, 03C30394 = 0394. We can

define a homomorphism 03BC : Gal(E/F)~Aut tPo(G). Since we have
canonical Aut 03C80(G) = Aut 03C80(0), we may view 03BC as a homomor-

phism of Gal(E/F) into Aut tPo(âo). Moreover there is a split exact
sequence
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and a splitting yields a monomorphism

Together with the 03BC above we get a homomorphism

The associated group to, or L-group of, G is then by definition the
semidirect product

(See Borel [3]).

1.3. Let Z be the identity component of the centre of G and G’ be
the derived group of G. Then G = ZG’ and A = ZA’ where A’ =

A n G’. Let °L+ be the group of rational characters of Z and OL- be
the elements of °L+ which are 1 on Z fl A’. Let ’L- be the lattice of
roots of A’. (Note that there is a bijection between the roots of (G, A)
and (G’, A’) and the corresponding Weyl groups can be identified. We
shall not use a separate notation.) We denote the Weyl group of the
root system by W. There exists a non-degenerate W-invariant bilinear
form (. , .) on ’L- ~z C such that its restriction to ’L- ~z R is positive
definite. Let ’L be the lattice of rational characters of A’ and

Set L- = 0L-~1L- and L+ = °L+ (f) 1L+. We define dual lattices by

We then have L-CLCL+CLQ9zC and L-cLcL+cLQ9zc.

For the pairing L x  ~ C, we use the notation (À, À) = (03BB) where
À E L,  E L and we extend it meaningfully to the other lattices. The



156

form on 1+ Q9 C adjoint to the one given above on IL - Q9 C will also
be denoted by (. , .), i.e. if IL, v E 1L- ~ C, and if the elements ,  of
1+ OC satisfy the equations

for all À E IL - Q9 C, then (JL, v) = (il, v).
Suppose v is a finite place of F. We define a map v : A(Fv) ~~Q

by the condition

f or ail À E L and a E A(Fv), where Wv is the unif ormizing element of
Fv and 1.lv is the normalized valuation of Fv. For IL ELQ9C, define

Î E Â 0 = Hom(L, C*) by

for all  E L. We sometimes write t for 03BC.
We write LF for the lattice of F rational characters of A. Similar

notation will be used for the lattices °L+ etc.

1.4. Next we write down explicitly the Galois action on the derived
group ô, of ô,. Put Â’ = Â0 ~ ’. Let à be the Lie algebra of Â’.
Choose H1,..., Hr E à so that

where 03BB ~ 1+ and 0394 = {03B11,..., 03B1r} are the simple roots. Choose
vectors X±âi belong to the ± â; respectively such that

For or E Gal(E/F), 1ià = 03C303B1 for a ~ 0394. If we put 03C3(âi) = â03C3(i), then the
Galois action on the Lie algebra 4’ of G’ is the unique isomorphism
satisfying

(see Jacobson [9] Chap. VII).

1.5. Let XF denote the set of F-roots of G with respect to Ad, the
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maximal F-split torus in A. As G is quasi-split, each element of 03A3 has
a nontrivial restriction to Ad, and 03A3F is eqUal to the set of restriction
to Ad of elements of 03A3. In fact, if G splits over a Galois extension E
of F, the Galois group Gal(E/F) acts on 03A3 and each orbit restricts to
an element of .IF. In each orbit choose a representative a and denote
the corresponding orbit by (fa and the element in 03A3F to which the

elements in (la restrict, is denoted by aF, i.e. aF = 03B1|Ad.
The Weyl group W of 1 is given by N(A)/Z(A) while the rational

Weyl group WF of .IF is N(Ad)/Z(Ad). We can identify WF as a
subgroup of W.
Let OXF be the reduced F-root system consisting of the indivisible

F-roots of 03A3F, Le. 003A3F = aF ~ 03A3F |1 203B1F~ 03A3F}. oIt = 003A3F ~ 03A3+F.
Next we define the elementary subgroup Gap of G f or aF E 003A3+F. Let

AaF = (ker 03B1F)0. Then G03B1F = ZGA03B1F, Le. we take the centralizer in G of
A03B1F.

It can be easily proved that GaF is connected reductive quasi-split
group of semi simple F-rank 1.

1.6. There is a non-empty finite set  of places of F, containing all
the infinite places such that the F-group G can be regarded as defined
above Spec(0q), where 0g is the ring of the elements of F which are
integral outside Y. Thus G(Ov) is defined for those v not in .
For v1 00, let Kv be a maximal compact subgroup of Gv such that

Gv = Bv · Kv is an Iwasawa decomposition. For v  00, let Kv be a

special open maximal compact subgroup of Gv, in the sense of

Bruhat-Tits [4]. In particular, for almost all v, Kv can be taken to be
G(Ov ). Similar considerations can be given to G03B1F. Therefore, when we
consider the finite set {G, G03B1F}03B1F~003A3F of groups taken together, except
for a finite number of places, we have simultaneously

where aF E 003A3F.

Let us now fix Kf = 03A0v~ Kv, K~ = 03A0v|~ Kv, K = K~Kf. Then

G(A) = B(A) . K.

1.7. Let X(G) be the lattice of rational characters on G. Let

L(s, G) be the Artin L-function corresponding to the Gal(E/F)-module
X(G)Q9Q and let Lv (s, G) be its v-component.
Let X be a nontrivial character on A trivial on F. X defines a
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nontrivial character Xv of Fv at each place v of F. Let dxv be the
additive Haar measure on Fv self-dual with respect to Xv and let
dx = IIv dxv. For v finite, the Haar measure on Fxv is chosen so that

the measure of (Yv is one.
Let 03C9 be an F rational left-invariant nowhere vanishing exterior

form of highest degree on G. For each v, w and dxv defines a measure
|03C9|v on Gv (cf. [23]). We put dgv = Lv(1, G)|03C9|v, for finite v, and

dgv = |03C9|v for infinite v. Then the Tamagawa measure dg on G(A)
is the Haar measure on G(A) defined by

where r the rank of the lattice of F rational characters X(G)F of G
(cf. [17]). This measure is independent of choice of X and w.

Let Xl, ..., Xr a basis of X(G)F. Then the map g -

(IX1(g)I,..., |~r(g)|) defines a homomorphism G(A)~(Rx+)r. Let G1(A)
be the kernel of this homomorphism. Also, the restriction of XI, ..., Xr
to the split component Zd of the radical of G defines an F-homomor-
phism 8 from Zd to GL(1)r. This defines a homomorphism 03B4~ from the

identity component of Zdm to GL(1)r~. For each t ~ Rx+, call 03BE(t) the
idele (03BE(t)v) such that e(t), = 1 for every finite place and 03BE(t)v = t for
every infinite place. Then t ~ 03BE(t) is an isomorphism of R’ onto a
subgroup GL+(1)~ of GL(1)m. Let Z+~ be the identity component of
inverse image of GL+(1)1 under 03B4~. Then Z+~ is isomorphic to (Rx+)r
and G(A) = G(A)1 x Z+~. If we put the measure dt = ^ri-1 (dt;/ti) on Rx+,
then

defines a Haar measure on G’(A). This measure is independent of
choice of ~1,..., X,. The Tamagawa number 7(G) is the finite number
defined by

1.8. Let N be the unipotent radical of B. Then we can define
Tamagawa measures da (resp. dn ) on A(A) (resp. N(A)) as in the
case of G. We normalize the measure on Kv by the condition
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Then we have dk = IIv dkv and

Let p be the half sum of the positive roots of G with respect to A.
To simplify notation we write p for the quasi-character on A(F)BA(A)
determined by p. Since G(A) = B(A) · K = N(A)A(A)K, there exists a
positive constant K such that for any f E Cc (G(A)),

According to the Bruhat decomposition of G we have

But except for the Weyl group élément wo that sends aIl the positive
roots to négative roots, the cosets NAwN has lower dimension than
that of G, and so NAwN has measure zéro. Thus if we write

gv = nvavw0n’v, we have

where dav is the local measure on Av induced by |03C9|v.

2. Eisenstein series and M(w,03BB)

2.1. For our purposes it is sufficient to consider the contribution to

the spectral decomposition of 2(Z+~G(F)BG(A)/K) from the Borel
subgroup B. We can define the adelic analogue of the function spaces
(V, W), D(V, W) and (D(V, W)) of §2 and 3 of [13] with respect
to the Borel subgroup B, the trivial representation of K and a
character À of Z+~A(F)BA(A) which is trivial on the image of B(A) fl
K in N(A)BB(A).

2.2. Define A+~ (resp. A(A)’) in the same way as Z+~ (resp. G(A)’).
Let (Z+~A(F)BA(A))* be the set of characters of Z+~A(F)BA(A). Fix a
basis {~j} of LF. Each élément À = E si~i of LF~ C can be considered
as a character of Z+~A(F)BA(A) via the formula
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In this way LF~C is identified with a subset of (Z+~A(F)BA(A))*.
From now on we shall consider only those À in LF~C.
Let 6(À) be the space of continuous functions on

N(A)B(F)BG(A)/K satisf ying the condition

for a E A(A), g E G(A).
Let (03BB) be the space of functions 0(-, g), with values in (03BB),

which is defined and analytic in a tube in LFQ9 C over a ball of radius
R with R &#x3E; (p, 03C1)1/2 and which goes to zero at infinity faster than the
inverse of any polynomial.

2.3. Let Do be the unitary characters of Z+~A(F)BA(A). Then
(Z+~A(F)BA(A))* is also the union of sets of the form

where a is a fixed character with values in R¡. We equip Do with the
dual Haar measure via Pontrjagin duality and give D, the measure
obtained by transport of structure from Do.
We write D for the space spanned by functions of the form

where 0 E W(À ) and 03BB0 is a character with values in Rx+. By means of
Fourier transform we get

According to Langlands [13, 14], for 0 e 2 the theta series

belongs to 2(Z+~G(F)BG(A)). Combining with (2), we get
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where

is an Eisenstein series. It converges uniformly for g in compact
subsets of G(A) and À E LF~ C such that Re(À, a) &#x3E; (p, a) for every
positive root a.
We define the constant term of the Eisenstein series E(g, 03A6, 03BB) by

2.4. PROPOSITION: The constant term is given by the following
formula :

where WF is the F-rational Weyl group of G and

PROOF: We have

The proposition is immediate once we break up the sum over

B(F)BG(F) into a sum over WF = B(F)BG(F)/N(F) (Bruhat decom-
position) and a sum over (w-’B(F)w ~ N(F))BN(F).

2.5. We can define local version of (03BB) as the space v(03BB) of
continuous functions 03A6v on Nv BGv/KU satisfying

(here p(av ) is to be interpreted as |03C1(av)|v).
For 0 E (03BB), we let 03A6v denote its restriction to Gv. Since 0 is

right invariant under K = II Kv where Kv = G(0v) almost all v, and



162

G(A) is the direct limit of G’, we can write

(Here it is understood that 0(l) = 1.)
Furthermore, M(w,À) is a linear map from 6(À) to (03BBw) where

À "’(a ) = 03BB(waw-1). In fact it is just multiplication by a constant to be
calculated below. Moreover, M(1,03BB) = 1 because vol(N(F)BN(A)) =
1.

2.6. PROPOSITION: Let "’N = w-1Nw f1 N and NW = w-IÑw ~ N
where 9 is the unipotent subgroup opposite to N. Define a linear
transform Mv(w, À): v(03BB) ~ v(03BB "’) by

for g E Gv. Then we have

(Here one regard the Mv(w, À) as complex numbers.)

PROOF: First we have N = "’N . N "’. So

It f ollows that, for 03A6 ~ (03BB)

The formula (10) now follows from the above and the fact that we
have normalized our measure such that
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3. Mv(w,03BB) in the rank one case

3.1. We shall compute Mv(w,03BB) for those places v of F satisfying
the following conditions:

(i) G is a connected reductive quasi-split group over Fv.
(ii) G splits over an unramified extension of Fv.
(iii) Gv = BvKv and Kv = G(0v).
(iv) G is of semisimple Fv-rank one.
Let us write Ev for the unramified extension of Fv over which G

splits and write Co for the uniformizing element of both Ev and Fv. We
denote by or the Frobenius element in Gal(Ev/Fv).
Under the assumption, the Fv-rational Weyl group WFv = fl, w0},

where wo sends all the positive roots to negative roots. We know that

It remains to calculate Mv(wo, À). As v(03BB) is one dimensional it

suffices to calculate

where 03A6(03BB) is (03BB) is chosen to satisfy

G has Fv-rational rank 1 also implies that LFv Q9 C is isomorphic to
C and hence can be replaced by the set {ps|s ~ C}. Thus it suffices to
consider M(wo, 03C1s). We define 0(p’) by:

Let us write M(s) for M(wo, 03C1s). Then (1) becomes

We can further assume that wo E Kv, then changing variable by the
map n ~ w0nw-10, we have
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and

3.2. PROPOSITION: Let fi be the subspace of the Lie algebra of a
spanned by the positive root vectors. Then

where  = s03C1.

Let G’ be the derived subgroup of G. Then the unipotent radical of
the Borel subgroup of G’ is the same as that of the corresponding
Borel subgroup B of G. Thus we only need to compute the integral
M(s) for connected semisimple quasi-split groups of Fv-rank one.
Henceforth, in this subsection we shall assume G to be of such type.
According to Steinberg’s variation of Chevalley’s theme, the quasi-

split form of G is determined up to Fv-isomorphism by its Dynkin
diagram and the twisted action of galois group (modulo inner twis-
ting). As a result, up to central isogeny, G can only be one of the
following types:

(I) G splits over Gv and has a connected Dynkin diagram, i.e.

G = SI.,2.

(II) G is a twisted form of a Fv-split group whose Dynkin diagram
is type A2, i. e. G(Fv) = SU3(Ev/Fv) = (g E SL3(Ev) 1 tgJg = J} where
Ev/Fv is a quadratic extension; the conjugation by the nontrivial

element of the Galois group Gal(Ev/Fv) is denoted by x ~ x; tg is the

conjugate-transpose of the matrix g : J = 1 1 is the matrix of

the Hermitian form with respect to the nontrivial element of

Gal(Ev/Fv).

(III) G is a twisted form of a Fv-split group whose Dynkin diagram
consists of n copies of Ah i.e. there exists an extension Ev/Fv of
degree n and G(Fv) = SL2(Ev).

(IV) G is a twisted form of Fv-split group whose Dynkin diagram
consists of n copies of A2 ; there exists field extensions Ev, Ev of F
such that [Ev : E’] = 2, [Ev : Fv] = 2n. If x - x is the nontrivial action of
the Galois group Gal(Ev/E’ V) then G(Fv) = SU3(Ev/E’v) =
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It is obvious that it suffices to calculate (2) up to isogeny (see for
example [18] §4.3). Moreover Rapoport [18] pointed out that it is

possible to avoid the calculation of (2) for the cases (III) and (IV) by
proving a general lemma on the behaviour of (2) under restriction of
ground field.

3.3. When G is S4, it is well known that

The Lie algebra fi in this case is one dimensional and it is trivial to
check the formula (3). We shall omit the details.

3.4. PROPOSITION: Let Ev/Fv be an unramified quadratic extension
of local fields such that 2 is a unit in Ev. Then for the quasi-split
group SU3(Ev/Fv) we have

PROOF: First we have

E is an unramified quadratic extension of F, so there exists an
element c E 0FV - 0Fv such that its image in 0Fv/0Fv is not a square
and Ev = Fv(c). Let the map ordFv : Fxv ~ Z be defined by the con-
dition 
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Similar condition defines ordEv. Note if x E Fv, then |x|Ev = |x|2Fv im-
pties ordFvx = ordEvx.

Next, let us détermine the measure dn on the nilpotent group
N(Fv). Let x, y E Ev such that y + y + xx = 0. Then we can write

y = y1c - xx 2 where YI E Fv. Note that xx = NEv/Fv(x) also belongs to
Fv.
A typical élément of N(Fv) can now be written as

Thus we can write N(Fv) = N1N2 (as sets) and take dn to be the

image of the product of the measure on Ev and Fv respectively under
the maps;

We normalize the measures on Ev and Fv by the condition that the
volume of the respective maximal compact subrings is one.
The nontrivial element of the Weyl group corresponds to the matrix

We have

If n E Nv, then by Iwasawa decomposition of SU3(Ev/Fv), we get
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for some n E Nv, k E Kv.

As noted we can write y = y1c - xx 2 for some YI E F.

Then ordEvy = inf(ordEvyl, 2 ordEvx) and

The zero in the "inf" is put into account for the case when both x and

y are integral, and n E Kv.
Direct calculation using the definition of p’ gives

To calculate the value of p"’(ii), we have to consider four cases:

1. ordEvx ? 0 and ordEy1 ~ 0
~ ordEvy ~ 0
~ inf(O, ordEvx, ordEvy) = 0
~ 03C1s+1(n) = 1.

2. 2 ordEvx ~ ord EvYI, ordEvyl  0, ordEvyl is even.
if ordEvx ~ 0 then ordEvy,  ordE,,x.
If ordEvx  0 then ordEvy1 ~ 2 ordEvx  ordEvx.
Thus inf(0, ordEvx, orde y) = orde ,y, and
ps+l(n) = |a-1|s+1Ev = q2(s+1)ordEvy1.

Note: if orde "y, = -2m then

3. 2 ordEvx ~ ordEvYt  0, ordEvYI is odd
~ inf(0, ordEvx, ordEy) = OrdEvy2
~ 03C1s+1(n) = q2(s+1)ordEvy1.
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Note: if orde,,yl = -(2m - 1), m ? 1 then

Now we are ready to calculate the integral M(s). We break the
integral up into four pieces corresponding to the four cases above and
transfer the integral over N(Fv) to those over Ev x Fv, viz.,

where PEv (resp. PEv) is the maximal prime ideal of Ev (resp. FU). We
normalized measure on Ev, Fv by foE dx = 1 and foF dy1 = 1.

Further calculation gives
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Adding all the terms, we have

To complete the proof of the proposition, let us look at the Lie

algebra g of the analytic group  associated with G. We can take g to
be I2(C) and let Î+ = lâl, â2, â3}, â3 = âl + â2. There exists root vec-
tors Xêl 11 Xâ2, Xêl such that

g has a Dynkin diagram of type A2

the arrows indicate the action of a E Gal(E/F), i.e. 03C3(Xâ1) = Xâ2’
Since this action is to be extended to a Lie algebra isomorphism, i.e.

03C3[Xâ1, Xâ2] = [03C3Xâ1, 03C3Xâ2], so UXâ3 = [Xâ2, Xâ1] = -Xâ3.
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Also, we have

or

because ~03C1, à) =  = 1 if a simple and

We take n = CXâ1 + CXâ2 + CXâ3. Then

and

This completes the proof of the proposition.
3.5. Let us now consider the case (III). G is a connected semi-

simple quasi-split algebraic group defined over FV splits over an
unramified extension Ev/Fv of degree n.
The absolute Dynkin diagram of G consists of n copies of Al, and

the action of the Frobenius a in Ga1(Ev/Fv) is the cyclic permutation
as indicated

The action has only one orbit; G is of F-rank 1 and G(Fv) = SL2(Ev).
The integral that we are interested in becomes M(s) = fN v ps+’(n) du
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where

and

So by §3.3

But on the other hand tî = I2x ... xI2. Let Xâ. i be the root vector
corresponding to the positive root âi of the ith copy of I2 in the
product. Then

because p = 1 203A303B1i and as the diagram is disconnected (aj, âi~ = 0 if i ~ j,

and = 1. So,

Similarly,

and we are done.
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3.6. Finally, let us look at the last case IV. Here G is a Fv-form of a
split group with a Dynkin diagram consisting of n copies of A2. G is
defined over Fv splits over an unramified extension EU of degree 2n ;
there exists a field E’ in Ev/Fv such that [E’v:Fv] = n ; the non-trivial
element of Gal(Ev/E’v)(~ Gal(Ev/Fv)) give rise to the twisting; the
action of this element is shown in the diagram

This determines a special unitary group SU3(E,/E’,) with respect to
the form

such that

Thus, using the result in §3.4, we get

(Note: modulus of Ev = q2n.)
To e stablish the formula

we shall evaluate the determinants directly.
Let us denote the simple root system â by (ai, 03B21;...; an, 03B2n}. We

calculate
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Hère 03C1 = 1 2 03A3ni=1 (03B1i + 03B2i + (a; + 03B2i)),

because i ~ j

and

Similarly

and

Next we write down the effect of the Galois action as indicated by
the arrows in the above diagram. For 1 s i ~ n - 1,

and

If we take the basis of n to be Xâ,, X1, Xâ1+1, ..., Xân, Xn, Xân+n (in
that order), then it is trivial to show that
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and

Thus the required formula is proved. With this we complete the
proof of Proposition 3.2.

4. Reduction to rank one

To determine the local factor Mv(w, 03BB) for almost all v for G of

arbitrary F-rank, we use the method of reduction to F-rank one which
was first studied by Bhanu-Murti [1] and was extended by Gindikin
and Karpelevich [6]. This method has also been used in Langlands’
Euler Product (Yale, 1971) and in the thesis of Jacquet (Paris) and Lai
(Yale). Here we shall follow Shiffmann [19].

4.1. We want to calculate the integral (9) of § 2. For À E LFQ9 C,
(03BB)~0 and so v(03BB) ~ 0 for all v. We have WF C WF. We can
consider w as an element of WF,, and do the rest of the calculation
over Fv. Moreover for almost all v, v(03BB) is one dimensional. It is

sufficient to evaluate the integral for the following function in v(03BB):

where gv = nvavkv E Gv. The linear transformation Mv(w, À) is just
multiplication by the following constant which we also denoted by
Mv(w, À):

Changing the variable by n ~ w-1nw and writing Ñw = WNwW-1 =
wNw-, ~ N, we have

Recall that the length e(w) of w is the smallest integer g of such
that there exists g simple Fv-roots 61,...,,Bg with
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(sa; is the symmetry with respect to aj). Moreover the Fv-roots

03B1j = s03B2~(w) ··· s03B2j+1(03B2j) j = 1, ..., t(w) are positive and if we write

then

We quote the following lemma from Schiffmann ([19], Prop. 1.3).

4.2. LEMMA: Let w, w’, w" be three elements of wF such that w =
w’w" with ~(w) = ~(w’) + ~(w"). Then the map (4) (n’,n") ~
n’(w’n"w’-1) defines a variety isomorphism Nw’  Nw" ~ Nw.

4.3. Using the above lemma, and assuming the integrals involve
converges, we have

and so

If we write w as a product of symmetries (as in (3)) then formula (5)
allows us to reduce the calculation to the case é(w) = 1, i.e. the

F-rank one case, and in this case the convergence follows from the

explicit f ormula given in §3. To summarize we have

4.4. PROPOSITION: Let Na = Ga ~ N f or a ~003A3+F and N03B1 the uni -
potent subgroup of Ga opposite to Na. Then the integral (2) converges
for 03BB E LF~C with Re(~03BB, â~) &#x3E; 0 f or all a ~003A3+F(w),

where 03A603B1 is the restriction of 0 to Ga.
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4.5. As each Ga has Fv-rank one we can apply Proposition 3.2 to
get

Let n be the nilpotent subalgebra of g spanned by Sa for a E

003A3+Fv(w). The action of u Ad Î on fi’ preserves the subspaces fia.
Hence

The following proposition f ollows immediately from (6), (7) and (8).

4.6. PROPOSITION: For almost all v, we have

where u is the Frobenius and Î = 03BB.

5. Value of the local factor at one

5.1. Let  be a finite set of places of F containing all the infinite
place of F, all the ramified places of F and all the places at which the
conditions (i) to (iii) of §3.1 are not satisfied. Let us write

where sEC and wo E WF sends all positive roots to negative roots.
Then M(1) can be considered as a linear map E(03C1) ~ E(03C1-1) and

for 03A6 E (03C1), g E Gy. Now G = ByKy implies that (03C1) is one

dimensional and M(1) is just multiplication by a constant which we also
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denoted by M(1). We have

5.2. Let L(s, G) be the Artin L-function of the Galois action on the
rational characters of G, Lv(s, G) be the local factor at v of L(s, G)
and

where rG is the rank of X(G)F. Similar definitions are made with A
replacing G.

PROPOSITION: For  sufficiently large we have

where the vol Kv is calculated by the local measure dgv.

PROOF: Let h be an integrable function on Ny + Ay. Let f be a
function on G(A) which vanishes at g except if gv E Kv for all v ~ 
and if the latter condition is satisfied, we have

for g = nak. First of all we have

On the other hand, suppose that gy lies in the large cell NSw0N
of the Bruhat decomposition: g = n2a2wonl where a2 ~ A and

n1, n2 ~ N and if we write won 1 = n(n1)a(n1)k with n(n1) E Ny and
a(n1) E Ay, then gy = n2a2n(n1)a-12a2a(n1)k and
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After changing the measures, the integral in the above formula

becomes

Substitute this and

into (5). Comparing the result with (4), we obtain (3) by noting that the
choice of h is arbitrary.

5.3. COROLLARY: For v ~ , if we write

then

PROOF: Apply the proposition to ’ =  ~ {v}. The corollary then
follows immediate form

5.4. REMARK: We have followed Rapoport [18] in the proof of
corollary 5.3. An alternative approach is given in my thesis (Yale
1974) in which (6) is deduced from (9) of §4 by calculating directly
vol(Kv ) via reduction mod v.

6. The constant functions

We calculate in this section the projection of 6 into the subspace of
constant functions in 2(Z+~G(F))BG(A)).

6.1. Let  be the closed subspace of 2(Z+~G(F))BG(A) generated
by  for 0 ~ D. Write  for the union of W(À ) for all À in LFQ9C.
Suppose that f is a complex valued function defined, bounded and
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analytic in a tube in LFQ9 C over a ball of radius R with centre at zero
and R &#x3E; (p, 03C1)1/2. Assume also that f(w03BB) = f(X) for all w E WF. Then

where 1Jt(À, g) = f(03BB)03A6(03BB, g), defines a linear map on X and induces a
bounded linear operator

on . If a &#x3E; (p, p) and f(03BB) = (a - (03BB, 03BB))-1, then A (f ) is self-adjoint.
We define

It is an unbounded self-adjoint operator on  (A is introduced in

Langlands [ 14] §6 and [15]). It is obvious that if 03A8(03BB, g) =
(À, 03BB)03A6(03BB, g) then A = . The following two lemmas and the corol-
lary are easy to prove.

6.2. LEMMA: Let (, ) be the inner product on 22(Z+~G(F))BG(A) and
1 be the constant function. For  E Y, we have

6.3. LEMMA: For  EE Y and A as defined above we have

6.4. COROLLARY: A1=(03C1,03C1)1.

6.5. For z E C, let R (z, A) = (z - A)-1 be the resolvent of A. For
Ào E LFQ9 R if Re z &#x3E; (Ào, Ào), then it is easy to show that

Let E(x), -00  x  00 be a right continuous spectral resolution of
the self-adjoint operator A. It is obvious that (p, p) belongs to the
point spectrum of A and corollary 6.4 implies that the constant
functions are in the range of the projection E((03C1, 03C1)) - E((03C1, p) - 0) =
E(say). Suppose a &#x3E; (p, p) &#x3E; b, and a - b is small, then (E, ) is
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given by Stieljes inversion,

where C(a, b, c,,e) is the following contour: 

6.6. Next we want to determine the dual measure for the Fourier

transform on A.

We have put on A(A) the Tamagawa measure da which can be
written as da = da1 dt corresponding to the decomposition A(A) =
A1(A)A+~. In §2.3 we put a measure on (Z+~A(F)BA(G))* via Pon-
tryagin duality. But

and (A(F)BA(A))1)* is discrete, Hom(Z+~BA+~, C*) is a vector space over
C. Thus we can give (Z+~A(F)BA(A))* the structure of a complex
manifold; as such, it has a natural measure which gives the measure 1
to the identity element of the Pontryagin dual of the compact abelian
group A(F)BA1(A); while the dual measure to da’ gives the measure
1/vol(A(F)BA1(A)) to the identity element.
The measure on A+~ (resp. A’+~, Zà) is fixed by identifying it with a

power of R" by means of a basis of the lattice LF (resp. 1LF, °LF).
Since A+~ = Z+~A’+~, we see that the dual measure to da gives the
measure 1/f to the identity element of 1LF, where f =
[1 LFEB 0L+F: LF]/[0L+F: 0Z-F].
Now A’~ is identified with 1F~R. Let {03BCj} be a basis of ’LF and let
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{k} be a dual basis in ILFQ9R defined by (JLj, ,1k) = 8jk. Take the
Euclidean measure dA on 1LF~R to be the one induced by
identification of ILFQ9R with Rr via the basis {03BCj}, where r is the rank
of 1LF. Suppose we change the basis of ’LF OR, namely, we use the
Euclidean measure d03BB+ with respect to 1L+F~R. Then d03BB+ = e d03BB
where e = [1L+F : 1 LF]. Choose a basis {03BC+j} of 1L+F such that (JL j, âk~ =
8jb where {03B1k} is the set of simple F-roots. Let

be the isomorphism defined by

That is we identify 1LF~C with Cr via the basis {03BC+j}. Then e dÀ =
ds 1, ..., dsr. Finally we remark that for Fourier inversion in Euclidean
space, the dual measure to 1F~R ~ Rr is (27Ti)-r times the measure
on 1LF~R.
To summarize we have the f ollowing lemma.

6.7. LEMMA: The measure induced on 1LF~C by that of

(Z+~A(F)BA(A))* is

where

6.8. REMARK: In the remainder of this section we essentially
reproduce Langlands [15] in adelic form. We follow Rapoport [18] in
the proof s of lemma 6.9 and 6.10.

6.9. LEMMA: All the local factors M, (w, À (s» are holomorphic in s
in an open half space of Cr containing the point (1,..., 1).

PROOF: Rewriting the formula (6) of §4 as
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we see that it is sufficient to consider the F-rank 1 case. And in this

case, if cp is a locally constant function with compact support on Fv,
then the integral of ~(03C1(a(n))) over Ñv exists.
Thus there exists a non-negative measure du on Fv such that

for all reasonable functions (b on Fv. In particular, for ~ : t ~ }t}s+1
(Re s &#x3E; t ), we get

That is Mv(s) is the Mellin transform of a non-negative measure and
is continuous at 1 (§5). 6.9 now results from a variant of Landau’s
lemma.

6.10. LEMMA: M(w,,k(s» is meromorphic in s. There exists a

positive number E such that the only singularities of M(w, À) in the
region 1- E  Re si  1 + e (i = 1, ..., r) are simple poles in the

hyperplane s; = 1 for i corresponding to a simple positive root in

003A3 F(w)-

PROOF: By the preceding lemma, we can leave out a finite number
of factors Mv(w, 03BB) from M(w, 03BB). In the relative rank 1 case, up to a
finite number of factors, there are four cases:

where CF (resp. CE) is the Dedekind zeta function of F (resp. E). It is
clear that in the cases (I) and (III) M(s) has a simple pole at s = 1 and
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in cases (II) and (IV) M(s ) is holomorphic in an open half-space of C
containing 1. The higher rank case now follows immediately from (7).

6.11. PROPOSITION: For 03A6, 03A8 ~ , we have

where wo E WF is the unique element which sends all the positive roots
to negative roots.

First we introduce some functions :

We also write sq for (si, ..., sq).

6.12. LEMMA: (i) For 0 s q sr, the functions fq(w, s q ) are

meromorphic in all the sq-spaces. In the region

fq(w, sq) is holomorphic, goes to zero faster than the inverse of all
polynomials as the imaginary past of sq goes to infinity and the real
part stays in a compact subset of this region.

(ii) There exists a positive number E such that the only singularities
of fq(w; sq) in the region

are simple poles lying the hyperplane si = 1.

PROOF: (i) is just a restatement of the corresponding property of
property of M(w, 03BB) which is a consequence of the global theory of
Eisenstein series (cf. [14]). (ii) follows from lemma 6.10.

6.13. It follows from §6.4 and 6.5 that
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provided each of these limits exists. We shall show by induction that
there exists the limit

if Sq0 = s(s0,1, ..., SO,q) with S0,i &#x3E; 1, 1:5 i:5 q. Note that analyticity
implies that expression is independent of the actual value of S Z,
provided its coordinates are strictly greater than one.
Take two small positive real numbers u, and v such that u is much

smaller than v. Set sq0 = (1 + u, ..., 1 + u, 1 + v) and sg-I =
(1 + u, ..., 1+u). Then Qq(1+u,..., 1+u, 1 - v)  (03C1, 03C1). Pick b such
that Q(1+u,...,1+u,1-v)b(p,p). Then, we can find a con-
stant T such that if either

or

then

We integrate

first with respect to sq ; we change the contour Re sq = so,q to
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The result is

plus

For sq-1 fixed and sq in Cq(v,03C4), the image in the Z-plane of
C = Cq(v, T) under Qq is given in the following diagram

It follows that for Re Sq-1 = sq-10 and sqcz C the function l/(z - Qq(sq))
is holomorphic in a region containing C(a, b, c, ~) such that

and (10) becomes
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Finally, we get, for q = 0

But it follows from lemma 6.10 that f o(w) is zero unless w = wo and
wo takes p to -p. We have

Hence

and (8) now f ollows from Ono’s formula for Tamagawa number of the
torus A (cf. [17]).

U sing the formula

and the result in §5 for the values of M, we see immediately that

7. Computation of Tamagawa number

7.1. THEOREM: Let G be a connected reductive quasi-split group
defined over an algebraic number field F. Let A be a maximal torus of
G defined over F lying inside the Borel subgroup of G defined over F.
Then
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where T(G) (resp. 03C4(A)) denotes the Tamagawa number of G (resp.
A), and c = [L+F : LF]/[0L+F : 0L-F].

PROOF: In the Hilbert space 2(Z+~G(F)BG(A)) we have

According the last formula of §6, the dimension of the image of E is
at most one. As we have already pointed out that the constant func-
tions are in the image of E, we get E =  and so

Since (, 1) = 03BA03A6(03C1), (1, ) = 03BA03C8(03C1) and r(G) = (1, 1) the theorem is
proved.

7.2. Weil conjectured that the Tamagawa number of a semi-simple
simply-connected connected algebraic group is one [17]. This con-
jecture holds for all classical groups (~ 3D4, 6D4) (Tamagawa, Weil,
Mars), for some exceptional groups (Mars, Demazure) and for Che-
valley groups (Langlands), but it is not yet completely solved. We
shall show that the Weil conjecture is true for simply-connected
connected semi-simple quasi-split group G. This in fact follows im-
mediately from our formula

where A is a maximal torus of G.

First, we observe that G is simply-connected implies LF = LF, i.e.
c = 1; and the representation of the Galois group in the lattice of
weights in a direct sum of permutation representation. Thus by
duality theory of algebraic tori, we have

where Ei are finite separable extension of F which is the field of
definition of G, and Gm is the 1-dimensional multiplicative group.
Now we have (by Ono [17])
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because T(Gm) = 1 (which follows from the value of the residue of
zeta function eE at 1).
Thus by the formula of the preceeding subsection T(G) = cT(A) = 1

for a simply-connected semi-simple quasi-split connected algebraic
group.
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